Odesa Astronomical Publications
Постійне посилання зібрання
ISSN 1810-4215
eISSN 2786-5215
eISSN 2786-5215
Журнал «Одеські астрономічні публікації» публікує наукові статі з питань астрономії, астрофізики, космічних досліджень, а також матеріали конференцій, які організовуються й проводяться за участю НДІ «Астрономічна обсерваторія» Одеського національного університету імені І. І. Мечникова.
Повні тексти видання доступні на сайті Наукової бібліотеки ОНУ імені І. І. Мечникова за посиланням:
https://lib.onu.edu.ua/ukrayinska-odessa-astronomical-publications/
Сайт видання: http://oap.onu.edu.ua/
Переглянути
Перегляд Odesa Astronomical Publications за Автор "Andrych, K. D."
Зараз показуємо 1 - 4 з 4
Результатів на сторінці
Налаштування сортування
Документ ”Asymptotic parabola” fits for smoothing generally asymmetric light curves(Одеський національний університет імені І. І. Мечникова, 2015) Andrych, K. D.; Andronov, Ivan L.; Chinarova, L. L.; Marsakova, V. I.A computer program is introduced, which allows to determine statistically optimal approximation using the "Asymptotic Parabola" fit, or, in other words, the spline consisting of polynomials of order 1,2,1, or two lines ("asymptotes") connected with a parabola. The function itself and its derivative is continuous. There are 5 parameters: two points, where a line switches to a parabola and vice versa, the slopes of the line and the curvature of the parabola. Extreme cases are either the parabola without lines (i.e.the parabola of width of the whole interval), or lines without a parabola (zero width of the parabola), or "line+parabola" without a second line. Such an approximation is especially effective for pulsating variables, for which the slopes of the ascending and descending branches are generally different, so the maxima and minima have asymmetric shapes. The method was initially introduced by Marsakova and Andronov (1996OAP.....9...127M) and realized as a computer program written in QBasic under DOS. It was used for dozens of variable stars, particularly, for the catalogs of the individual characteristics of pulsations of the Mira (1998OAP....11...79M) and semi-regular (200OAP....13..116C) pulsating variables. For the eclipsing variables with nearly symmetric shapes of the minima, we use a "symmetric" version of the "Asymptotic parabola". Here we introduce a Windows-based program, which does not have DOS limitation for the memory (number of observations) and screen resolution. The program has an user-friendly interface and is illustrated by an application to the test signal and to the pulsating variable AC Her.Документ Determination of size of the emitting region in eclipsing cataclysmic variable stars(Astroprint, 2014) Andronov, Ivan L.; Andrych, K. D.The dependencies of the phase of eclipse of the white dwarf’s centre and the durations of the ascending and descending branches of the light curve on the binary system’s parameters were computed using the sphericallysymmetric approximation and the more accurate model of the elliptical projection onto the celestial sphere of the companion (red dwarf) that fills its Roche lobe. The parameters of eclipses in the classical eclipsing polar OTJ 071126+440405 = CSS 081231:071126+440405 were estimated.Документ Improved ephemeris of poorly studied eclipsing binary GSC 3950-00707 = 2MASS J20355082+5242136(Одеський національний університет імені І. І. Мечникова, 2017) Savastru, S. V.; Marsakova, V. I.; Andrych, K. D.; Dubovsky, P. A.We made our CCD-observations of GSC 3950-00707 by using the telescope Celestron-14 of Vihorlat Observatory and Astronomical Observatory on Kolonica Saddle. The moments of minima were calculated by using the symmetrical polynomial fit. We also analyzed the observations from automated surveys ASAS-SN and found 3 mean minima by using trigonometrical polynomial fit. The analysis of our observations and data from the surveys allows to conclude that it is the W UMa-type variable and its published period value is not accurate. We analyzed the O-C curve and corrected the elements.Документ Statistically optimal modeling of Flat eclipses and Exoplanet transitions. The “Wall-Supported polynomial” (WSP) algoritms(Одеський національний університет імені І. І. Мечникова, 2017) Andrych, K. D.; Andronov, Ivan L.; Chinarova, L. L.The methods for determination of the characteristics of the extrema are discussed with an application to irregularly spaced data, which are characteristic for photometrical observations of variable stars. We introduce new special functions, which were named as the “Wall-Supported Polynomial” (WSP) of different orders. It is a parabola (WSP), constant line (WSL) or an “asymptotic” parabola (WSAP) with “walls” corresponding to more inclined descending and ascending branches of the light curve. As the interval is split generally into 3 parts, the approximations may be classified as a “nonpolynomial splines”.