Обратное неравенство Гельдера

dc.contributor.authorШанин, Руслан Васильевич
dc.contributor.authorШанін, Руслан Васильович
dc.contributor.authorShanin, Ruslan V.
dc.date.accessioned2019-09-09T09:06:07Z
dc.date.available2019-09-09T09:06:07Z
dc.date.issued2019
dc.description.abstractПусть 𝑟 ̸= 0 и 𝐸 измеримое множество, |𝐸| > 0. Для неотрицательной функции 𝑓 ∈ 𝐿𝑟(𝐸) средним порядка 𝑟 называется величина 𝑀𝑟(𝑓,𝐸) := (|𝐸|−1 ∫︀ 𝐸 𝑓𝑟(𝑥) 𝑑𝑥)1/𝑟. В работе изучается класс 𝑅𝐻′ 1,2,1(𝑅0) функций 𝑓, удовлетворяющих обратному неравенству Гельдера, ⟨𝑓⟩ = sup𝑅⊂𝑅0 [𝑀2(𝑓,𝑅)−𝑀(𝑓,𝑅)] < +∞. Получена оценка скорости убывания равноизмеримых перестановок функций из этого класса и построен пример, показывающий, что полученная оценка асимптотически точная. Этот результат явля- ется аналогом хорошо известной теоремы Джона–Ниренберга о пространствах 𝐵𝑀𝑂. Также получены оценки равноизмеримых перестановок функций из 𝑅𝐻′ 1,2,1 с заданной скорость убывания к нулю разности средних. MSC: 42B35, 46E30.uk_UA
dc.description.abstractНехай 𝑟 ̸= 0 i 𝐸 вимiрна множина, |𝐸| > 0. Для невiд’ємної функцiї 𝑓 ∈ 𝐿𝑟(𝐸) середнiм iнтегральним порядку 𝑟 називається величина 𝑀𝑟(𝑓,𝐸) := (|𝐸|−1 ∫︀𝐸 𝑓𝑟(𝑥) 𝑑𝑥)1/𝑟. В роботi вивчається клас 𝑅𝐻′ 1,2,1(𝑅0) функцiй 𝑓, що задовольняють обернену нерiвнiсть Гельдера, ⟨𝑓⟩ = sup𝑅⊂𝑅0 [𝑀2(𝑓,𝑅) −𝑀(𝑓,𝑅)] < +∞. Отримана оцiнка швидкостi спадання рiвновимiрних перестановок функцiй iз цього класi i побудовано приклад, що демонструє, що отримана оцiнка є асимптотично точною. Цей результат є аналогом добре вiдомої теореми Джона–Нiренберга в просторi 𝐵𝑀𝑂. Також в роботi отриманi оцiнки рiвновимiрних перестановок функцiй iз 𝑅𝐻′ 1,2,1 з заданою швидкiсть спадання до нуля рiзницi середнiх iнтегральних.
dc.description.abstractLet 𝑟 ̸= 0 and let 𝐸 be a measurable set with |𝐸| > 0. For a non-negative function 𝑓 ∈ 𝐿𝑟(𝐸) the mean of the order 𝑟 is defined by the equality 𝑀𝑟(𝑓,𝐸) := (|𝐸|−1 ∫︀ 𝐸 𝑓𝑟(𝑥) 𝑑𝑥)1/𝑟. In the paper we study the class 𝑅𝐻′ 1,2,1(𝑅0) of functions 𝑓 satisfying the reverse H¨older inequality ⟨𝑓⟩ = sup𝑅⊂𝑅0 [𝑀2(𝑓,𝑅) − 𝑀(𝑓,𝑅)] < +∞. We obtain a estimate of decrease rate of equimeasurable rearrangements of functions of this class and we give an example which show that the estimate is asymptotically exact. This result is analogous to well-known theorem of F. John and L. Nirenberg in the space of 𝐵𝑀𝑂. Also we obtain estimates of equimeasurable rearrangements of functions of 𝑅𝐻′ 1,2,1 with given decreasing rate to 0 of difference of means.
dc.identifierУДК 517.5
dc.identifierDOI: 10.18524/2519–206x.2019.1(33).175545.
dc.identifier.citationДослідження в математиці і механіці = Researches in mathematics and mechanicsuk_UA
dc.identifier.urihttps://dspace.onu.edu.ua/handle/123456789/25284
dc.language.isoruuk_UA
dc.publisherОдеський національний університет імені І. І. Мечниковаuk_UA
dc.relation.ispartofseries;Т. 24, вип. 1(33).
dc.subjectобратное неравенство Гельдераuk_UA
dc.subjectравноизмермая перестановка функцииuk_UA
dc.subjectобернена нерiвнiсть Гельдераuk_UA
dc.subjectрiвновимiрна перестановка функцiїuk_UA
dc.subjectreverse H¨older inequalityuk_UA
dc.subjectequimeasurable rearrangementuk_UA
dc.titleОбратное неравенство Гельдераuk_UA
dc.title.alternativeОбернена нерiвнiвнiсть Гельдераuk_UA
dc.title.alternativeReverse H¨older inequalityuk_UA
dc.typeArticleuk_UA
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
53-58.pdf
Розмір:
580.65 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: