Дисертації ФХФ
Постійне посилання зібрання
Переглянути
Перегляд Дисертації ФХФ за Автор "Afanasenko, Eleonora V."
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Синтез, структура, біологічна активність супрамолекулярних координаційних тартрато-, малатогерманатів, станнатів(Одеський національний університет імені І. І. Мечникова, 2022) Афанасенко, Елеонора Вадимівна; Afanasenko, Eleonora V.Розроблено оригінальний загальний метод поєднання есенціальних Ge(IV)/Sn(IV), «металів життя» Fe(II), Co(II), Ni(II), Cu(II), Zn(II) та двох типів біолігандів: хелатуючі полідентатні тартратну/малатну кислоти та бідентатні гетероциклічні 1,10-фенантролін/2,2’-біпіридин, в складі супрамолекулярних координаційних солей з комплексними 1,10-фенантроліновими/2,2’- біпіридиновими катіонами d-металів/ протонованою молекулою 1,10- фенантроліна і комплементарними їм тартрато(малато- )германатними/станнатними аніонами. Вперше синтезовано і охарактеризовано 21 нову сполуку методами РСА, елементного, термогравіметричного аналізу, ІЧ, масс-спектроскопій, методом побудови поверхонь Хіршфельда, квантовомеханічними розрахунками (DFT). Визначено вплив структурних та складових особливостей конструкційних металхелатних блоків (катіонів і аніонів) на реалізацію міжмолекулярних нековалентних взаємодій (електростатичних, водневих, стекінг) та утворення кристалічних супрамолекулярних структур. При порівнянні структур супрамолекулярних солей виявлено роль вихідних кислот у їх формуванні. Обидві кислоти – малатна та тартратна є дикарбоновими, містять одну/дві гідроксильні групи відповідно, що значно впливає на тип аніону, який вони утворюють: тартратна кислота є тетрадентатною, виконує місткову функцію і формує чотири типи димерних германатних [Ge2(OH)2(μ-Tart)2] 2- , [Ge2(OH)(H2Tart)(μ-Tart)2] 3- , [Ge2(OH)(HTart)(µ-Tart)2] 4- , [(µ-O){Ge2(OH)(µ-Tart)2}2] 4- і один тип станнатного аніону [Sn2(µ-Tart)2(Н2Tart)2] 4- . Потенціально тридентатна малатна кислота 3 проявляє себе лише як бідентатний ліганд і формує подібні октаедричні аніони [Sn(HMal)2(Mal)]3- та [Ge(HMal)(Mal)2] 4- незалежно від центрального атома. Встановлено, що зміна умов синтезу та особливості 1,10-фенантроліну сприяють утворенню аніону [(µ-O){Ge2(OH)(µ-Tart)2}2] 4- , в якому димерні фрагменти пов’язані містковим атомом оксигену, а протонований 1,10- фенантролін виступає в якості катіона. Розташування його молекул у зовнішній сфері сполуки зумовлює наявність стекінг взаємодій між ароматичними кільцями, що підвищує біологічну активність розглянутого комплексу. Скринінг тартратогерманатів(станнатів) з 1,10-фенантроліновими катіонами Fe(II), Co(II), Ni(II), Cu(II), Zn(II) на прояв антимікробної активності проти 8 умовно-патогенних штамів мікроорганізмів виявив ряд по її зменшенню для тартратостаннатів з однаковими аніоном: Zn>Cu~Co>Ni>Fe. Це корелює з квантово-хімічними розрахунками, за якими [Zn(phen)3] 2+ має найбільші середнє значення електростатичних потенціалів, індекс молекулярної полярності, об’єм, загальна площа поверхні. В результаті побудовано подібний ряд для тартратогерманатів залежно від складу, структури аніону, при даному катіоні: [Ge2(OH)2(μ-Tart)2] 2- > [Ge2(OH)(HTart)(µ-Tart)2] 4- ~ [Ge2(OH)(HTart)(µ-Tart)2] 4- . Показано можливість керування активністю α-L-рамнозидаз Penicillium tardum, Penicillium restrictum, Eupenicillium erubescens та Cryptococcus аlbidus під дією синтезованих сполук. В залежності від штаму вони проявляють властивості інгібіторів або активаторів, ефективність яких визначається сукупністю всіх біологічно активних компонентів, гідрофільною природою аніонів, гідрофобною – катіонів і свідчить про складний механізм їх взаємодії з ензимом. Найбільш перспективні сполуки рекомендовано до подальшого практичного застосування.