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THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH
TO VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA

OF CARBON OXIDE MOLECULE

The combined theoretical approach to vibrational structure in photoelectron spectra (PES) of
molecules, which is based on the density functional theory (DFT) and the Green’s-functions (GF)
approach, is used for quantitative treating the carbon oxide molecule PES.

INTRODUCTION

The GF method is very well known in a quantum
theory of field, quantum electrodynamics, quantum
theory of solids. This approach naturally provided
the known progress in treating atoms, solids and mol-
ecules, as it has been shown in many papers (c.f.[1—
15]). The experimental PES spectra of molecules usu-
ally show a pronounced vibrational structure [5—6].
Many papers have been devoted to treatment of the
vibrational spectra by construction of potential curves
for the reference molecule (the molecule which is to
be ionized) and the molecular ion. Usually the elec-
tronic GF is defined for fixed position of the nuclei.
The cited method, however, requires as input data the
geometries, frequencies, and potential functions of
the initial and final states. Since in most cases at least a
part of these data are unavailable, the calculations have
been carried out with the objective of determining the
missing data by comparison with experiment. To avoid
this difficulty and to gain additional information about
the ionization process, Cederbaum et al [11] extended
the GF approach to include the vibrational effects and
showed that the GF method allowed ab initio calcu-
lation of the intensity distribution of the vibrational
lines etc. For large molecules far more approximate
but more easily applied methods such as DFT [16,17]
or from the wave-function world the simplest corre-
lated model MBPT are preferred [2,8,10]. Indeed,
in the last decades DFT theory became by a great,
quickly developing field of the modern computational
chemistry of molecules. Here the combined theoreti-
cal approach [12—15] to vibrational structure in PES
of molecules, which is based on the DFT and the GF
approach, is used for quantitative treating the carbon
oxide molecule. The density of states, which describe
the vibrational structure in PES, is calculated with us-
ing combined DFT-GF approach. It is important that
calculation procedure is significantly simplified with
using DFT formalism. This simplification allowed to
get the first important results in a laser-electron-y nu-
clear spectroscopy of molecules [14], namely, results
on the electron-vibration-rotation-y nuclear satellite
lines.

The density of states in one-body and many-body
problem.
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Quasiparticle Fermi-liquid density functional
theory

As usually (see details in refs. [2,8,11,14]), the
quantity which contains the information about the
ionization potentials (I.P.) and molecular vibrational
structure due to quick ionization is the density of oc-

cupied states:
N, (€)= (1/2nh) Jdte" “ (y, [a; (0)a, (O]w,), (1)

where |‘P0> is the exact ground state wave function
of the reference molecule and a, (¢) is an electron de-
struction operator, both in the Heisenberg picture. For
particle attachment the quantity of interest is the den-
sity of unoccupied states:

N, (€)= (1) 2xh) [die™ “ (y,Ja, D, (O)]v,)  (2)

Usually in order to calculate the value (1) states
for photon absorption one should express the Ham-
iltonian of the molecule in the second quantization
formalism. The Hamiltonian is as follows:

H=T,(08/x)+T,(8/3X)+

FU g (X) + U (X)) + Upy (%, X), 3)
where 7, and 7, are the kinetic energy operators
for electrons and nuclei, and U represents the inter-
action; U, represents the Coulomb interaction be-
tween electrons, etc; x (X) denotes electron (nuclear)
coordinates. As usually, introducing a field operator
Y(R,0,x)=>" ¢,(x,R,0)a,(R,0) withthe Hartree-Fo-
ck (HF) one-particle functions ¢, (€, (R) are the one-
particle HF energies and f denotes the set of orbitals
occupied in the HF ground state; R is the equilibrium
geometry on the HF level) and dimensionless normal
coordinates Q_ one can write the standard Hamilto-
nian as follows [11,15]:

H=H,+H,+H} +Hy) (4)
1
Hy =2 &R)aa+-3 Vi (R)adaa, -

_z Z [Vzlgk (Ry)— VIUg (R, )]ai' a; s

ij kef
J 1
HN = hz 0‘)3 (b;bs +5)5
s=1
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H) = z”zz [ ](b +b)[ala —n]+

4E 3 (e

ios,s'=l

050 J (b, + )b, +b)ala, ~n,],

M
Hg =277% %" ( ’WJ (b, +b))x
s=1 s 0

x[8v, a/d’a, +8v,a,a,a.d’ +28v,aia.a.a; ]+

—ZZ

5,8'=1

V.
Vi (b, +b')x
00,60, )

x(b, +b.[dv, a.d’a, +dv,a,a.a.d’ + 28v,d’a,a,a],

with n=1 (0), ief (i¢f), 5,~=1 (0) , (jjkl)ec,, where
the index set v, means that at least ¢, and o, or ¢ ¢, and
@, are unoccupled v, that at most one of the orbitals
is unoccupled and v, that ¢, and ¢, or ¢,and ¢, are
unoccupied. Here for simplicity all terms 1ead1ng to
anharmonicities are neglected. The o, are the HF fre-
quencies; b, ,b. are destruction and creation opera-

s s

tors for vibrational quanta as

0. =(1/N2)b, +b'), 0160, =(1/\2)b, -b) (5

The interpretation of the above Hamiltonian and
an exact solution of the one-body HF problem is given
in refs. [5,6]. The HF-single-particle component H,
of the Hamiltonian (4) is as follows:

H, = Z € (R,)d!

+Z Z 2”2[

M
a,+Y. ho (bb, +%)+
s=1

Q}aa—n](b +b), +

s

1 ‘ ‘
Z > (GQaQ J[ a;a; = )(b, +b)(b, +b;) (6)

5,8'=1 i
Correspondingly in the one-particle picture the
density of occupied states is given by

+in '/

o), ()

%
No(e)=—— | dte™ “0| e
v(e) mi |

B M M
Hy=) hobb +Y, g (b +b)+
s=1 s=1
M
£ 1h (b, +B)B 4B (®)
s,8'=1
PSP AT R 1 (AN O
Coo2le0 ), T 4legeo, ),
Introducing new operators
M
= (b +238) (10)

I=1

with real coefficients A;', A3
that H in new operators is

, defined in such a way

H Z hocle, +Z g.(c,+c)+k.

s=1

(11)
eq. (7) is as follows:

116

Ne)=> | |u o [x

xd(e—€, TA€, Tn-hid) (12)

where & function in (12) naturally contains the infor-
matlon about adlabatlc 10nlzat10n potentlal and the
|U |0) | is the

well-known Franck-Condon factor
In a diagrammatic method to get function N, (¢)
one should calculate the GF G, (¢) first [1,3,11,18]:

Gy(€)=—in™ f die" " x

x| T4 a,(0a(0) } |wy) (13)

and the function N, (e) can be found from the rela-
tion
7N, (¢)=almG, (e—ain) , a=—signe, . (14)

Choosing the unperturbed Hamiltonian H, to be
H, =) ¢ala+H, one finds the GE In the known

i i

approximation GF is as follows:
G (t) = £, iexp [—in’l (e, F Ag)t] x
x> |(, U, 0)[" exp (in, -dor), (15)

The corresponding Dyson-like equation (X= 0 )is
as follows:

G, (e) G (e)+ZG,3(B (e)i)kk G, (e)
( Kij

(16)

Vay iU, U, U,

ki~ mi~ n; i~ ml

e+E -E -E,

D, (€)= Z Z

i,jeF  n.n;.n

oy oy b

i,jeF m,n;.n
lgl

Vi iU, U, U,

k'lij = ni nij = ml

€+E - E,-E,

where U, _ |<ﬁ, |U,|0>|2 and E, =¢, TA €, Thi,-&, (17)

The direct method for calculation of N (e ) as the
imaginary part of the GF includes a definition of the
vertical 1. P. (V. 1. Ps) of the reference molecule and
then of N, (e) The zeros of the functions

D, (e):e —[e”" +3 (e)] ,

where ge"” +Z) denotes the k-th elgenvalue of the
diagona matrix of the one- -particle energies added to
matrix of the self-energy part, are the negative V. I. P.
‘s for a given geometry. One can write [11,13]:

(V.IP), =—(g +F,),

1
1-0%,, (e,{)/aE

(18)

F, =%, (-(V.L.P),)=~ 2, (). (19)

Expanding the ionic energy E; ' about the equi-
librium geometry of the reference molecule in a power
series of the normal coordinates of this molecule leads
to a set of linear equations in the unknown normal
coordinate shifts 5Q,, and new coupling constants are
then:

g =+(1/2)o(e +F )10, ], (20)



Yo = r[ij[az (e, +F,)/ 00,100, |,

The coupling constants g, and y, are calculated
by the well-known perturbation expansion of the self-
energy part using the Hamiltonian H,, of Eq. (3). In
second order one obtains:

Z(Z)(E) Z ( i k"’) ksif Z ( ksij kw )Vksi/ 1)
sir Tk

e+ € e+ e, — € —E

and the coupling constant g, can be written as

cp L 1 O0¢, 1""‘]/((8/66)21({ )k:|
V200, 1-(810€)) [ - (VIP)]

I ) F@a}

(22)

~(VIP. —e—e L0000 0
qk _ |: ( )k + GS e €. ] (23)
aj ( lm/ kx)!)
00, [—(V.I.P.)k +€ —€ —¢€; ]2

