Mathematical Subject Classification: 11N37
UDC 511

A. V. Lelechenko

Odesa I. I. Mechnikov National University

EXPONENTIAL CARMICHAEL FUNCTION

Лелеченко А. В. Експоненціальна функція Кармайкла. Розглянемо експоненціальну функцію Кармайкла $\lambda^{(e)}$, таку, що $\lambda^{(e)}$ мультиплікативна та $\lambda^{(e)}\left(p^{a}\right)=\lambda(a)$, де λ "- звичайна функція Кармайкла. У статті обговорюється значення $\sum \lambda^{(e)}(n)$, де n пробігає деякі підмножини $[1, x]$, та наведені оцінки залишкового члену, побудовані за допомогою аналітичних методів, а надто оцінок $\int_{1}^{T}|\zeta(\sigma+i t)|^{m} d t$.
Ключові слова: експоненціальні дільники, функція Кармайкла, моменти дзетафункції Рімана.

Лелеченко А. В. Экспоненциальная функция Кармайкла. Рассмотрим экспоненциальную функцию Кармайкла $\lambda^{(e)}$, такую, что $\lambda^{(e)}$ мультипликативна и $\lambda^{(e)}\left(p^{a}\right)=$ $\lambda(a)$, где λ - обычная функция Кармайкла. В работе обсуждается величина $\sum \lambda^{(e)}(n)$, где n пробегает некоторые подмножества $[1, x]$, и даны оценки остаточного члена, построенные с помощью аналитических методов и в особенности оценок $\int_{1}^{T}|\zeta(\sigma+i t)|^{m} d t$. Ключевые слова: экспоненциальные делители, функция Кармайкла, моменты дзетафункции Римана.

Lelechenko A. V. Exponential Carmichael function. Consider exponential Carmichael function $\lambda^{(e)}$ such that $\lambda^{(e)}$ is multiplicative and $\lambda^{(e)}\left(p^{a}\right)=\lambda(a)$, where λ is usual Carmichael function. We discuss the value of $\sum \lambda^{(e)}(n)$, where n runs over certain subsets of $[1, x]$, and provide bounds on the error term, using analytic methods and especially estimates of $\int_{1}^{T}|\zeta(\sigma+i t)|^{m} d t$.
Key words: exponential divisors, Carmichael function, moments of Riemann zeta-function.

Introduction. Consider an operator E over arithmetic functions such that for every f the function $E f$ is multiplicative and

$$
(E f)\left(p^{a}\right)=f(a), \quad p \text { is prime }
$$

For various functions f (such as the divisor function, the sum-of-divisor function, Möbius function, the totient function and so on) the behaviour of $E f$ was studied by many authors, starting from Subbarao [12]. The bibliography can be found in [10].

The notation for $E f$, established by previous authors, is $f^{(e)}$.
Carmichael function λ is an arithmetic function such that

$$
\lambda\left(p^{a}\right)= \begin{cases}\phi\left(p^{a}\right), & p>2 \text { or } a=1,2, \\ \phi\left(p^{a}\right) / 2, & p=2 \text { and } a>2,\end{cases}
$$

and if $n=p_{1}^{a_{1}} \cdots p_{m}^{a_{m}}$ is a canonical representation, then

$$
\lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{a_{1}}\right), \ldots, \lambda\left(p_{m}^{a_{m}}\right)\right) .
$$

This function was introduced at the beginning of the XX century in [1], but intense studies started only in 1990-th, e. g. [2]. Carmichael function finds applications in cryptography, e. g. [3].

Consider also the family of multiplicative functions

$$
\delta_{r}\left(p^{a}\right)=\left\{\begin{array}{ll}
0, & a<r, \\
1, & a \geqslant r,
\end{array} \quad r\right. \text { is integer. }
$$

Function δ_{2} is a characteristic function of the set of square-full numbers, δ_{3} - of cube-full numbers and so on. Of course, $\delta_{1} \equiv 1$.

