Смешанная задача для бесконечной упругой плиты с учетом воздействия произвольно ориентированной внутренней силы

dc.contributor.authorФесенко, Анна Александровнаru
dc.contributor.authorФесенко, Ганна Олександрівнаuk
dc.contributor.authorFesenko, Anna O.en
dc.date.accessioned2015-03-04T10:52:58Z
dc.date.available2015-03-04T10:52:58Z
dc.date.issued2013
dc.description.abstractПолучено точное решение задачи теории упругости для бесконечной плиты в случае воздействия произвольно ориентированной сосредоточенной внутри плиты силы. Предполагается, что на одной грани заданы напряжения, а другая – жестко закреплена. Для построения решения используется новый аналитический метод, основанный на приведении системы уравнений Ламе к двум совместно решаемым и одному отдельно решаемому уравнениям. При этом граничные условия также разделяются. Полученная краевая задача с помощью интегрального преобразования Фурье сводится к векторной одномерной краевой задаче. Проведен численный анализ распределения напряжений на закрепленной грани в зависимости от параметров участка распределения заданного напряжения и расположения внутренней сосредоточенной силы. ru
dc.description.abstractОтримано точний розв’язок задачi теорiї пружностi для нескiнченної плити з урахуванням дiї усерединi плити довiльно орiєнтованої зосередженої сили. Припускається, що одна границя плити є жорстко закрiпленою, а на iншiй – заданi напруження. Для отримання розв’язку використовується новий аналiтичний метод, який базується на зведеннi системи рiвнянь Ламе до одного рiвняння, що незалежно розв’язується, та двох сумiсно розв’язуємих рiвнянь. Граничнi умови при цьому також роздiляються. Отримана задача за допомогою iнтегрального перетворення Фурьє зводиться до векторної одномiрної крайової задачi. Проведено числовий аналiз розподiлу напружень на закрiпленiй гранi в залежностi вiд розмiру дiлянки розподiлу заданих напружень i розташування внутрiшньої зосередженої сили. uk
dc.description.abstractThe exact solution of the elasticity mixed problem for the space layer in the case of presence an arbitrary orientation concentrated force inside the layer is constructed. The stresses are set on one side, and another side is fixed. New method was used here, based on reducing Lame equations to an independently solved one and two combined solved equations. Boundary conditions are divided as well. These two equations are reduced to the vector one-dimensional boundary problem using Fourier integral transformations method. The numerical analysis of the stresses distribution in the fixed side of the layer was done depending on the area parameters of the initial stresses and the location of the concentrated force.en
dc.identifier.citationФесенко А. А. Смешанная задача для бесконечной упругой плиты с учетом воздействия произвольно ориентированной внутренней силы / А. А. Фесенко // Вісник Одеського національного університету. Математика і механіка. – 2013. – Т. 19, вип. 3(19). – С. 82–92.ru
dc.identifier.issn2304-1579
dc.identifier.urihttps://dspace.onu.edu.ua/handle/123456789/5980
dc.language.isoru
dc.publisherОдеський національний університет імені І. І. Мечниковаuk
dc.subjectбесконечная плитаru
dc.subjectинтегральные преобразованияru
dc.subjectточное решениеru
dc.subjectпроизвольно ориентированная внутренняя силаru
dc.subjectнескiнченна плитаuk
dc.subjectiнтегральнi перетворенняuk
dc.subjectточний розв’язокuk
dc.subjectдовiльно орiєнтована внутрiшня силаuk
dc.subjectthe infinite layeren
dc.subjectthe integral transformationsen
dc.subjectthe exact solutionen
dc.subjectan arbitrary orientation inner forceen
dc.subject.udc539.3
dc.titleСмешанная задача для бесконечной упругой плиты с учетом воздействия произвольно ориентированной внутренней силыru
dc.title.alternativeМiшана задача для нескiнченної пружної плити з урахуванням впливу довiльно орiєнтованої внутрiшньої силиuk
dc.title.alternativeThe space elasticity problem for the infinite layer with the presence of an arbitrary concentrated force inside the layeren
dc.typeArticleen
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
82-92.pdf
Розмір:
240.14 KB
Формат:
Adobe Portable Document Format
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: