Переглянути
Нові надходження
Документ Хімічно-ініційована міцелярна екстракція та її застосування для концентрування і визначення Германію(IV) спектроскопічними методами(Одеський національний університет імені І. І. Мечникова, 2024) Жуковецька, Олена Михайлівна; Zhukovetska, Olena M.Жуковецька О. М. Хімічно-ініційована міцелярна екстракція та її застосування для концентрування і визначення Германію(IV) спектроскопічними методами. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора філософії у галузі 10 – Природничі науки за спеціальністю 102 «Хімія». Одеський національний університет імені І.І. Мечникова, МОН України, Одеса, 2024. Дисертацію присвячено вивченню особливостей утворення хімічно-індукованих міцелярних фаз нейоногенних поверхнево-активних речовин (ПАР), встановленню їх екстракційної здатності щодо комплексів Ge(IV) з 2,4-заміщеними похідними 6,7-дигідроксибензопірилію та розробці відповідних комбінованих спектроскопічних методик його визначення. У вступі обґрунтовано актуальність теми дисертаційної роботи, сформульовано мету та завдання дослідження, зазначено наукову новизну і практичну значимість отриманих результатів. У першому розділі представлено огляд літератури, систематизовані дані літературних джерел щодо сучасного стану та перспектив розвитку методів рідинної екстракції. Особливу увагу зосереджено на міцелярно-екстракційному концентруванні та відповідних сучасних модифікаціях. У другому розділі наведено опис використаних реактивів, характеристики устаткування та обладнання, які застосовували у роботі. Представлені методики синтезу та ідентифікації похідних 6,7-дигідроксибензопірилію, які використовувались в даній роботі. Наведено методики, умови й основні етапи експериментальних досліджень. Третій розділ присвячено вивченню сольватохромних властивостей ряду похідних перхлорату 6,7-дигідроксибензопірилію: 6,7-дигідрокси-2,4-диметилбензопірилію, 6,7-дигідрокси-2-феніл-4-метилбензопірилію та 6,7- дигідрокси-2,4-дифенілбензопірилію. Вплив природи органічних розчинників досліджено на прикладі метанолу, етанолу, н-пропанолу, ізо-пропанолу, н-бутанолу, ізо-бутанолу, н-пентанолу, ізо-пентанолу, н-гексанолу, н-гептанолу, н-нонанолу, деканолу, диметилформаміду, диметилсульфоксиду, тетрагідрофурану, ацетонітрилу, бутилацетату, толуену та хлороформу. Показано, що при заміні полярного розчинника менш полярним спостерігається батохромний зсув максимуму смуги поглинання похідних 6,7-дигідроксибензопірилію, що відповідає n→π* електронному переходу. Відзначено, що спостерігається задовільна кореляція (R = 0,795-0,993) між положенням максимуму поглинання барвника і величинами параметру Хансена, Камлета-Тафта, донорним та акцепторним числом за Гутманом. Четвертий розділ присвячено дослідженню комплексоутворення Германію(ІV) з низкою алкіл- та феніл- похідних 6,7-дигідроксибензопірилію. Склад комплексів Ge(IV):R = 1:2 встановлено класичними спектрофотометричними методами. На підставі сукупності даних запропоновано хімізм комплексоутворення. Показано, що комплексоутворювачем є катіон Ge(OH)22+ , а ліганд взаємодіє у формі ангідрооснови. Визначені хіміко-аналітичні характеристики комплексів та зазначено, що найбільш інтенсивно забарвленими та стійкими є комплекси Ge(IV) з солями 6,7-дигідрокси-2,4-дифенілбензопірилію та 6,7-дигідрокси-4-метил-2-фенілбензопірилію. Показано, що введення фенільних замісників у положення 2 і 4 бензопірілієвого фрагмента призводить до зміщення комплексоутворення в більш кислу область, підвищення стійкості продуктів взаємодії та збільшення їх молярних коефіцієнтів світлопоглинання. Із використанням солей 6,7-дигідрокси-2,4-диметилбензопірилію розроблено методику визначення Германію(ІV) після його екстракційного відділення у вигляді тетрахлориду. Окрему увагу приділено дослідженню будови найбільш ефективної аналітичної форми на основі продукту взаємодії Германію(ІV) з катіоном 6,7- дигідрокси-2,4-дифенілбензопірилію. Із залученням квантово-хімічних розрахунків в рамках теорії функціоналу густини запропоновано найбільш ймовірну структуру комплексу, а із залученням індексів молекулярної полярності обґрунтовано високу екстракційну спорідненість запропонованої аналітичної форми. П’ятий розділ присвячено дослідженню ініціаторів низькотемпературної міцелярної екстракції. В даному розділі наведено результати визначення констант іонізації (рKа) бензойної, 4-хлорбензойної, о-нітробензойної, 2,4-дигідроксибензойної, о-, м-, п-толуїлових та саліцилової кислот у водних розчинах та організованих середовищах на основі нейоногенної поверхнево-активної речовини Тритону Х-100 при різних концентраціях останнього в системі методом потенціометричного титрування. Показано, що на характер та ступінь зміни кислотно-основних властивостей досліджуваних сполук впливають їх природа і фізико-хімічні властивості середовища. Запропоновано критерії вибору ініціаторів міцелярної екстракції, які дозволяють проводити аналітичне концентрування за кімнатної температури. У шостому розділі висвітлено нові комбіновані спектрофотометричні (атомно-абсорбційні) методики визначення слідових кількостей Германію(IV) після його низькотемпературного міцелярно-екстракційного концентрування у вигляді комплексів з похідними 6,7-дигідроксибензопірилію. Запропоновано спектрофотометричну методику визначення Германію(IV) з 6,7-дигідрокси-2,4-дифенілбензопірилієм після його міцелярної екстракції. За оптимальних умов визначення: pH 1, вміст 6,7-дигідрокси-2,4-дифенілбензопірилію 1,8–2∙10 -5 моль/л, вміст ініціатору міцелярної екстракції (бензоату амонію) 0,12 моль/л, концентрація Тритону Х-100 1 об.% градуювальний графік лінійний в інтервалі концентрацій Германію(IV) 4–490 мкг/л, а межа виявлення становить 1,2 мкг/л. Запропоновано спектрофотометричну методику визначення Германію(IV) з 6,7-дигідрокси-2-феніл-4-метилбензопірилієм після його міцелярної екстракції. Встановлено оптимальні умови визначення: pH 1,5, вміст 6,7-дигідрокси-2,4-дифенілбензопірилію 1,8–2∙10 -5 моль/л, вміст ініціатору міцелярної екстракції (бензоату амонію) 0,12 моль/л, концентрація Тритону Х-100 1 об.%. За вказаних умов градуювальний графік лінійний в інтервалі концентрацій Германію(IV) 4,36–472 мкг/л, а межа виявлення становить 1,31 мкг/л. Зазначено, що комплекс Германію(IV) з 6,7-дигідрокси-2,4-диметилбензопірилієм придатний до розробки відповідної комбінованої методики, проте за своїми аналітичними характеристиками поступається розглянутим. Вивчено та оптимізовано умови міцелярно-екстракційного концентрування Ge(IV) у вигляді комплексу з 6,7-дигідрокси-2,4-дифенілбензопірилієм у міцелярну фазу неіоногенної поверхнево-активної речовини Тритону Х-100. Показано, що введення в систему бензоату амонію при рН 1 та концентрації тритону Х-100 0,5 об.% призводить до ініціювання утворення міцелярної фази за кімнатної температури. Розроблено методику електротермічного атомно-абсорбційного визначення Ge(IV) після його міцелярно-екстракційного концентрування. Градуювальний графік лінійний в інтервалі концентрацій 0,05-5,5 мг/л, а межі виявлення та визначення відповідно дорівнюють 0,015 та 0,5 мг/л. Запропонована методика апробована при аналізі стандартних зразків геологічних матеріалів, а відносне стандартне відхилення не перевищує 4,9%. Запропоновані методики характеризуються низкою переваг, а саме застосування невеликої кількості реагентів, зокрема органічних розчинників, що суттєво зменшує забруднення навколишнього середовища, а проведення запропонованого варіанту низькотемпературного міцелярно-екстракційного концентрування не потребує спеціального устаткування й додаткових етапів ініціювання утворення міцелярної фази (тривалого нагрівання, опромінення ультразвуком тощо). В цілому, розроблені комбіновані методики спектрофотометричного (атомно-абсорбційного) визначення Ge(IV) з його попереднім низькотемпературним міцелярно-екстракційним концентруванням є швидкими, чутливими й відповідають принципам «зеленої хімії», а також придатні для визначення слідових кількостей Ge(IV). Окремі матеріали дисертаційної роботи впроваджені в навчальний процес кафедри аналітичної та токсикологічної хімії факультету хімії та фармації ОНУ імені І.І. Мечникова.Документ Хемосорбційно-каталітичні наноматеріали на основі сполук паладію(II), купруму(II) та флогопіту для окиснення монооксиду карбону і діоксиду сульфуру киснем(Одеський національний університет імені І. І. Мечникова, 2024) Назар, Анна Павлівна; Nazar, Anna P.Назар А. П. Хемосорбційнокаталітичні наноматеріали на основі сполук паладію(ІІ), купруму(ІІ) та флогопіту для окиснення монооксиду карбону і діоксиду сульфуру киснем. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 102 «Хімія». – Одеський національний університет імені І. І. Мечникова, Одеса, 2024. В дисертаційній роботі розв’язані актуальні теоретичні та практичні задачі, які стосуються системного вивчення фазового складу та впливу різних чинників на фазові трансформації й фізикохімічні властивості природного та спученого флогопіту, а також на каталітичну активність закріплених сполук Pd(ІІ) і Cu(ІІ) в реакціях окиснення монооксиду карбону і діоксиду сульфуру атмосферним киснем; оптимізовані склад та умови використання нових наноматеріалів в засобах індивідуального захисту органів дихання людини від монооксиду карбону в присутності пари води та діоксиду сульфуру. В дисертаційній роботі як прекурсори використовували природний флогопіт (ПPhl), термічноспучений (ТСPhl) (постачальник «Укрвермікуліт»), а також хімічноспучений флогопіт (ХСPhl), отриманий дією 30% розчину пероксиду водню на ПPhl за умови 20°С. Розроблені нові методи ціленаправленого модифікування ПPhl, ТСPhl і ХСPhl нітратною кислотою: і) рефлаксметод за умови варіювання концентрації кислоти за сталим часом контакту Х ̅ НPhl1, Х ̅ НТСPhl1, Х̅ НХСPhl1 (Х ̅ = 0,25; 0,5; 1,0; 3,0; 4,0; 6,0; 8,0 моль/л НNO3); іі) рефлаксметод за умови варіювання тривалості контакту кислоти зі зразками флогопіту Х̅ НPhlτ, Х ̅ НТСPhlτ, Х ̅ НХСPhlτ (τ = 0,5; 1; 3; 4 години); ііі) низькотемпературне (20°С) довготривале модифікування нітратною кислотою Х̅ НPhlτ, Х ̅ НТСPhlτ (τ = 1; 24; 48; 72 години). На основі вихідних зразків ПPhl, ТСPhl, ХСPhl та їх кислотномодифікованих форм Х̅ НPhlτ, Х̅ НТСPhlτ, Х̅ НХСPhlτ методом просочування в одну стадію по вологоємності отримано серії каталізаторів окиснення монооксиду карбону, базовими компонентами яких є K2PdCl4 ,Cu(NO3)2 , KBr та носій (S̅ ) – Pd(ІІ)Cu(ІІ)/S ̅ . Для досягнення мети роботи були використані наступні методи дослідження: рентгенофазовий аналіз (РФА); скануюча електронна мікроскопія з електроннозондовим мікроаналізом (СЕМЕЗМ); ІЧспектроскопія; рНметрія; кінетичний метод для встановлення закономірностей окиснення СО і SO2, визначення часу захисної дії каталітичних композицій відносно газоподібних токсичних речовин та оцінки характеру зв’язку Pd(ІІ), Cu(ІІ) з поверхнею носія; математичні методи обробки результатів дослідження. Встановлено, що незалежно від методу кислотного модифікування ПPhl, ТСPhl і ХСPhl (рефлаксметод або низькотемпературна довготривала обробка), дія нітратної кислоти є аналогічною та відбувається: і) зміна фазового складу, співвідношення фаз і кристалічності зразків; іі) розшарування ламелей, яке супроводжується збільшенням об’єму зразка; ііі) вилуговування алюмінію, магнію й феруму за механізмом «краєвої» атаки; іііі) зміна кислотноосновних властивостей поверхні зразків ПPhl, ТСPhl, ХСPhl. Методом РФА встановлено, що природний флогопітовий концентрат є поліфазовим мінералом із переважним вмістом флогопіту (Phl) та наявності фаз клінохлору (Сlс), діопсиду (Di) й тремоліту (Tr). Вміст флогопіту зростає в результаті високотемпературного модифікування нітратною кислотою (максимально до 70%) та термічного спучення (ТСPhl) природного флогопіту (максимально до 80%). У разі низькотемпературної (20°С) довготривалої (τ =1; 24; 48; 72 години) дії нітратної кислоти вміст фази флогопіту в природному та термічноспученому зразках регулярно убуває з паралельним зростанням фази клінохлору до 35,9 %. Кристаліти визначених фаз є нанорозмірними. Доведено, що в результаті руйнування алюмосилікатного каркасу, незалежно від природи вихідного флогопіту (ПPhl, ТСPhl) та способу кислотного модифікування, відбувається формування наносиліки, яка виступає носієм сполук паладію(ІІ) та купруму(ІІ). Встановлено, що у складі каталізаторів не виявляються додаткові фази, а саме солі паладію(ІІ), купруму(ІІ), оксидні форми (PdО, CuО, Cu2О) та відновлені метали (Pd0, Cu0). Каталітичні компоненти добре гомогенізовані. Методом десорбції Pd(II) та Cu(II) із модельних зразків каталізаторів доведено, що на кислотномодифікованих носіях 70% паладію(ІІ) і 50% купруму(ІІ) утворюють з поверхнею носія слабкі зв’язки. За результатами тестування каталізаторів Pd(ІІ)Cu(ІІ)/S̅ в реакції окиснення СО киснем встановлено, що за умови однакового вмісту базових компонентів активність каталізаторів в стаціонарному режимі суттєво залежить від вихідних прекурсорів флогопіту та умов їх кислотного модифікування. Встановлені наступні ряди активності каталізаторів: - серія 1 Pd(II)Cu(II)/Х̅ НPhl1: 3НPhl1 (53) < 4НPhl1 (80) < 6НPhl1(91) < 8НPhl1 (95); - серія 2 Pd(II)Cu(II)/8НPhlτ: 8НPhl0,5 (92) < 8НPhl1 (95) < 8НPhl3(99) = 8НPhl4 (99); - серія 3 Pd(II)Cu(II)/8НPhlτ (τ = 1; 24; 48; 72 годин; t = 20°C): 8НPhl1(26) < 8НPhl24 (71) < 8НPhl48 (90) < 8НPhl72 (97); - серія 4 Pd(II)Cu(II)/Х̅ НТСPhl1: 1НТСPhl1 (68) < 2НТСPhl1 (86) < 3НТСPhl1 (98) = 6НТСPhl1 (98) < 8НТСPhl1 (100); - серія 5 Pd(II)Cu(II)/3НТСPhlτ (τ = 1; 24; 48; 72 години): 3НТСPhl1(0) < 3НТСPhl24 (35) < 3НТСPhl48 (74) < 3НТСPhl72 (97); - серія 6 Pd(II)Cu(II)/Х ̅ НХСPhl1: 1НХСPhl1 (30) < 2НХСPhl1(62) < 3НХСPhl1(84) < 6НХСPhl1(95). За умови високотемпературного кислотного модифікування 3М HNO3 активність каталізаторів зростає у такій послідовності: Pd(II)Cu(II)/3НPhl1 (53%) < Pd(II)Cu(II)/3НХСPhl1 (84%) < Pd(II)Cu(II)/3НТСPhl1 (98%). За умови низькотемпературного (20ºС) довготривалого (72 години) кислотного модифікування максимальна активність каталізаторів Pd(II)Cu(II)/3НТСPhl72 (97%) = Pd(II)Cu(II)/8НPhl72 (98%) досягається за різної концентрації кислоти. Досліджено хемосорбційнокаталітичні властивості вихідних зразків ПPhl, ТСPhl; їх кислотномодифікованих форм Х̅ НPhl1, 8НPhlτ (τ = 1; 24; 48; 72 годин; t = 20°C); Х̅ НТСPhl1 та каталізаторів Pd(ІІ)Cu(ІІ)/S ̅ в реакції діоксида сульфуру з атмосферним киснем в присутності пари води. Доведено, що тільки у разі однокомпонентних Cu(ІІ) або Pd(ІІ)композицій, а також двокомпонентних композицій параметри реакції, а саме кількість адсорбованого SO2 та захисні властивості композицій значно покращуються. Встановлено, що біметальні композиції Pd(ІІ)Cu(ІІ)/S ̅ (S ̅ = 6НPhl1; 8НPhl72; Х̅ НТСPhl1) виявили синергетичний ефект в реакції з діоксидом сульфуру в присутності пари води та атмосферного кисню. Константа синергізму залежить від умов кислотного модифікування ПPhl і ТСPhl та співвідношення показників τ ГПК для біметальної та монометальних композицій. Стехіометричний коефіцієнт n, визначений по паладію(ІІ), зростає від 0,8 до 4,9, що свідчить про каталітичне окиснення SO2 киснем. Визначена серія високоактивних нанокаталізаторів Pd(ІІ)Cu(ІІ)/S̅ , які забезпечують стабільну очистку повітря від монооксиду карбону та є перспективними для використання в засобах індивідуального захисту органів дихання людини. Результати цієї роботи використовуються в навчальному процесі підготовки здобувачів за спеціальністю 102 Хімія (магістри, РhD) в лекціях і лабораторному практикумі з дисциплін «Новітні матеріали в охороні навколишнього середовища» та «Газоподібні токсичні речовини неорганічного походження та методи їх знешкодження».Документ Створення гібридних полімерних композитів на основі модифікованих ненасичених олігоестерів зі специфічними властивостями(2023) Кіосе, Олеся Олегівна; Kiose, Olesya O.Дисертація на здобуття наукового ступеня доктор філософії за спеціальністю 102 «Хімія». – Одеський національний університет імені І.І. Мечникова, Одеса, 2023. Дисертація присвячена дослідженню впливу різного типу модифікаторів поліглікольмалеїнатфталату на кінетику його радикальної кополімеризації з рядом метакрилатних мономерів та олігомерів і застосуванню отриманих продуктів як основи для формування гібридних полімерних композиційних матеріалів зі специфічними властивостями. В якості модифікаторів було використано ацетати, ацетилацетонати, нітрогеновмісні сполуки, нові координаційні сполуки р-, d-металів та супрамолекулярні солі, які додавалися під час синтезу поліконденсацією малеїнового та фталевого ангідридів з етиленгліколем. Подальшу кополімеризацію модифікованих полігліколь-малеїнатфталатів (м-ПГМФ) з метакрилатами (ММА, ТГМ-3, МГФ-9) здійснено в інтервалі температур 40 – 60 0С. Визначено швидкість та температурний коефіцієнт реакції залежно від природи модифікаторів. Встановлено, що на значення кінетичних параметрів радикальної кополімеризації м-ПГМФ з метакрилатами впливає як природа компонентів, так і ініціюючої системи. Застосування ацетатів та ацетилацетонатів, окрім Со(асас)2·2H2O, призводить до зниження швидкості та підвищення температурного коефіцієнту реакції радикальної кополімеризації з ММА. У випадку застосування ТГМ-3, найменше значення температурного коефіцієнту виявив Al(acac)3. Кінетичні дослідження кополімеризації м-ПГМФ з ММА з використанням ініціюючої системи ПБ+Со(асас)2·2H2O з максимальним вмістом хелату виявили, що найменші значення температурного коефіцієнту реакції спостерігаються у випадку модифікації ацетилацетонатами цирконію (IV) та нікелю (II). Система ПБ+Со(асас)2·2H2O забезпечує низькі значення температурного коефіцієнту кополімеризації м-ПГМФ з ТГМ-3 порівняно із додаванням ПБ без активуючої добавки; заміна метакрилатної складової на МГФ-9 погіршує кінетичні параметри. Вивчення впливу нових координаційних сполук Ge(IV) та 3d-металів з 1,10-фенантроліном (phen) та 2,2´-біпіридином (bipy) і ксиларовою кислотою (H5Xylar) як модифікуючих добавок при кополімеризації м-ПГМФ з ММА виявило, що найбільш ефективними для зниження температурного коефіцієнту є сполуки [Zn(phen)3]2[(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]∙18Н2О та [Co(phen)3]2[(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]∙12Н2О. Модифікація ПГМФ новими біметалевими комплексами 3d-металів з фенантроліновими та біпіридиновими лігандами, що містили тартрато-германатні/станатні аніони, у більшості випадків призводить до зменшення температурного коефіцієнту реакції кополімеризації м-ПГМФ з ТГМ-3. Найбільш ефективним виявився [Cu(phen)3]2[Ge2(OH)(HTart)(μ-Tart)2]·11H2O (HTart3-, Tart4- – аніони винної кислоти), його використання, окрім низького коефіцієнту, дозволяє суттєво підвищити швидкість кополімеризації м-ПГМФ з ТГМ-3. Кополімеризаційна система з ММА є найбільш ефективною у випадку застосування солей [Ni(phen)3]2[Sn2(μ-Tart)2(H2Tart)2]·2H2O та [Co(phen)3]2[Sn2(μ-Tart)2(H2Tart)2]·8H2O. Дослідження широкого кола нітрогеновмісних органічних сполук (аміни, аміди, амінофеноли, аміноспирти, гідразини) як модифікаторів ПГМФ, при подальшій кополімеризації з ММА показало, що не вдається встановити чітку кореляцію між кінетичними параметрами та будовою нітрогеновмісної сполуки. Встановлено лише загальну тенденцію, яка полягає у неефективності модифікації біфункціональними сполуками, що містять первинну аміно- та гідроксигрупу, або декілька первинних аміногруп. Найкращим модифікатором, який може бути рекомендований для практичного застосування, виявився 1,10-фенантролін. Визначені фізико-механічні властивості кополімерних матеріалів дозволяють стверджувати, що модифікація ПГМФ координаційними сполуками суттєво не впливає на експлуатаційні характеристики кополімерів: ударна міцність і твердість складають 12 кДж/м2 і 8 Н·м, для модифікованих і немодифікованих кополімерів відповідно. Температура склування при використанні максимального додавання металовмісних модифікаторів (0,5-1 моль/л) підвищується від 130 ⁰С до 170 ⁰С; міцністні характеристики не зменшуються, порівняно з немодифікованими зразками. Методом комп’ютерного моделювання розраховано максимальний об’єм полімерного блоку, який можна виготовити з композитних матеріалів на основі модифікованих поліестерів, отриманих за низького значення температурного коефіцієнту кополімеризації, без ризику перегріву при затвердженні в неізотермічному режимі. Визначено кінетичні параметри затвердження епоксидних композитів у присутності низки інертних розчинників. Встановлено, що температурний коефіцієнт реакції затвердження має найменше значення при застосуванні циклогексанону. Із використанням цього розчинника було створено багатокомпонентну систему на основі епоксидної смоли ЕД-20, затвердженої поліетиленполіаміном, із використанням активного розріджувача – гідроксипропілоксирану. Показано, що додавання 6% гідроксипропілоксирану та 6% циклогексанону зменшує температурний коефіцієнт реакції і дозволяє суттєво збільшити ударну міцність епоксидного полімеру з 14 до 25 кДж/м2. На основі досліджених кополімерів м-ПГМФ та епоксидних систем, отримано високонаповнені гібридні полімерні композити крейдою, мідним порошком, крохмалем, епоксидною крихтою та модифікованим поліетилентерефталатом; визначено їх фізико-механічні характеристики. Показано, що ударна міцність, твердість та температура склування отриманих композитів суттєво не відрізняються, але модифікація поліглікольмалеїнатфталату дозволяє значно підвищити об’єм полімерного блоку при формуванні композиту в неізотермічному режимі. Розроблено спосіб отримання гібридних полімерних композитів на основі кополімерів м-ПГМФ з ММА з високодисперсним поліетилентерефталатом, що дозволяє підвищити вміст наповнювача до 20%. Запропонований спосіб є перспективним з точки зору вирішення екологічної проблеми – утилізації ПЕТФ-тари, а також, надає композитним матеріалам специфічних властивостей – підвищує водопоглинання з 0,2 до 3,8%, що може бути застосовано в гідропоніці. Методом вимірювання тангенсу кута діелектричних втрат при різних температурах доведена наявність міжфазного шару, як окремої термодинамічної фази в композитах на основі м-ПГМФ з наповнювачем у вигляді епоксидної крихти. Запропоновано спосіб модифікації поверхні наповнювача, який дозволяє провести дозатвердження низькомолекулярних фракцій на його поверхні. Він полягає у попередньому замочуванні епоксидної крихти у розчині ММА з ПБ, що дозволяє зменшити негативний вплив міжфазного шару і, як наслідок, зберегти міцність гібридних композитних матеріалів при створенні великогабаритних виробів. Також, на основі досліджених полімерних систем створено гібридні композитні матеріали наповнені сплавом Розе, які збільшують на 3 порядки свою електропровідність за температур вище 92 ⁰С. Здійснено модифікацію поліметилметакрилату шляхом допування металокомплексами Yb3+, Nd3+ з 5-(п-амінофеніл)-10,15,20-трифеніл-порфірином та його похідними. Встановлено, що введення комплексу Yb3+ з 5-(п-амінофеніл)-10,15,20-трифенілпорфірином у поліметилметакрилаті дозволяє створювати плівки, які мають особливі флуоресцентні властивості –змінюють колір в залежності від довжини хвилі УФ-випромінювання.Документ Вугільно-пастовий електрод, модифікований βциклодекстрином для вольтамперометричного визначення деяких харчових барвників(2022) Плюта, Костянтин Володимирович; Pliuta, Kostiantyn V.Дисертація на здобуття наукового ступеня доктора філософії у галузі 10 – Природничі науки за спеціальністю 102 – Хімія. Одеський національний університет імені І.