Denote $\lambda_{r}^{(e)}$ for the product of δ_{r} and $\lambda^{(e)}$:

$$
\lambda_{r}^{(e)}(n)=\delta_{r}(n) \lambda^{(e)}(n) .
$$

The aim of our paper is to study asymptotic properties of $\lambda^{(e)} \equiv \lambda_{1}^{(e)}, \lambda_{2}^{(e)}, \lambda_{3}^{(e)}$ and $\lambda_{4}^{(e)}$.

Notations.

Letter p with or without indexes denotes a prime number.
We write $f \star g$ for Dirichlet convolution

$$
(f \star g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Denote

$$
\tau\left(a_{1}, \ldots, a_{k} ; n\right):=\sum_{d_{1}^{a_{1} \ldots d_{k}^{a_{k}}=n}} 1 .
$$

In asymptotic relations we use \sim, \asymp, Landau symbols O and o, Vinogradov symbols \ll and \gg in their usual meanings. All asymptotic relations are given as an argument (usually x) tends to the infinity.

Everywhere $\varepsilon>0$ is an arbitrarily small number (not always the same even in one equation).

As usual $\zeta(s)$ is Riemann zeta-function. Real and imaginary components of the complex s are denoted as $\sigma:=\Re s$ and $t:=\Im s$, so $s=\sigma+i t$.

For a fixed $\sigma \in[1 / 2,1]$ define

$$
m(\sigma):=\sup \left\{\left.m\left|\int_{1}^{T}\right| \zeta(\sigma+i t)\right|^{m} d t \ll T^{1+\varepsilon}\right\} .
$$

and

$$
\mu(\sigma):=\limsup _{t \rightarrow \infty} \frac{\log |\zeta(\sigma+i t)|}{\log t}
$$

Below $H_{2005}=(32 / 205+\varepsilon, 269 / 410+\varepsilon)$ stands for Huxley's exponent pair from [5].

Preliminary lemmas.

Lemma 1. Let $F: \mathbb{Z} \rightarrow \mathbb{C}$ be a multiplicative function such that $F\left(p^{a}\right)=f(a)$, where $f(n) \ll n^{\beta}$ for some $\beta>0$. Then

$$
\limsup _{n \rightarrow \infty} \frac{\log F(n) \log n}{\log n}=\sup _{n \geqslant 1} \frac{\log f(n)}{n} .
$$

Proof. See [13].
Lemma 2. Let $f(t) \geqslant 0$. If

$$
\int_{1}^{T} f(t) d t \ll g(T)
$$

where $g(T)=T^{\alpha} \log ^{\beta} T, \alpha \geqslant 1$, then

$$
I(T):=\int_{1}^{T} \frac{f(t)}{t} d t \ll\left\{\begin{array}{cl}
\log ^{\beta+1} T & \text { if } \alpha=1 \\
T^{\alpha-1} \log ^{\beta} T & \text { if } \alpha>1
\end{array}\right.
$$

Proof. Let us divide the interval of integration into parts:

$$
I(T) \leqslant \sum_{k=0}^{\log _{2} T} \int_{T / 2^{k+1}}^{T / 2^{k}} \frac{f(t)}{t} d t<\sum_{k=0}^{\log _{2} T} \frac{1}{T / 2^{k+1}} \int_{1}^{T / 2^{k}} f(t) d t \ll \sum_{k=0}^{\log _{2} T} \frac{g\left(T / 2^{k}\right)}{T / 2^{k+1}} .
$$

