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INTRODUCTION 

The GF method is very well known in a quantum 
theory of field, quantum electrodynamics, quantum 
theory of solids. This approach naturally provided 
the known progress in treating atoms, solids and mol-
ecules, as it has been shown in many papers (c.f.[1–
15]). The experimental PES spectra of molecules usu-
ally show a pronounced vibrational structure [5–6]. 
Many papers have been devoted to treatment of the 
vibrational spectra by construction of potential curves 
for the reference molecule (the molecule which is to 
be ionized) and the molecular ion. Usually the elec-
tronic GF is defined for fixed position of the nuclei. 
The cited method, however, requires as input data the 
geometries, frequencies, and potential functions of 
the initial and final states. Since in most cases at least a 
part of these data are unavailable, the calculations have 
been carried out with the objective of determining the 
missing data by comparison with experiment. To avoid 
this difficulty and to gain additional information about 
the ionization process, Cederbaum et al [11] extended 
the GF approach to include the vibrational effects and 
showed that the GF method allowed ab initio calcu-
lation of the intensity distribution of the vibrational 
lines etc. For large molecules far more approximate 
but more easily applied methods such as DFT [16,17] 
or from the wave-function world the simplest corre-
lated model MBPT are preferred [2,8,10]. Indeed, 
in the last decades DFT theory became by a great, 
quickly developing field of the modern computational 
chemistry of molecules. Here the combined theoreti-
cal approach [12–15] to vibrational structure in PES 
of molecules, which is based on the DFT and the GF 
approach, is used for quantitative treating the carbon 
oxide molecule. The density of states, which describe 
the vibrational structure in PES, is calculated with us-
ing combined DFT-GF approach. It is important that 
calculation procedure is significantly simplified with 
using DFT formalism. This simplification allowed to 
get the first important results in a laser-electron-  nu-
clear spectroscopy of molecules [14], namely, results 
on the electron-vibration-rotation-  nuclear satellite 
lines. 

The density of states in one-body and many-body 
problem. 

Quasiparticle Fermi-liquid density functional 
theory 

As usually (see details in refs. [2,8,11,14]), the 
quantity which contains the information about the 
ionization potentials (I.P.) and molecular vibrational 
structure due to quick ionization is the density of oc-
cupied states: 
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where 0( '  is the exact ground state wave function 
of the reference molecule and ( )ka t is an electron de-
struction operator, both in the Heisenberg picture. For 
particle attachment the quantity of interest is the den-
sity of unoccupied states: 
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Usually in order to calculate the value (1) states 
for photon absorption one should express the Ham-
iltonian of the molecule in the second quantization 
formalism. The Hamiltonian is as follows: 
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where T)  and T*  are the kinetic energy operators 
for electrons and nuclei, and U represents the inter-
action; U)) represents the Coulomb interaction be-
tween electrons, etc; x (X) denotes electron (nuclear) 
coordinates. As usually, introducing a field operator 

( , , ) ( , , ) ( , )i i

i

R x x R a R( - " . - -/  with the Hartree-Fo-
ck (HF) one–particle functions ô

i 
( ( )i R0 are the one-

particle HF energies and f denotes the set of orbitals 
occupied in the HF ground state; R

0
 is the equilibrium 

geometry on the HF level) and dimensionless normal 
coordinates Q

s
 one can write the standard Hamilto-

nian as follows [11,15]: 
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with n
i
=1 (0), i0f (i:f), 9;

f
=1 (0) , (ijkl)0;

f
 , where 

the index set v
1
 means that at least k.  and l. or i.  and 

j. are unoccupied, v
2
 that at most one of the orbitals 

is unoccupied, and v
3
 that k.  and j. or l. and j.  are 

unoccupied. Here for simplicity all terms leading to 
anharmonicities are neglected. The s1 are the HF fre-
quencies; sb , t

sb  are destruction and creation opera-
tors for vibrational quanta as 
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The interpretation of the above Hamiltonian and 
an exact solution of the one-body HF problem is given 
in refs. [5,6]. The HF-single-particle component 0H  
of the Hamiltonian (4) is as follows: 
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Correspondingly in the one-particle picture the 
density of occupied states is given by 
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Introducing new operators 
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with real coefficients 1 2,   sl sl> >  , defined in such a way 
that 0H

