Перегляд за Автор "Belozerov, Gennadiy S."
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ On numbers of the type n = (u2 + dv2)w in arithmetic progression(Астропринт, 2022) Belozerov, Gennadiy S.; Vorobiova, A. V.; Бєлозьоров, Геннадій Сергійович; Воробйова, Алла ВолодимирівнаLet us R(n) denotes the number of representations of positive integers n by form n = (u2 +v2)w, u,v ∈ Z, w ∈ N. The function R(n) is an analogue of the divisor function d3(n). Summarize the Heath-Brown results on distribution of value of the divisor function d3(n) on an arithmetical progression n ≡ a(modq), (a,q) = 1, with increasing the arithmetical ratio together with x, an asymptotic formula for summatory function for R(n) was being construct, which is a non-trivial for q →∞. The proof of this result use the truncated functional equation on the line Res = 1 2 + Δ, |Δ| < 1 2 of the Hecke Zeta function with transport of an imaginary quadratic field Q(√−d). MSC: 99A99, 88B88, 77C77, 66D66.Документ О числе решений одного сравнения в кольце Z[i](Одеський національний університет імені І. І. Мечникова, 2013) Белозеров, Геннадий Сергеевич; Бєлозьоров, Геннадій Сергійович; Belozerov, Gennadiy S.Рассматривается задача построения точной формулы для числа решений р(a,b,y) сравнения а(х2 + у2) = b (mod y) в кольце целых гауссовых чисел Z [i]. При этом задача переформулируется в проблему вычисления специальных тригонометрических сумм, в частности, сумм Гаусса. Результаты подобного рода востребованы в аналитической теории чисел в той части, где исследуются аддитивные задачи с суммами квадратов целых чисел.