Now the lemma's statement follows from elementary estimates.
Lemma 3. For $\sigma \geqslant 1 / 2$ and for any exponent pair (k, l) such that $l-k \geqslant \sigma$ we have

$$
\mu(\sigma) \leqslant \frac{k+l-\sigma}{2}+\varepsilon .
$$

Proof. See [6, (7.57)].
A well-known application of Lemma 3 is

$$
\begin{equation*}
\mu(1 / 2) \leqslant 32 / 205, \tag{1}
\end{equation*}
$$

following from the choice $(k, l)=H_{2005}$. Another (maybe new) application is

$$
\begin{equation*}
\mu(3 / 5) \leqslant 1409 / 12170 \tag{2}
\end{equation*}
$$

following from

$$
(k, l)=\left(\frac{269}{2434}, \frac{1755}{2434}\right)=A B A H_{2005},
$$

where A and B stands for usual A - and B-processes [7, Ch. 2].
Lemma 4. Let $\eta>0$ be arbitrarily small. Then for growing $|t| \geqslant 3$

$$
\zeta(s) \ll \begin{cases}|t|^{1 / 2-(1-2 \mu(1 / 2)) \sigma}, & \sigma \in[0,1 / 2], \tag{3}\\ |t|^{2 \mu(1 / 2)(1-\sigma)}, & \sigma \in[1 / 2,1-\eta], \\ |t|^{2 \mu(1 / 2)(1-\sigma)} \log ^{2 / 3}|t|, & \sigma \in[1-\eta, 1], \\ \log ^{2 / 3}|t|, & \sigma \geqslant 1\end{cases}
$$

More exact estimates for $\sigma \in[1 / 2,1-\eta]$ are also available, e. g.

$$
\mu(\sigma) \ll \begin{cases}10(\mu(3 / 5)-\mu(1 / 2)) \sigma+(6 \mu(1 / 2)-5 \mu(3 / 5)), & \sigma \in[1 / 2,3 / 5] \tag{4}\\ 5 \mu(3 / 5)(1-\sigma) / 2, & \sigma \in[3 / 5,1-\eta]\end{cases}
$$

Proof. Estimates follow from Phragmén-Lindelöf principle, exact and approximate functional equations for $\zeta(s)$ and convexity properties. See [14, Ch. 5] and $[6$, Ch. 7.5] for details.

Lemma 5. For any integer r

$$
\max _{n \leqslant x} \lambda_{r}^{(e)}(n) \ll x^{\varepsilon} .
$$

Proof. Surely $\lambda_{r}^{(e)}(n) \leqslant \lambda^{(e)}(n)$. By Lemma 1 we have

$$
\limsup _{n \rightarrow \infty} \frac{\log \lambda^{(e)}(n) \log \log n}{\log n}=\sup _{m} \frac{\log \lambda(m)}{m}=\frac{\log 4}{5}=: c
$$

because $\lambda(m) \leqslant m-1$. It implies

$$
\max _{n \leqslant x} \lambda^{(e)}(n) \ll x^{c / \log \log n} \ll x^{\varepsilon} .
$$

Lemma 6. Let $L_{r}(s)$ be the Dirichlet series for $\lambda_{r}^{(e)}$:

$$
L_{r}(s):=\sum_{n=1}^{\infty} \lambda_{r}^{(e)}(n) n^{-s} .
$$

Then for $r=1,2,3,4$ we have $L_{r}(s)=Z_{r}(s) G_{r}(s)$, where

$$
\begin{align*}
& Z_{1}(s)=\zeta(s) \zeta(3 s) \zeta^{2}(5 s) \tag{5}\\
& Z_{2}(s)=\zeta(2 s) \zeta^{2}(3 s) \zeta(4 s) \zeta^{2}(5 s) \tag{6}\\
& Z_{3}(s)=\zeta^{2}(3 s) \zeta^{2}(4 s) \zeta^{4}(5 s) \tag{7}\\
& Z_{4}(s)=\zeta^{2}(4 s) \zeta^{4}(5 s) \zeta^{2}(6 s) \zeta^{6}(7 s) \tag{8}
\end{align*}
$$

Dirichlet series $G_{1}(s), G_{2}(s), G_{3}(s)$ converge absolutely for $\sigma>1 / 6$ and $G_{4}(s)$ converges absolutely for $\sigma>1 / 8$.

