Перегляд за Автор "Huk, A. G."
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Newton’s method for the eigenvalue problem of a symmetric matrix(Одеський національний університет імені І. І. Мечникова, 2020) Verbitskyi, Viktor V.; Huk, A. G.; Вербіцький, Віктор Васильович; Гук, A. Г.; Вербицкий, Виктор ВасильевичNewton’s method for calculating the eigenvalue and the corresponding eigenvector of a symmetric real matrix is considered. The nonlinear system of equations solved by Newton’s method consists of an equation that determines the eigenvalue and eigenvector of the matrix and the normalization condition for the eigenvector. The method allows someone to simultaneously calculate the eigenvalue and the corresponding eigenvector. Initial approximations for the eigenvalue and the corresponding eigenvector can be found by the power method or by the reverse iteration with shift. A simple proof of the convergence of Newton’s method in a neighborhood of a simple eigenvalue is proposed. It is shown that the method has a quadratic convergence rate. In terms of computational costs per iteration, Newton’s method is comparable to the reverse iteration method with the Rayleigh ratio. Unlike reverse iteration, Newton’s method allows to compute the eigenpair with better accuracy.