!  in new operators is 
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eq. (7) is as follows: 
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where 9  function in (12) naturally contains the infor-
mation about adiabatic ionization potential and the 
spacing of the vibrational peaks; 

2
ˆ 0n U% '  is the 

well-known Franck-Condon factor. 
In a diagrammatic method to get function ( )kN º  

one should calculate the GF ' ( )kkG º first [1,3,11,18]: 
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and the function ( )kN º  can be found from the rela-
tion 

 ( ) Im ( )k kkN a G ai# " ! Cº º , ka sign" ! º .  (14) 

Choosing the unperturbed Hamiltonian 0H  to be 

0

t

i i i NH a a H" ,/ º  one finds the GF. In the known 
approximation GF is as follows: 
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The corresponding Dyson-like equation (L= Ô ) is 
as follows: 
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The direct method for calculation of N
k
(0) as the 

imaginary part of the GF includes a definition of the 
vertical I. P. (V. I. P.s) of the reference molecule and 
then of N

k D E0 . The zeros of the functions 
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where D Eop

k
0 ,L denotes the k-th eigenvalue of the 

diagonal matrix of the one-particle energies added to 
matrix of the self-energy part, are the negative V. I. P. 
‘s for a given geometry. One can write [11,13]: 
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Expanding the ionic energy 1N

kE
! about the equi-

librium geometry of the reference molecule in a power 
series of the normal coordinates of this molecule leads 
to a set of linear equations in the unknown normal 
coordinate shifts 9Q

S
, and new coupling constants are 

then: 

 D E D E1 0
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The coupling constants lg  and lly F  are calculated 
by the well-known perturbation expansion of the self-
energy part using the Hamiltonian H

EN
 of Eq. (3). In 

second order one obtains: 
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and the coupling constant g
l
, can be written as 
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It is suitable to use further the pole strength of the 
corresponding GF: 
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Below we give the DFT definition of the pole 
strength corresponding to V. I. P.’s and confirm the 
earlier data [11–15]: p

k
N0,8–0,95. The coupling con-

stant is: 
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Further we consider the quasiparticle Fermi-liq-
uid version of the DFT, following to refs. [18–20]. The 
master equation can be derived using an expansion for 
self-energy part L into set on degrees of x, I-I

F
, p2-p2

F
 

(here I
F
 and p

F
 are the Fermi energy and pulse cor-

respondingly): 
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The functions >M  in (27) are orthogonal with a 
weight U

k
-1=a-1=[1-+L/+I]. Now one can introduce 

wave functions of the quasiparticles .>=a-1/2M>, which 
are, as usually, orthogonal with weight 1. The equa-
tions (27) can be obtained on the basis of variational 
principle, if we start from a Lagrangian of a system L

q 

(DF). It should be defined as a functional of quasipar-
ticle densities: 
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The densities \
0
 and \

1
 are similar to the HF elec-

tron density and kinetical energy density correspond-
ingly; the density \

2
 has no an analog in the HF or 

DFT theory and appears as result of account for the 
energy dependence of the mass operator L. A Lagran-
gian L

q
 can be written as a sum of a free Lagrangian 

and Lagrangian of interaction: L
q
 = L

q
0 + L

q
int, where a 

free Lagrangian L
q

0 has a standard form: 
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The interaction Lagrangian is defined in the form, 
which is characteristic for a standard (Kohn-Sham 
[16]) DFT (as a sum of the Coulomb and exchange-
correlation terms), however, it takes into account for 
the energy dependence of a mass operator L : 
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where ik^  are some constants (look below), F is an 
effective potential of the exchange-correlation inter-
action. The Coulomb interaction part KL looks as fol-
lows: 
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where L
2
=+L/+I. In the local density approximation 

the potential F can be expressed through the exchange-
correlation pseudo-potential V

xc
 as follows [20]: 
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Further, one can get the following expressions for 
int /i q iLL " !9 9\ : 
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Here V
K
 is the Coulomb term, 0

exL  is the exchange 
term. Using the known canonical relationship, one 
can derive the quasiparticle Hamiltonian, which is 
corresponding to qL : 

 