Proof. Follows from the identities

$$
\begin{aligned}
1+\sum_{a \geqslant 1} \lambda^{(e)}\left(p^{a}\right) x^{a} & =1+x+x^{2}+2 x^{3}+2 x^{4}+4 x^{5}+2 x^{6}+6 x^{7}+O\left(x^{8}\right) \\
& =\frac{1+O\left(x^{8}\right)}{(1-x)\left(1-x^{3}\right)\left(1-x^{5}\right)^{2}}, \\
1+\sum_{a \geqslant 2} \lambda^{(e)}\left(p^{a}\right) x^{a} & =\frac{1+O\left(x^{6}\right)}{\left(1-x^{2}\right)\left(1-x^{3}\right)^{2}\left(1-x^{4}\right)\left(1-x^{5}\right)^{2}}, \\
1+\sum_{a \geqslant 3} \lambda^{(e)}\left(p^{a}\right) x^{a} & =\frac{1+O\left(x^{6}\right)}{\left(1-x^{3}\right)^{2}\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)^{4}} \\
1+\sum_{a \geqslant 4} \lambda^{(e)}\left(p^{a}\right) x^{a} & =\frac{1+O\left(x^{8}\right)}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)^{4}\left(1-x^{6}\right)^{2}\left(1-x^{7}\right)^{6}}
\end{aligned}
$$

Lemma 7. Let $\Delta(x)$ be the error term in the well-known asymptotic formula for $\sum_{n \leqslant x} \tau\left(a_{1}, a_{2}, a_{3}, a_{4} ; n\right)$, let $A_{4}=a_{1}+a_{2}+a_{3}+a_{4}$ and let (k, l) be any exponent pair. Suppose that the following conditions are satisfied:

1. $(k+l+2) a_{4}<(k+l) a_{1}+A_{4}$.
2. $2(k+l+1) a_{1} \leqslant(2 k+1)\left(a_{2}+a_{3}\right)$.
(3.1) $l a_{1} \leqslant k a_{2}$ and $(k+l+1) a_{1} \geqslant k\left(a_{2}+a_{3}\right)$
or
(3.2) $l a_{1} \geqslant k a_{2}$ and $(l-k)(2 k+1) a_{3} \leqslant(2 l-2 l-1)(k+l+1) a_{1}+(2 k(k-l+1)+1) a_{2}$.

Proof. This is [8, Th. 3] with $p=4$.

Lemma 8.

$$
m(\sigma) \geqslant\left\{\begin{array}{cc}
4 /(3-4 \sigma), & 1 / 2 \leqslant \sigma \leqslant 5 / 8 \\
10 /(5-6 \sigma), & 5 / 8 \leqslant \sigma \leqslant 35 / 54, \\
19 /(6-6 \sigma), & 35 / 54 \leqslant \sigma \leqslant 41 / 60, \\
2112 /(859-948 \sigma), & 41 / 60 \leqslant \sigma \leqslant 3 / 4, \\
12408 /(4537-4890 \sigma), & 3 / 4 \leqslant \sigma \leqslant 5 / 6, \\
4324 /(1031-1044 \sigma), & 5 / 6 \leqslant \sigma \leqslant 7 / 8, \\
98 /(31-32 \sigma), & 7 / 8 \leqslant \sigma \leqslant 0.91591 \ldots, \\
(24 \sigma-9) /(4 \sigma-1)(1-\sigma), & 0.91591 \ldots \leqslant \sigma \leqslant 1-\varepsilon
\end{array}\right.
$$

Proof. See [6, Th. 8.4].

Main Results.