It is suitable to use further the pole strength of the
corresponding GF;

P :{1_
8 = gzo |:pk +4; (pk _1)]> gzo =270 € /aQZ

Below we give the DFT definition of the pole
strength corresponding to V. I. P.’s and confirm the
earlier data [11—15]: p,=0,8—0,95. The coupling con-

stant is:
& / 0
+
n yu[goj 6QI( j

Further we consider the quasiparticle Fermi-lig-
uid version of the DFT, following to refs. [18—20]. The
master equation can be derived using an expansion for
self-energy part X into set on degrees of x, -¢,, p*-p?,
(here ¢, and p, are the Fermi energy and pulse cor-
respondingly):

[P 12=3.Z, 11, + (x)+ p(dY./op>) p1®, (x) =
=(1-0) /0e)e, @, (x)

The functions @, in (27) are orthogonal with a
weight p '=a'=[1-0X/0e]. Now one can introduce
wave functlons of the quasiparticles ¢, =a""?®, , which
are, as usually, orthogonal with Welght 1. The equa-
tions (27) can be obtained on the basis of variational
principle, if we start from a Lagrangian of a system L
(DF). It should be defined as a functional of qua51par—
ticle densities:

iz w[F07.1.P), ]}_ 1>p, >0, (24)
(S

(25)

(26)

(27)

v =Yn |®, (",

Vl(")zznx |V, (r) |2,

v, (r) = an[q);q)x _(D:L(Dx]'
n

The densities v, and v, are similar to the HF elec-
tron density and kinetical energy density correspond-
ingly; the density v, has no an analog in the HF or
DFT theory and appears as result of account for the
energy dependence of the mass operator X. A Lagran-
gian Lq can be written as a sum of a free Lagrangian
and Lagrangian of interaction: L L 0+ L " where a
free Lagrangian L %has a standard form:

= J'ernkCDk(l@/ﬁt—sp)(Dk , (28)

The interaction Lagrangian is defined in the form,
which is characteristic for a standard (Kohn-Sham
[16]) DFT (as a sum of the Coulomb and exchange-
correlation terms), however, it takes into account for
the energy dependence of a mass operator X :

LM=1, ——ZIBMF(

sz

1V, (v, (r,)drdr, (29)

where B, are some constants (look below), F is an
effective potential of the exchange-correlation inter-
action. The Coulomb interaction part L, looks as fol-

lows:
L =—lﬁ1—2 )V, ()1 -
“ 2 2\ Vol
_Z L)V () | 1 =1, | drdb,

where X, =0X/0¢. In the local density approximation
the potential F'can be expressed through the exchange-
correlation pseudo-potential V. as follows [20]:

Kr,r)=oV_/ov 3(rr,).

Further, one can get the following expressions for
Y, =-3L" /&v,:

(30)

T, =(1=2,)V, +Z& +%B0082VXC /8vive +

+Boo0V ye 1 OVyVy + B0V e / OVyv, +
By Ve 1 8Ve VoV, +Byd Ve 1 8VE Vv, +

+B020V 3 18V, - v, (€28

Z"1 = B016VXC /SVO Vo +B126VXC /6V0 "V, +B116VXC /8\/0 Vi

Z2 = BOZSVXC /Svo "V +B128VXC /8"0 "V, +B226VXC /SVO "V,

Here V, is the Coulomb term, X{* is the exchange
term. Using the known canonical relationship, one
can derive the quasiparticle Hamiltonian, which is
corresponding to L, :

_ 0 int
H . = H . +H .

=H]-Lg+

+%B008VXC /8y Ve +By Ve 8V, vy v, +

1 1
+EB“8VXC /8y -vi _EBZZSVXC /8vy-vs  (32)
Further let us give the short comment regarding
constants ,. Indeed, in some degree they have the
same essence as the similar constants in the well-
known Landau Fermi-liquid theory and the Migdal
finite Fermi-systems theory. Regarding universality

of B,,, indeed, as we know now, the total universality
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of the constants in the last theories is absent, though
a range of its changing is quite small [18]. In any
case it requires a careful check. Obviously, the terms
with constants B, B,, B,, B,, should be neglected
(at least in the zeroth approximation in comparison
with others), so they can be equal to 0. The value
of B,, is dependent on definition of V. If as V_ it is
used one of the DFT exchange-correlation potentials
from, then without losing a community of statement,
B,,=1. The constant  , can be in principle calculated
by analytical way, but it is very useful to remember
its connection with a spectroscopic factor F, ) of the
system [18]:

0
F,= {1 _EZ w[FV.LP), ]} (33)
One can see that this definition is corresponding to
the pole strength of the corresponding Green’s func-
tion [2,11]. As potential V_ we use the Gunnarsson-
Lundgqvist exchange-correlation functional [17]:

Vie(r) ==/ mBr* -p(r)]"” -

—0,0333-In[1+18,376-p"*(r)] (34)

Using the above written formula, one can simply
define the values (24), (33).