0 int 0

2

00 0 0 01 0 0 1

2 2

11 0 1 22 0 2

1
/ /

2

1 1
/ /

2 2

q q q q K

XC XC

XC XC

H H H H L

V V

V V

" , " ! ,

, ^ 9 9\ @\ ,^ 9 9\ @\ @\ ,

, ^ 9 9\ @\ ! ^ 9 9\ @\   (32) 

Further let us give the short comment regarding 
constants ^

ik
. Indeed, in some degree they have the 

same essence as the similar constants in the well-
known Landau Fermi-liquid theory and the Migdal 
finite Fermi-systems theory. Regarding universality 
of ^

ik
,, indeed, as we know now, the total universality 
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of the constants in the last theories is absent, though 
a range of its changing is quite small [18]. In any 
case it requires a careful check. Obviously, the terms 
with constants ^

01
, ^

11
, ^

12
, ^

22
 should be neglected 

(at least in the zeroth approximation in comparison 
with others), so they can be equal to 0. The value 
of ^

00
 is dependent on definition of V

xc
. If as V

xc
 it is 

used one of the DFT exchange-correlation potentials 
from, then without losing a community of statement, 
^

00
=1. The constant ^

02
 can be in principle calculated 

by analytical way, but it is very useful to remember 
its connection with a spectroscopic factor F

sp 
of the 

system [18]: 
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One can see that this definition is corresponding to 
the pole strength of the corresponding Green’s func-
tion [2,11]. As potential V

xc
 we use the Gunnarsson-

Lundqvist exchange-correlation functional [17]: 
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Using the above written formula, one can simply 
define the values (24), (33). 

RESULTS AND CONCLUSIONS 

In ref. [15] the above presented combined ap-
proach has been applied to analysis of the photoelec-
tron spectrum for the sufficiently complicated from 
the theoretical point of view N

2
 molecule, where the 

known Koopmans’ theorem even fails in reproduc-
ing the sequence of the V. I. P.’s in the PE spectrum 
(c.f.[5–7]). It is stressing, however it has been possible 
to get the full sufficiently correct description of the di-
atomics PES already in the effective one-quasiparticle 
approximation [11,13]. Another essential aspect is suf-
ficiently simple calculational procedure, provided by 
using the DFT. Moreover, here the cumbersome cal-
culation is not necessary, if the detailed Hartree-Fock 
(Hartree-Fock-Rothaan) data (separate HF-potential 
curves of molecule and ion) for the studied diatomic 
molecule are available. The carbon oxide molecule, 
which is considered in this paper, has been naturally 
studied in many papers. (see [3–8]). In full analogy 
with the molecule of N

2
 [15] it is easily to estimate the 

pole strengths p
k
 and the values q

k
. When the change 

of frequency due to ionization is small, the density of 
states can be well approximated using only one param-
eter g: 
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In case the frequencies change considerably, the 
intensity distribution of the most intensive lines can 
analogously be well approximated by an effective pa-
rameter S. In fig.1 it is presented the experimental [5,6] 
PES for the CO molecule together with the theoretical 
one, calculated with g0 and Eq. (35). 

 

Fig.1. Experimental and calculated (the uppermost spectrum 
is calculated with S0 and Eq. (35)) photoelectron spectrum of the 
CO molecule (see text). 

We will mean that S0 denotes the constant S cal-
culated with g0 and Sexp denotes the value derived from 
the experimental spectrum. The deviations of the one-
particle constants g0 from the experimental ones are 
practically fully arisen due to the correlation effects. 
In table 1 we listed the experimental and calculated 
(our data) values of S. 

Table I 
Experimental and calculated (our data) values of 

S0 Sexp

5 1! 4 5 1! 4 

0.045 2.394 0.262 0.04 2.30 0.27b

One could guess that there a physically reason-
able agreement between the theoretical and experi-
mental results for all three bands. It should be noted 
that more sophisticated calculation by Cederbaum et 
al [11] gives the theoretical value S(4,5 ), which is 
practically identical to the experimental values, how-
ever the value S(1!)=2.59 is in some degree differ-
ent from Sexp. This example also confirms that quite 
simple theory become an effective tool in interpret-
ing the vibrational structure of the molecular PES, 
especially taking into account an essential simplifi-
cation (implementation of the DFT scheme) of the 
standard Green’s function approach. At last, we 
should note that the presented combined GF-DFT 
approach can be very helpful for multi-atomic mol-
ecules, especially for larger ones, when full ab initio 
calculations can be not available. 