І. Мечникова, МОН України, Одеса, 2022. Дисертацію присвячено розробці нового вольтамперометричного сенсора на основі вугільно-пастового електрода, модифікованого β-циклодекстрином, вивченню особливостей протікання на його поверхні редокс-реакцій за участю харчових азобарвників (Тартразин — ТАР, Жовтий «захід сонця» — ЖЗС, Кармоазин — КАН, Понсо 4 R — П4R, Спеціальний Червоний AG — CЧАG), а також розробці методики їх вольтамперометричного визначення у різних продуктах харчування. У вступі обґрунтовано актуальність обраної теми, встановлено мету та завдання дослідження, відзначено наукову новизну і практичну значимість отриманих результатів. У першому розділі представлено огляд літератури, наведені загальні відомості щодо використання харчових азобарвників, розглянуто їх потенційну токсичність, наведені останні дослідження щодо їх перетворення у ШКТ та вплив на здоров’я людини та тварини. Наведені приклади та проаналізовано механізм дії сорбентів на основі β-циклодекстрину, як ефективних засобів вилучення азобарвників з водних розчинів. Детально розібрано та проаналізовано використання β-циклодекстрину, як модифікатора електродів, при створенні нових вольтамперометричних сенсорів для визначення аналітів різної природи. На основі розглянутої літератури зроблено припущення про механізми дії β-циклодекстрину як модифікатора електродів. Детально розглянуто використання вольтамперометричних сенсорів, які мають у своєму складі модифікатори різної природи та дії, необхідні для визначення харчових азобарвників у продуктах харчування. Розглянуто та систематизовано редокс-поведінку харчових азобарвників на електродах з модифікаторами різної природи. Проаналізовано переваги, недоліки та обмеження використання вольтамперометричних сенсорів з різними типами електродів та модифікаторів, а також низки інших фізико-хімічних методів аналізу при визначенні барвників. У другому розділі описано характеристики використаних приладів, обладнання та реактивів. Описані методики приготування розчинів фонового електроліту, стандартних та робочих розчинів барвників. Наведено методики приготування немодифікованого та модифікованого вугільно-пастового електроду. Описані умови та основні етапи експериментальних досліджень. У третьому розділі розглянуто особливості редокс-поведінки харчових азобарвників на поверхні вугільно-пастового електроду, модифікованого β-циклодекстрином. Встановлено, що усі досліджені барвники на розробленому сенсорі мають як пік відновлення азогрупи, так і пік її окиснення. Відповідно до циклічних вольтамперограм такі азобарвники, як ЖЗС та П4R окислюються квазізворотно, а КАН, ТАР та СЧАG повністю незворотно. Встановлено співвідношення протонів до електронів, що приймають участь в окиснені барвників - 1:2 (ЖЗС, ТАР, СЧАG, П4R) та 1:1 (КАН). При вивченні впливу швидкості розгортки потенціалу було встановлено, що природа струму окиснення для усіх барвників на поверхні розробленого сенсору має адсорбційний характер. Виходячи з цього, використовуючи теорію Лавірона, були розраховані кількість електронів, що приймають участь у процесі окиснення барвників на поверхі електроду: 2 для ЖЗС, ТАР, СЧАG, П4R та 1 для КАН. При детальному дослідженні циклічних вольтамперограм встановлено, що для таких барвників як ЖЗС та П4R при збільшені швидкості розгортки потенціалу співвідношення струму піку окиснення до відповідного йому піку відновлення зменшується, що свідчить про наявність необоротної хімічної реакції з інтермедіатом окиснення (ECir механізм). При детальному дослідженні редокс-поведінки барвників при методом циклічної вольтамперометрії встановлено, що після процесу окиснення на циклічних вольтамперограмах з’являються піки нової оборотної редокс-пари (окрім випадку ТАР). Відповідний експеримент показав, що ці редокс-пари можуть утворюватися як після процесу окиснення барвників, так і після процесу їх відновлення за азогрупою. Виходячи з отриманої інформації, було запропоновано загальний механізм окиснення харчових азобарвників на поверхні вугільнопастового електроду, модифікованого β-циклодекстрином. Четвертий розділ присвячено оптимізації умов вольтамперометричного визначення харчових азобарвників (ТАР, ЖЗС, КАН, П4R СЧАG) на розробленому сенсорі. Використовуючи об’ємний метод модифікування було встановлено, що максимальний струм окиснення харчових барвників досягаєтеся при 10 мас.% вмісту модифікатору (β-циклодекстрин) у вугільно-пастовому електроді. Використовуючи рівняння Ренделса-Шевчика було встановлено, що активна площа поверхні вугільно-пастового електрода, модифікованого β-циклодекстрином, складає 0.105 см2, а різниця потенціалів піків стандартної системи становить 70 мВ, що вказує на добрі провідні здібності розробленого сенсору. Використовуючи підхід адсорбційно-інверсійної вольтамперометрії, запропонована модифікація, яка дозволяє зменшити кількість розчину для проведення визначення до 10 мкл, що суттєво зменшує кількість хімічних відходів, кількість використання аналітичних стандартів та зменшує собівартість проведення визначення. Методом циклічної вольтамперометрії були оптимізовані такі параметри, як рН адсорбції (ТАР, ЖЗС, КАН, П4R СЧАG – pHадс 2) та рН проведення електролізу (ТАР, ЖЗС, П4R СЧАG –pHелек. 