Theorem 1.

$$
\sum_{n \leqslant x} \lambda^{(e)}(n)=c_{11} x+c_{13} x^{1 / 3}+\left(c_{15}^{\prime} \log x+c_{15}\right) x^{1 / 5}+O\left(x^{1153 / 6073+\varepsilon}\right)
$$

where c_{11}, c_{13}, c_{15} and c_{15}^{\prime} are computable constants.
Proof. Lemma 6 and equation (5) implies that $\lambda^{(e)}=\tau(1,3,5,5 ; \cdot) \star g_{1}$, where $\sum_{n \leqslant x} g_{1}(n) \ll x^{1 / 6+\varepsilon}$. Due to [7]

$$
\begin{aligned}
\sum_{n \leqslant x} \tau(1,3,5,5 ; n)=x \zeta(3) \zeta^{2}(5) \underset{s=1}{\operatorname{res}} \zeta(s) & +3 x^{1 / 3} \zeta(1 / 3) \zeta^{2}(5 / 3) \underset{s=1 / 3}{\text { res }} \zeta(3 s)+ \\
& +5 x^{1 / 5} \zeta(1 / 5) \zeta(3 / 5) \underset{s=1 / 5}{\text { res }} \zeta^{2}(5 s)+R(x) .
\end{aligned}
$$

To estimate $R(x)$ we use Lemma 7 with $a_{1}=1, a_{2}=3, a_{3}=a_{4}=5$. Exponent pair $(k, l)=H_{2005}$ satisfies conditions 1, 2 and 3.2 and thus

$$
R(x) \ll x^{(k+l+2) /(k+l+14)}=x^{1153 / 6073+\varepsilon}, \quad 1 / 6<1153 / 6073<1 / 5 .
$$

Now the convolution argument completes the proof.

Exponential totient function $\phi^{(e)}$ has similar to $\lambda^{(e)}$ Dirichlet series:

$$
\sum_{n=1}^{\infty} \phi^{(e)}(n)=\zeta(s) \zeta(3 s) \zeta^{2}(5 s) H(s)
$$

where $H(s)$ converges absolutely for $\sigma>1 / 6$. Theorem 1 can be extended to this case without any changes, so

$$
\sum_{n \leqslant x} \phi^{(e)}(n)=c_{11} x+c_{13} x^{1 / 3}+\left(c_{15}^{\prime} \log x+c_{15}\right) x^{1 / 5}+O\left(x^{1153 / 6073+\varepsilon}\right)
$$

This improves the result of Pétermann [11], who obtained $\sum_{n \leqslant x} \phi^{(e)}(n)=c_{11} x+$ $c_{13} x^{1 / 3}+O\left(x^{1 / 5} \log x\right)$.

Theorem 2.

$$
\sum_{n \leqslant x} \lambda_{2}^{(e)}(n)=c_{22} x^{1 / 2}+\left(c_{23}^{\prime} \log x+c_{23}\right) x^{1 / 3}+c_{24} x^{1 / 4}+O\left(x^{1153 / 5586+\varepsilon}\right),
$$

where $c_{22}, c_{23}, c_{23}^{\prime}$ and c_{24} are computable constants.
Proof. Similar to Theorem 1 with following changes: now by (6)

$$
\lambda_{2}^{(e)}=\tau(2,3,3,4 ; \cdot) \star g_{2},
$$

where $\sum_{n \leqslant x} g_{2}(n) \ll x^{1 / 6+\varepsilon}$. But

$$
\begin{aligned}
& \sum_{n \leqslant x} \tau(2,3,3,4 ; n)=2 x^{1 / 2} \zeta^{2}(3 / 2) \zeta(2) \underset{s=1 / 2}{\text { res }} \zeta(2 s)+ \\
& \quad+3 x^{1 / 3} \zeta(2 / 3) \zeta(4 / 3) \underset{s=1 / 3}{\text { res }} \zeta^{2}(3 s)+4 x^{1 / 4} \zeta(1 / 2) \zeta^{2}(3 / 4) \underset{s=1 / 4}{\text { res }} \zeta(4 s)+R(s) .
\end{aligned}
$$