In conclusion authors would like to thank Profs. 
C. Rothaan, L. Cederbaum, S. Wilson for useful dis-
cussions. 



119

References 

Thouless D J, Quantum Mechanics of Many-Body Systems 1. 
(Academic, N. — Y., 1991). 
Wilson W., Handbook on Molecular Physics and Quantum 2. 
Chemistry, Chichester: Wiley, 2003. — 680P. 
Lindgren I., Morrison M., Atomic Many-Body Theory. — 3. 
Berlin: Springer, 1996. — 370P. 
Abrikosov A., Gorkov L., Dzyaloshinskii E., Quantum Field 4. 
Theoretical Methods in Statistical Physics Oxford: Perga-
mon, 1995. — 400P. 
Turner D. W., Baker C., Baker A. D., Brunrile C. R., Mo-5. 
lecular photoelectron spectroscopy. — N. — Y.: Wiley, 1999 
Herzberg G., Molecular Spectra and Molecular Structure-6. 
Moscow: Mir, 1997. — Vol.1. 
Cade D. E., Wahl A. L., Hartree-Fock-Roothaan wave func-7. 
tions for diatomic molecules// Atomic Data and Nucl. Data 
Tabl. — 1994. — Vol.13,N4. — P.2339–2389. 
Bartlett R. J., Musia8. ³ M. N., Coupled-cluster theory in 
quantum chemistry//Rev. Mod. Phys. — 2007. — Vol.79. — 
P.291–328. 
Dorofeev D., Zon B. A., Kretinin I., Chernov V. E., Method 9. 
of quantum defect Green’s function for calculation of dy-
namic atomic polarizabilities// Optics and Spectr. — 2005. — 
Vol. 99. — P.540–548. 
Ivanova E. P., Ivanov L. N., Aglitsky E. V., Modern Trends 10. 
in Spectroscopy of multi-charged Ions// Physics Rep. — 
1998. — Vol.166,N6. — P.315–390. 
Köppel H., Domcke W., Cederbaum L. S., Green’s func-11. 
tion method in quantum chemistry// Adv. Chem. Phys. — 
1999. — Vol.57. — P.59–132. 

Glushkov A. V., An effective account for energy effects of 12. 
exchange and correlation in a theory of multi-electron sys-
tems//Journ. Struct. Chem. — 1999. — Vol.31,N4. — P.3–7. 
Glushkov A. V., New approach to theoretical definition of 13. 
ionization potentials for molecules on the basis of Green’s 
function method//Journ.of Phys.Chem. — 1998. — Vol.66. — 
P.2671–2677. 
Glushkov A. V., Malinovskaya S. V., Loboda A. V., Shpin-14. 
areva I. M., Prepelitsa G. P., Consistent quantum approach 
to new laser-electron-nuclear effects in diatomic molecules 
// J.Phys.Cs. — 2006. — Vol.35. — P.420–424. 
Glushkov A. V., Lepikh Ya.I., Fedchuk A. P., Loboda A. V., 15. 
The Green’s functions and density functional approach to 
vibrational structure in the photoelectron spectra of mol-
ecules//Photoelectronics. — 2009. — N18. — P.119–127. 
Kohn W., Sham L. J. Quantum density oscillations in an 16. 
inhomogeneous electron gas//Phys. Rev. A. — 1995. — 
Vol.137,N6. — P.1697–1706. 
The Fundamentals of Electron Density, Density Matrix and 17. 
Density Functional Theory in Atoms, Molecules and the 
Solid State, Eds. Gidopoulos N. I., Wilson S. — Amsterdam: 
Springer, 2004. — Vol.14. — 244P. 
Glushkov A. V., Relativistic and correlation effects in spectra 18. 
of atomic systems. — Odessa: Astroprint. 2006. — 450P. 
Ivanova E. P.,Ivanov L. N., Glushkov A. V.,Kramida A. E., 19. 
High-order corrections in relativistic perturbation theory 
with the model zeroth approximation, Mg-like and Ne-like 
ions //Physica Scripta. — 1999. — Vol.32(4). — P.512–524. 
Glushkov A. V., An universal quasiparticle energy functional 20. 
in a density functional theory for relativistic atom//Optics 
and Spectr. — 1999. — Vol.66,N1-P.31–36. 