7; КАН – pHелек. 3). Вольтамперометрія з квадратно-хвильовою розгорткою потенціалу використовувався як метод кількісного визначення. Після проведення оптимізації обрані наступні значення: частота коливання 15 Гц для усіх барвників, амплітуда коливання — 50 мВ (ЖЗС, КАН, СЧАG) та 35 мВ (П4R, ТАР). У якості оптимального часу накопичення для усіх барвників обрано 5 хв. Тест стабільності за короткий та довгий проміжок часу показав задовільні результати при визначені харчових азобарвників на вугільно-пастовому електроді, модифікованому β-циклодекстрином. За оптимальних умов визначення харчових барвників на вугільно-пастовому електроді, модифікованому β-циклодекстрином, проведено валідаційний експеримент та встановлені основні метрологічні характеристики сенсору: діапазон лінійності (ЖЗС: 4.50-0.57 мкг/мл та 0.57-0.07 мкг/мл; КАН: 5.00-0.30 мкг/мл; ТАР: 5.30-0.17 мкг/мл; П4R: 3.00-0.19 мкг/мл; СЧАG: 5.00-0.16 мкг/мл), межа виявлення (ЖЗС: 42 нг/мл; КАН: 101 нг/мл; ТАР: 60 нг/мл; П4R: 102 нг/мл; СЧАG: 60 нг/мл), межа визначення (ЖЗС: 140 нг/мл; КАН: 337 нг/мл; ТАР: 200 нг/мл; П4R: 340 нг/мл; СЧАG: 200 нг/мл), відтворюваність (ЖЗС: 7.10 %; КАН: 8.80 %; ТАР: 7.40 %; П4R: 6.90 %; СЧАG: 7.20 %), коефіцієнт повернення (ЖЗС: 96 %; КАН: 93 %; ТАР: 93 %; П4R: 96 %; СЧАG: 94 %) та відносний зсув (ЖЗС: -4 %; КАН: -7 %; ТАР: -7 %; П4R: -4 %; СЧАG: -6 %). П’ятий розділ присвячено апробації розробленого методу визначення харчових барвників за допомогою вугільно-пастового електроду, модифікованого β-циклодекстрином. Для апробації розробленої методики були обрані комерційно доступні продукти харчування та поділені на 5 класів: газовані та негазовані солодкі напої, соки, желейні цукерки, слабоалкогольні сильногазовані напої та енергетичні напої. Використовуючи тест Фішера, було показано, що для усіх обраних зразків (окрім зразків соку та желейних цукерок), визначення барвників на вугільно-пастовому електроді, модифікованому β-циклодекстрином, дає похибку порівняну з похибкою визначення методом ВЕРХ. Таким чином, розроблений вугільно-пастовий електрод, модифікований β-циклодекстрином, придатний для проведення визначення харчових азобарвників (ТАР, ЖЗС, КАН, П4R СЧАG) у різних продуктах харчування. Окремі матеріали дисертаційної роботи впроваджені в навчальний процес кафедри аналітичної та токсикологічної хімії ОНУ імені І.І. Мечникова.Документ Синтез, структура, біологічна активність супрамолекулярних координаційних тартрато-, малатогерманатів, станнатів(Одеський національний університет імені І. І. Мечникова, 2022) Афанасенко, Елеонора Вадимівна; Afanasenko, Eleonora V.Розроблено оригінальний загальний метод поєднання есенціальних Ge(IV)/Sn(IV), «металів життя» Fe(II), Co(II), Ni(II), Cu(II), Zn(II) та двох типів біолігандів: хелатуючі полідентатні тартратну/малатну кислоти та бідентатні гетероциклічні 1,10-фенантролін/2,2’-біпіридин, в складі супрамолекулярних координаційних солей з комплексними 1,10-фенантроліновими/2,2’- біпіридиновими катіонами d-металів/ протонованою молекулою 1,10- фенантроліна і комплементарними їм тартрато(малато- )германатними/станнатними аніонами. Вперше синтезовано і охарактеризовано 21 нову сполуку методами РСА, елементного, термогравіметричного аналізу, ІЧ, масс-спектроскопій, методом побудови поверхонь Хіршфельда, квантовомеханічними розрахунками (DFT). Визначено вплив структурних та складових особливостей конструкційних металхелатних блоків (катіонів і аніонів) на реалізацію міжмолекулярних нековалентних взаємодій (електростатичних, водневих, стекінг) та утворення кристалічних супрамолекулярних структур. При порівнянні структур супрамолекулярних солей виявлено роль вихідних кислот у їх формуванні. Обидві кислоти – малатна та тартратна є дикарбоновими, містять одну/дві гідроксильні групи відповідно, що значно впливає на тип аніону, який вони утворюють: тартратна кислота є тетрадентатною, виконує місткову функцію і формує чотири типи димерних германатних [Ge2(OH)2(μ-Tart)2] 2- , [Ge2(OH)(H2Tart)(μ-Tart)2] 3- , [Ge2(OH)(HTart)(µ-Tart)2] 4- , [(µ-O){Ge2(OH)(µ-Tart)2}2] 4- і один тип станнатного аніону [Sn2(µ-Tart)2(Н2Tart)2] 4- . Потенціально тридентатна малатна кислота 3 проявляє себе лише як бідентатний ліганд і формує подібні октаедричні аніони [Sn(HMal)2(Mal)]3- та [Ge(HMal)(Mal)2] 4- незалежно від центрального атома. Встановлено, що зміна умов синтезу та особливості 1,10-фенантроліну сприяють утворенню аніону [(µ-O){Ge2(OH)(µ-Tart)2}2] 4- , в якому димерні фрагменти пов’язані містковим атомом оксигену, а протонований 1,10- фенантролін виступає в якості катіона. Розташування його молекул у зовнішній сфері сполуки зумовлює наявність стекінг взаємодій між ароматичними кільцями, що підвищує біологічну активність