RESULTS AND CONCLUSIONS

In ref. [15] the above presented combined ap-
proach has been applied to analysis of the photoelec-
tron spectrum for the sufficiently complicated from
the theoretical point of view N, molecule, where the
known Koopmans’ theorem even fails in reproduc-
ing the sequence of the V. I. P.’s in the PE spectrum
(c.f.[5—7]). It is stressing, however it has been possible
to get the full sufficiently correct description of the di-
atomics PES already in the effective one-quasiparticle
approximation [11,13]. Another essential aspect is suf-
ficiently simple calculational procedure, provided by
using the DFT. Moreover, here the cumbersome cal-
culation is not necessary, if the detailed Hartree-Fock
(Hartree-Fock-Rothaan) data (separate HF-potential
curves of molecule and ion) for the studied diatomic
molecule are available. The carbon oxide molecule,
which is considered in this paper, has been naturally
studied in many papers. (see [3—S8]). In full analogy
with the molecule of N, [15] it is easily to estimate the
pole strengths p, and the values ¢g,. When the change
of frequency due to ionization is small, the density of
states can be well approximated using only one param-
eter g:

S}’I
n!
S =g*(ho)” (35)

In case the frequencies change considerably, the
intensity distribution of the most intensive lines can
analogously be well approximated by an effective pa-
rameter .S. In fig.1 it is presented the experimental [5,6]
PES for the CO molecule together with the theoretical
one, calculated with g and Eq. (35).

S(E—Ek +A€, +n-hd)),

N, (e)zge’s
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Fig.1. Experimental and calculated (the uppermost spectrum
is calculated with S’ and Eq. (35)) photoelectron spectrum of the
CO molecule (see text).

We will mean that S° denotes the constant S cal-
culated with g° and $*” denotes the value derived from
the experimental spectrum. The deviations of the one-
particle constants g° from the experimental ones are
practically fully arisen due to the correlation effects.
In table 1 we listed the experimental and calculated
(our data) values of S.

Table I
Experimental and calculated (our data) values of
S[l Sexp
5o In 4c S5c In 4c
0.045 2.394 0.262 0.04 2.30 0.27°

One could guess that there a physically reason-
able agreement between the theoretical and experi-
mental results for all three bands. It should be noted
that more sophisticated calculation by Cederbaum et
al [11] gives the theoretical value S(4,5c), which is
practically identical to the experimental values, how-
ever the value S(1n)=2.59 is in some degree differ-
ent from S, This example also confirms that quite
simple theory become an effective tool in interpret-
ing the vibrational structure of the molecular PES,
especially taking into account an essential simplifi-
cation (implementation of the DFT scheme) of the
standard Green’s function approach. At last, we
should note that the presented combined GF-DFT
approach can be very helpful for multi-atomic mol-
ecules, especially for larger ones, when full ab initio
calculations can be not available.

In conclusion authors would like to thank Profs.
C. Rothaan, L. Cederbaum, S. Wilson for useful dis-
cussions.
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METOJT ®YHKIINI I'PUHA U ®YHKIINOHAJIA INIOTHOCTH B OITPEJEJIEHU KOJEBATEJILHOM
CTPYKTYPbI ®OTOBJIEKTPOHHOI'O CIIEKTPA MOJIEKYJIBI CO

Pesiome.

KoMOMHMPOBaHHBIN TEOPETMYECKIIT METOA ONMCAHUS KOJeOaTeIbHOI CTPYKTYPHI TSI POTORNEKTPOHHBIX CIIEKTPOB MOJIEKYIT,
KOTOpBIii 6a3upyercst Ha Metoze dyHkuuii [puHa u Teopun pyHkimronana miotHoctu (TAPIT), mpuMeHeH K KOJTMYECTBEHHOMY OITU-
caHU110 (POTOINEKTPOHHOTO crieKTpa MoJieKyabl CO
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METO/]T ®YHKIII TPTHA I ®YHKITIOHAJY T'YCTUHHU Y BU3HAYEHHI BIBPAIIITHOI CTPYKTYPU
OOTOEJTEKTPOHHOI'O CIIEKTPY MOJIEKYJIN CO

Pe3siome.

KoMm6iHOBaHMIT TEOPETUIHUI METO/I OTUCY BiOPAIiitHOI CTPYKTYPH ISl (DOTOETIEKTPOHHMX CIIEKTPiB MOJICKYJI, SIKUi1 6a3yeThCst
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CO.
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