UDC 539.186 

A. P. Fedchuk, A. V. Glushkov, Ya.I. Lepikh, A. V. Loboda, Yu. M. Lopatkin, A. A. Svinarenko 

THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO VIBRATIONAL STRUCTURE IN THE 
PHOTOELECTRON SPECTRA OF CARBON OXIDE MOLECULE 

Abstract. 
The combined theoretical approach to vibrational structure in photoelectron spectra (PES) of molecules, which is based on the 

density functional theory (DFT) and the Green’s-functions (GF) approach, is used for quantitative treating the carbon oxide molecule 
PES. 

Key words: photoelectron spectra of molecules, Green’s functions, density functional theory 

ÓÄÊ 539.186 

A. Â. Ãëóøêîâ, ß. È. Ëåïèõ, A. Ï. Ôåä÷óê, A. Â. Ëîáîäà, Þ. Ì. Ëîïàòêèí, À. À. Ñâèíàðåíêî 

ÌÅÒÎÄ ÔÓÍÊÖÈÉ ÃÐÈÍÀ È ÔÓÍÊÖÈÎÍÀËÀ ÏËÎÒÍÎÑÒÈ Â ÎÏÐÅÄÅËÅÍÈÈ ÊÎËÅÁÀÒÅËÜÍÎÉ 
ÑÒÐÓÊÒÓÐÛ ÔÎÒÎÝËÅÊÒÐÎÍÍÎÃÎ ÑÏÅÊÒÐÀ ÌÎËÅÊÓËÛ ÑÎ 

Ðåçþìå. 
Êîìáèíèðîâàííûé òåîðåòè÷åñêèé ìåòîäà îïèñàíèÿ êîëåáàòåëüíîé ñòðóêòóðû äëÿ ôîòîýëåêòðîííûõ ñïåêòðîâ ìîëåêóë, 

êîòîðûé áàçèðóåòñÿ íà ìåòîäå ôóíêöèé Ãðèíà è òåîðèè ôóíêöèîíàëà ïëîòíîñòè (ÒÔÏ), ïðèìåíåí ê êîëè÷åñòâåííîìó îïè-
ñàíèþ ôîòîýëåêòðîííîãî ñïåêòðà ìîëåêóëû ÑÎ 

Êëþ÷åâûå ñëîâà: ôoòoýëåêòðîííûé ñïåêòð ìîëåêóë, ìåòîä ôóíêöèé Ãðèíà, òåîðèÿ ôóíêöèîíàëà ïëîòíîñòè 

ÓÄÊ 539.186 

Î. Â. Ãëóøêîâ, ß. ². Ëåï³õ, Î. Ï. Ôåä÷óê, A. Â. Ëîáîäà, Þ. Ì. Ëîïàòê³í, À. À. Ñâèíàðåíêî 

ÌÅÒÎÄ ÔÓÍÊÖ²É ÃÐ²ÍÀ ² ÔÓÍÊÖ²ÎÍÀËÓ ÃÓÑÒÈÍÈ Ó ÂÈÇÍÀ×ÅÍÍ² Â²ÁÐÀÖ²ÉÍÎ¯ ÑÒÐÓÊÒÓÐÈ 
ÔÎÒÎÅËÅÊÒÐÎÍÍÎÃÎ ÑÏÅÊÒÐÓ ÌÎËÅÊÓËÈ ÑÎ 

Ðåçþìå. 
Êîìá³íîâàíèé òåîðåòè÷íèé ìåòîä îïèñó â³áðàö³éíî¿ ñòðóêòóðè äëÿ ôîòîåëåêòðîííèõ ñïåêòð³â ìîëåêóë, ÿêèé áàçóºòüñÿ 

íà ìåòîä³ ôóíêö³é Ãð³íà ³ òåîð³¿ ôóíêö³îíàëó ãóñòèíè, çàñòîñîâàíî äî ê³ëüê³ñíîãî îïèñó ôîòîåëåêòðîííîãî ñïåêòðó ìîëåêóëè 
ÑÎ. 

Êëþ÷îâ³ ñëîâà: ôoòoåëåêòðîííèé ñïåêòð ìîëåêóë, ìåòîä ôóíêö³é Ãð³íà, òåîð³ÿ ôóíêö³îíàëà ãóñòèíè 


