Dirac–Krein Systems on Star Graphs

dc.contributor.authorAdamyan, Vadym M.en
dc.contributor.authorLanger, H.en
dc.contributor.authorTretter, C.en
dc.contributor.authorWinklmeier, M.en
dc.contributor.authorАдамян, Вадим Мовсесовичuk
dc.date.accessioned2017-10-18T07:02:21Z
dc.date.available2017-10-18T07:02:21Z
dc.date.issued2016-08-26
dc.description.abstractWe study the spectrum of a self-adjoint Dirac–Krein operator with potential on a compact star graph G with a finite number n of edges. This operator is defined by a Dirac–Krein differential expression with summable matrix potentials on each edge, by self-adjoint boundary conditions at the outer vertices, and by a self-adjoint matching condition at the common central vertex of G. Special attention is paid to Robin matching conditions with parameter τ ∈ R∪{∞}. Choosing the decoupled operator with Dirichlet condition at the central vertex as a reference operator, we derive Krein’s resolvent formula, introduce corresponding Weyl–Titchmarsh functions, study the multiplicities, dependence on τ , and interlacing properties of the eigenvalues, and prove a trace formula. Moreover, we show that, asymptotically for R → ∞, the difference of the number of eigenvalues in the intervals [0,R) and [−R, 0) deviates from some integer κ0, which we call dislocation index, at most by n+2.uk
dc.identifier.citationIntegral Equations and Operator Theoryuk
dc.identifier.urihttps://dspace.onu.edu.ua/handle/123456789/11062
dc.language.isoukuk
dc.relation.ispartofseries;Vol. 86, Issue 1
dc.subjectDirac operatoruk
dc.subjectDirac–Krein systemuk
dc.subjectstar graphuk
dc.subjectKrein’s resolventuk
dc.subjectformulauk
dc.subjecttrace formulauk
dc.subjectdislocation indexuk
dc.titleDirac–Krein Systems on Star Graphsuk
dc.typeArticleuk
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
121-150.pdf
Розмір:
791.84 KB
Формат:
Adobe Portable Document Format
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: