Логотип репозиторію
  • English
  • Українська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
Логотип репозиторію
  • Фонди та зібрання
  • Пошук за критеріями
  • English
  • Українська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Vorobiova, A. V."

Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
  • Вантажиться...
    Ескіз
    Документ
    On numbers of the type n = (u2 + dv2)w in arithmetic progression
    (Астропринт, 2022) Belozerov, Gennadiy S.; Vorobiova, A. V.; Бєлозьоров, Геннадій Сергійович; Воробйова, Алла Володимирівна
    Let us R(n) denotes the number of representations of positive integers n by form n = (u2 +v2)w, u,v ∈ Z, w ∈ N. The function R(n) is an analogue of the divisor function d3(n). Summarize the Heath-Brown results on distribution of value of the divisor function d3(n) on an arithmetical progression n ≡ a(modq), (a,q) = 1, with increasing the arithmetical ratio together with x, an asymptotic formula for summatory function for R(n) was being construct, which is a non-trivial for q →∞. The proof of this result use the truncated functional equation on the line Res = 1 2 + Δ, |Δ| < 1 2 of the Hecke Zeta function with transport of an imaginary quadratic field Q(√−d). MSC: 99A99, 88B88, 77C77, 66D66.

DSpace та ОНУ імені І.І.Мечникова copyright © 2009-2025 LYRASIS

  • Налаштування куків
  • Політика приватності
  • Угода користувача
  • Форма зворотнього зв'язку