Огуленко, Алексей ПавловичОгуленко, Олексій ПавловичOgulenko, A. P.2017-10-242017-10-242017Дослідження в математиці і механіці = Researches in mathematics and mechanics : наук. журн.https://dspace.onu.edu.ua/handle/123456789/11147В работе рассмотрена схема частичного усреднения системы уравнений на временной шкале с малым параметром в правой части. При весьма общих условиях доказана близость решения исходной системы и решения частично усредненной системы, причем частично усредненная система определяется на той же временной шкале. Этот результат, в частности, расширяет область применения численно–асимптотического метода решения задач оптимального управления на временных шкалах, развитого в предыдущих работах.В роботi розглянута схема часткового усереднення системи рiвнянь на часовiй шкалi з малим параметром в правiй частинi. При досить загальних умовах доведено близкiсть розв’язку вихiдної системи та розв’язку частково усередненної системи, причому частково усереденена система визначається на тiй самiй часовiй шкалi. Цей результат, зокрема, розширює область застосування чисельно–асимптотичного методу розв’язання задач оптимального керування на часових шкалах, розвиненого в попереднiх роботах.The scheme of partial averaging of systems with small parameter on time scales was established. A proximity of solutions of given and partially averaged system of equations was proved under sufficiently general conditions. Obtained results extend an application area for previously developed numerically–asymptotic method of solution for optimal control problems on time scales.ruвременная шкаламетод усредненияфункция зернистостичасова шкаламетод усередненняфункцiя зернистостitime scaleaveraging methodgraininess functionЧастичное усреднение систем на временных шкалахЧасткове усереднення систем на часових шкалахPartial averaging of the systems on time scalesArticle