Dirac–Krein Systems on Star Graphs
dc.contributor.author | Adamyan, Vadym M. | en |
dc.contributor.author | Langer, H. | en |
dc.contributor.author | Tretter, C. | en |
dc.contributor.author | Winklmeier, M. | en |
dc.contributor.author | Адамян, Вадим Мовсесович | uk |
dc.date.accessioned | 2017-10-18T07:02:21Z | |
dc.date.available | 2017-10-18T07:02:21Z | |
dc.date.issued | 2016-08-26 | |
dc.description.abstract | We study the spectrum of a self-adjoint Dirac–Krein operator with potential on a compact star graph G with a finite number n of edges. This operator is defined by a Dirac–Krein differential expression with summable matrix potentials on each edge, by self-adjoint boundary conditions at the outer vertices, and by a self-adjoint matching condition at the common central vertex of G. Special attention is paid to Robin matching conditions with parameter τ ∈ R∪{∞}. Choosing the decoupled operator with Dirichlet condition at the central vertex as a reference operator, we derive Krein’s resolvent formula, introduce corresponding Weyl–Titchmarsh functions, study the multiplicities, dependence on τ , and interlacing properties of the eigenvalues, and prove a trace formula. Moreover, we show that, asymptotically for R → ∞, the difference of the number of eigenvalues in the intervals [0,R) and [−R, 0) deviates from some integer κ0, which we call dislocation index, at most by n+2. | uk |
dc.identifier.citation | Integral Equations and Operator Theory | uk |
dc.identifier.uri | https://dspace.onu.edu.ua/handle/123456789/11062 | |
dc.language.iso | uk | uk |
dc.relation.ispartofseries | ;Vol. 86, Issue 1 | |
dc.subject | Dirac operator | uk |
dc.subject | Dirac–Krein system | uk |
dc.subject | star graph | uk |
dc.subject | Krein’s resolvent | uk |
dc.subject | formula | uk |
dc.subject | trace formula | uk |
dc.subject | dislocation index | uk |
dc.title | Dirac–Krein Systems on Star Graphs | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 1.71 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: