Визначення ζ-потенціалу нанофлюїдів на базі розчинів електролітів за результатами вимірювань методами електричної спектроскопії та лазе- рної кореляційної спектроскопії

Вантажиться...
Ескіз
Дата
2022
Науковий керівник
Укладач
Редактор
Назва журналу
ISSN
E-ISSN
Назва тому
Видавець
Одеський національний університет імені І. І. Мечникова
Анотація
У роботі обговорюється проблема вимірювання ζ -потенціалу для нанофлюїдів на базі розчинів електролітів. Представлено теорію для дослідження впливу міжфазного (застійного) шару, зокрема, через такі параметри як ζ -потенціал та товщина шару u∗ на ефективну провідність суспензій eff σ . Теорія базується на методі компактних груп неоднорідностей, застосованому до систем провідних частинок з морфологією тверде ядро-проникна оболонка. Для запропонованої моделі встановлено аналітичну залежність провідності від цих параметрів. Із швидкості зміни провідності від концентрації для розбавлених нанофлюїдів залежність між u∗ і ζ -потенціалом встановлюється однозначно. Тому для знаходження ζ -потенціалу необхідно додатково визначити гідродинамічний радіус частинки, наприклад, через коефіцієнт дифузії Смолуховського-Ейнштейна. Таким чином, для знаходження ζ -потенціалу пропонується провести серію незалежних одночасних вимірювань методами електричної спектроскопії та лазерної кореляційної спектроскопії.
The work discusses the problem of measurement of the ζ -potential for electrolyte-based suspensions of nanoparticle. A theory is presented for the effect of the diffuse electric double layer, including the interphase (stagnant) layer, on the effective conductivity of such suspensions. The theory is based on the method of compact groups of inhomogeneities applied to a model system of hard-core–penetrable-shell particles embedded together with the base liquid in a uniform host of the conductivity eff σ . The cores represent the particles. The shells are electrically inhomogeneous in the radial direction, their conductivity profile being a continuous function σ2(r). The overlapping components obey the rule of dominance, according to which the local conductivity value is determined by the distance from the point to the center of to the nearest particle. This model is possible to analyze rigorously in the static limit. The desired conductivity is found from the integral relation which allows us to express the electrical conductivity in the terms of the ζ -potential, thickness of the stagnant layer, matrix molarity, etc. The theory reveals the existence of different scenarios of behavior of the conductivity depending on the geometrical and electrical parameters of the stagnant layer. It is shown that the functional dependence between the thickness and ζ -potential can be obtained from the rate of change of the conductivity with concentration for diluted suspensions; this rate can be measured experimentally. It is pointed out that the hydrodynamic radius of a nanoparticle can be obtained from the Smoluchowski-Einstein diffusion coefficient, which can be measured by the method of laser correlation spectroscopy. We give all necessary estimates and relations to demonstrate the opportunity of measuring the ζ -potential by analyzing together the results obtained by the indicated methods. Namely, in order to find the ζ -potential, it is necessary to simultaneously do a series of independent measurements: find the slope of the conductivity and estimate the thickness of the stagnant layer.
Опис
Ключові слова
ζ -потенціал, електрична провідність, подвійний електричний шар, застійний шар, ζ -potential, electric conductivity, electric double layer, stagnant later
Бібліографічний опис
Фізика аеродисперсних систем = Physics of aerodisperse systems
ORCID:
УДК