розглянутого комплексу. Скринінг тартратогерманатів(станнатів) з 1,10-фенантроліновими катіонами Fe(II), Co(II), Ni(II), Cu(II), Zn(II) на прояв антимікробної активності проти 8 умовно-патогенних штамів мікроорганізмів виявив ряд по її зменшенню для тартратостаннатів з однаковими аніоном: Zn>Cu~Co>Ni>Fe. Це корелює з квантово-хімічними розрахунками, за якими [Zn(phen)3] 2+ має найбільші середнє значення електростатичних потенціалів, індекс молекулярної полярності, об’єм, загальна площа поверхні. В результаті побудовано подібний ряд для тартратогерманатів залежно від складу, структури аніону, при даному катіоні: [Ge2(OH)2(μ-Tart)2] 2- > [Ge2(OH)(HTart)(µ-Tart)2] 4- ~ [Ge2(OH)(HTart)(µ-Tart)2] 4- . Показано можливість керування активністю α-L-рамнозидаз Penicillium tardum, Penicillium restrictum, Eupenicillium erubescens та Cryptococcus аlbidus під дією синтезованих сполук. В залежності від штаму вони проявляють властивості інгібіторів або активаторів, ефективність яких визначається сукупністю всіх біологічно активних компонентів, гідрофільною природою аніонів, гідрофобною – катіонів і свідчить про складний механізм їх взаємодії з ензимом. Найбільш перспективні сполуки рекомендовано до подальшого практичного застосування.Документ Модифіковані сполуками Pd(II) та Cu(II) бентоніти в реакціях окиснення монооксиду карбону, діоксиду сульфуру та розкладання озону(Одеський національний університет імені І. І. Мечникова, 2018) Джига, Ганна Михайлівна; Джига, Анна Михайловна; Dzhyga, Ganna M.Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.01 – неорганічна хімія. – Одеський національний університет імені І. І. Мечникова, Одеса, Фізико-хімічний інститут ім. О. В. Богатського Національної академії наук України, Одеса, 2018. У дисертаційній роботі розв’язані актуальні теоретичні та практичні задачі: зіставлені властивості вітчизняних бентонітів Горбського (П-Бент(Г)), Кіровоградського (П-Бент(К)) та Дашуковського (П-Бент(Д)) родовищ і на прикладі останнього розроблені фізичні та хімічні методи ціленаправленого регулювання фізико-хімічних та структурних характеристик П-Бент(Д), серед яких термічний (300-Бент(Д)), гідротермальний (Н2О-Бент(Д)), кислотно-термальний за умови варіювання часу контакту (τ) зразків бентоніту з 1М HNO3 (1Н-Бент(Д)-τ) та концентрації HNO3 від 0,25 до 6 моль/л при τ = 1 год. ( ̅Н-Бент(Д)-1), а також інтеркаляція полігідроксокатіону алюмінію Al13 (Al-PILC). Найбільш дієвими способами є кислотно-термальний та інтеркаляція полігідроксокатіону Al13. Незалежно від способу та розроблених умов модифікування зразків кристалічна структура фази монтморилоніту не зазнає змін, але відбувається стискування алюмосилікатних шарів як для носіїв, так і для композицій Pd(II)-Cu(II)/S ( S – різні форми бентоніту). У разі інтеркаляції катіону Al13 в пілар-глині та композиції Pd(II)-Cu(II)/Al-PILC встановлено міжшарове розширення. Встановлені закономірності зміни структурних параметрів (аm, C) і Sпит; термохімічних властивостей, термодинамічної активності адсорбованої води (аН2О) та рН суспензії для природних та модифікованих різними способами бентонітів. Регулювання складу поверхневих купрум-паладієвих комплексів відбувається за рахунок зміни співвідношення термодинамічних параметрів lgaН2О/aН3О+·aBr-, які визначаються природою носія. Встановлено, що активність каталітичних композицій К2PdCl4-Cu(NO3)2-KBr/ S в реакції окиснення монооксиду карбону залежить від походження та способу модифікування бентоніту. Отримані наступні ряди активності закріплених на носіях ( S ) куп- рум-паладієвих комплексів відносно П-Бент(Д): П-Бент(Д) ˂˂ П-Бент(К) ˂ П-Бент(Г); П-Бент(Д) ≈ 300-Бент(Д) << Н2О-Бент(Д); П-Бент(Д) ˂˂ 1Н-Бент(Д)-0,5 >1Н-Бент(Д)-1 > 1Н-Бент(Д)-3 ≈ 1Н-Бент(Д)-4 ≈ 1Н-Бент(Д)-6; П-Бент(Д) <<0,25Н-Бент(Д)-1 < 0,5Н-Бент(Д)-1 < 1Н-Бент(Д)-1 < 3Н-Бент(Д)-1 < 6Н-Бент(Д)-1. Доведено, що тільки композиція Pd(II)-Cu(II)/6Н-Бент(Д)-1 при заданих співвідношеннях компонентів забезпечує високу ступінь перетворення СО (96 %), за якою к ССО ˂ ГПКСО (20 мг/м3). Розроблена фізико-хімічна модель вибору природних та модифікованих бентонітів в якості носіїв комплексних сполук Pd(II) і Cu(II), що виявляють каталітичні властивості в реакціях низькотемпературного (температура навколишнього середовища) окиснення СО, SO2 і розкладання О3. Запропоновано спосіб виготовлення каталізатора низькотемпературного окиснення монооксиду карбону КНО-СО/6Н-Бент-1 для використання в патроних респіраторах типу «Платан» (ТУ У 28.2-01530125-038:2015). На каталізатор розкладання озону КН-О3/П-Бент розроблено проект Технічних умов. Впроваджено в учбовий процес методичні вказівки «ІЧ-спектральні дослідження природних сорбентів та металокомплексних каталізаторів на їх основі» для студентів вищих навчальних закладів