Again by Lemma 7 with $a_{1}=2, a_{2}=a_{3}=3, a_{4}=4,(k, l)=H_{2005}$ we get

$$
R(x) \ll x^{(k+l+2) /(k+l+12)}=x^{1153 / 5586+\varepsilon}, \quad 1 / 5<1153 / 5586<1 / 4
$$

Theorem 3.

$$
\begin{align*}
\sum_{n \leqslant x} \lambda_{3}^{(e)}(n)=\left(c_{33}^{\prime} \log x+c_{33}\right) x^{1 / 3}+\left(c_{34}^{\prime} \log x\right. & \left.+c_{34}\right) x^{1 / 4}+ \\
& +P_{35}(\log x) x^{1 / 5}+O\left(x^{1 / 6+\varepsilon}\right) \tag{9}
\end{align*}
$$

where $c_{33}, c_{33}^{\prime}, c_{34}$ and c_{34}^{\prime} are computable constants, P_{35} is a polynomial of degree 3 with computable coefficients.

Proof. Lemma 6 and equation (7) implies that $\lambda_{3}^{(e)}=z_{3} \star g_{3}$, where z_{3} is defined implicitly by

$$
\sum_{n=1}^{\infty} z_{3}(n) n^{-s}=Z_{3}(s)=\zeta^{2}(3 s) \zeta^{2}(4 s) \zeta^{4}(5 s)
$$

and g_{3} is a multiplicative function such that $\sum_{n \leqslant x} g_{3}(n) \ll x^{1 / 6+\varepsilon}$.
The main term at the right side of (9) equals to

$$
M_{3}(x):=(\underset{s=1 / 3}{\operatorname{res}}+\underset{s=1 / 4}{\text { res }}+\underset{s=1 / 5}{\mathrm{res}})\left(\zeta^{2}(3 s) \zeta^{2}(4 s) \zeta^{4}(5 s) x^{s} s^{-1}\right) .
$$

To obtain the desirable error term it is enough to prove that

$$
\sum_{n \leqslant x} z_{3}(n)=M_{3}(x)+O\left(x^{1 / 6+\varepsilon}\right) .
$$

By Perron formula for $c:=1 / 3+1 / \log x$ we have

$$
\sum_{n \leqslant x} z_{3}(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} Z_{3}(s) x^{s} s^{-1} d s+O\left(x^{1+\varepsilon} T^{-1}\right)
$$

Substituting $T=x$ and moving the contour of the integration till $[1 / 6-i x, 1 / 6+i x]$ we get

$$
\sum_{n \leqslant x} f_{3}(n)=M_{3}(x)+O\left(I_{0}+I_{-}+I_{+}+x^{\varepsilon}\right),
$$

where

$$
I_{0}:=\int_{1 / 6-i x}^{1 / 6+i x} Z_{3}(s) x^{s} s^{-1} d s, \quad I_{ \pm}:=\int_{1 / 6 \pm i x}^{c \pm i x} Z_{3}(s) x^{s} s^{-1} d s
$$

Firstly,

$$
I_{+} \ll x^{-1} \int_{1 / 6}^{c} Z_{3}(\sigma+i x) x^{\sigma} d \sigma
$$

Let $\alpha(\sigma)$ be a function such that $Z_{3}(\sigma+i x) \ll x^{\alpha(\sigma)+\varepsilon}$. By (3) we have

$$
\alpha(\sigma) \leqslant \begin{cases}(16-68 \sigma) \mu(1 / 2)<4 / 5, & \sigma \in[1 / 6,1 / 5), \\ (8-28 \sigma) \mu(1 / 2)<3 / 4, & \sigma \in[1 / 5,1 / 4), \\ (4-12 \sigma) \mu(1 / 2)<2 / 3, & \sigma \in[1 / 4,1 / 3), \\ 0, & \sigma \in[1 / 3, c]\end{cases}
$$

This means that $I_{+} \ll x^{\varepsilon}$. Plainly, the same estimate holds for I_{-}.
Secondly, it remains to prove that $I_{0} \ll x^{1 / 6+\varepsilon}$. Here

$$
I_{0} \ll x^{1 / 6} \int_{1}^{x} Z_{3}(1 / 6+i t) t^{-1} d t
$$

and taking into account Lemma 2 it is enough to show $\int_{1}^{x} Z_{3}(1 / 6+i t) d t \ll x^{1+\varepsilon}$. Applying Cauchy inequality twice we obtain

$$
\begin{aligned}
\int_{1}^{x} Z_{3}(1 / 6+i t) d t & \ll\left(\int_{1}^{x}\left|\zeta^{4}(1 / 2+i t)\right| d t\right)^{1 / 2} \times \\
\times\left(\int_{1}^{x}\left|\zeta^{8}(2 / 3+i t)\right| d t\right)^{1 / 4} & \left(\int_{1}^{x}\left|\zeta^{16}(5 / 6+i t)\right| d t\right)^{1 / 4} \ll \\
& \ll x^{(1+\varepsilon) \cdot 1 / 2} x^{(1+\varepsilon) \cdot 1 / 4} x^{(1+\varepsilon) \cdot 1 / 4} \ll x^{1+\varepsilon}
\end{aligned}
$$

since by Lemma $8 m(1 / 2) \geqslant 4, m(2 / 3) \geqslant 8$ and $m(5 / 6) \geqslant 16$.
Theorem 4.

$$
\begin{aligned}
\sum_{n \leqslant x} \lambda_{4}^{(e)}(n)=\left(c_{44}^{\prime} \log x+c_{44}\right) x^{1 / 4}+P_{45}(\log x) x^{1 / 5} & +\left(c_{46}^{\prime} \log x+c_{46}\right) x^{1 / 6}+ \\
& +P_{47}(\log x) x^{1 / 7}+O\left(x^{C_{4}+\varepsilon}\right),
\end{aligned}
$$

where $c_{44}, c_{44}^{\prime}, c_{46}$ and c_{46}^{\prime} are computable constants, P_{45} and P_{47} are computable polynomials, $\operatorname{deg} P_{45}=3, \operatorname{deg} P_{47}=5$,

$$
\begin{equation*}
C_{4}=\frac{7863059-\sqrt{13780693090921}}{85962240}=0.134656 \ldots, \quad 1 / 8<C_{4}<1 / 7 \tag{10}
\end{equation*}
$$

Proof. We shall follow the outline of Theorem 3. Let us prove that for $c:=$ $1 / 4+1 / \log x$ we can estimate

$$
I_{+}:=\int_{C_{4}+i x}^{c+i x} Z_{4}(s) x^{s} s^{-1} d s \ll x^{C_{4}+\varepsilon}
$$

and

$$
I_{0}:=\int_{C_{4}-i x}^{C_{4}+i x} Z_{4}(s) x^{s} s^{-1} d s \ll x^{C_{4}+\varepsilon} .
$$

We start with $I_{+} \ll x^{-1} \int_{C_{4}}^{c} Z_{4}(\sigma+i x) x^{\sigma} d \sigma$. Now let $\alpha(\sigma)$ be a function such that $Z_{4}(\sigma+i x) \ll x^{\alpha(\sigma)+\varepsilon}$. By (3) and (8) we have

$$
\alpha(\sigma) \leqslant \begin{cases}(16-80 \sigma) \mu(1 / 2)<5 / 6, & \sigma \in[1 / 7,1 / 6) \\ (12-56 \sigma) \mu(1 / 2)<4 / 5, & \sigma \in[1 / 6,1 / 5) \\ (4-16 \sigma) \mu(1 / 2)<3 / 4, & \sigma \in[1 / 5,1 / 4) \\ 0, & \sigma \in[1 / 4, c]\end{cases}
$$

So $\int_{1 / 7}^{c} Z_{4}(\sigma+i x) x^{\sigma-1} d \sigma \ll x^{\varepsilon}$ and the only case that requires further investigations is $\sigma \in\left[C_{4}, 1 / 7\right.$). Instead of (3) we apply (4) together with (1) and (2) to obtain

$$
\alpha(\sigma) \leqslant \frac{1045018}{249485}-\frac{2459357}{99794} \sigma, \quad \sigma \in[1 / 8,1 / 7],
$$

which implies $\int_{C_{4}}^{1 / 7} x^{\alpha(\sigma)+\sigma-1} d \sigma \ll x^{C_{4}+\varepsilon}$ as soon as

$$
C_{4} \geqslant 1591066 / 12296785=0.129388 \ldots
$$

Our choice of C_{4} in (10) is certainly the case.
Let us move on I_{0} and prove that $\int_{1}^{x} Z_{4}\left(C_{4}+i t\right) d t \ll x^{1+\varepsilon}$. For $q_{1}, q_{2}, q_{3}, q_{4}$ such that

$$
\begin{equation*}
1 / q_{1}+1 / q_{2}+1 / q_{3}+1 / q_{4}=1 \quad \text { and } \quad q_{1}, q_{2}, q_{3}, q_{4} \geqslant 1 \tag{11}
\end{equation*}
$$

by Hölder inequality we have

$$
\begin{aligned}
& \int_{1}^{x} Z_{4}\left(C_{4}+i t\right) d t \ll\left(\int_{1}^{x}\left|\zeta^{2 q_{1}}(4 s+i t)\right| d t\right)^{1 / q_{1}}\left(\int_{1}^{x}\left|\zeta^{4 q_{2}}(5 s+i t)\right| d t\right)^{1 / q_{2}} \times \\
& \times\left(\int_{1}^{x}\left|\zeta^{2 q_{3}}(6 s+i t)\right| d t\right)^{1 / q_{3}}\left(\int_{1}^{x}\left|\zeta^{6 q_{4}}(7 s+i t)\right| d t\right)^{1 / q_{4}}
\end{aligned}
$$

Choose

$$
\begin{equation*}
q_{1}=m\left(4 C_{4}\right) / 2, \quad q_{2}=m\left(5 C_{4}\right) / 4, \quad q_{3}=m\left(6 C_{4}\right) / 2, \quad q_{4}=m\left(7 C_{4}\right) / 6 \tag{12}
\end{equation*}
$$

One can make sure by substituting the value of C_{4} from (10) into Lemma 8 that such choice of q_{k} satisfies (11). Thus we obtain

$$
\int_{1}^{x} Z_{4}\left(C_{4}+i t\right) d t \ll x^{(1+\varepsilon) / q 1} x^{(1+\varepsilon) / q 2} x^{(1+\varepsilon) / q 3} x^{(1+\varepsilon) / q 4} \ll x^{1+\varepsilon},
$$

which finishes the proof.
Now we obtain lower value of C_{4} by improving lower bounds of $m(\sigma)$ from Lemma 8. Estimates below depend on values of

$$
\begin{equation*}
\inf _{(k, l)} \frac{a k+b l+c}{d k+e l+f}, \tag{13}
\end{equation*}
$$

where (k, l) runs over the set of exponent pairs and satisfies certain linear inequalities. A method to estimate (13) without linear constrains was given by Graham [4]. In the
recent paper [9] we have presented an effective algorithm to deal with (13) under a nonempty set of linear constrains.

Let c be an arbitrary function such that $c(\sigma) \geqslant \mu(\sigma)$. Define θ by an implicit equation

$$
2 c(\theta(\sigma))+1+\theta(\sigma)-2(1+c(\theta(\sigma))) \sigma=0
$$

Finally, define

$$
f(\sigma)=2 \frac{1+c(\theta(\sigma))}{c(\theta(\sigma))} .
$$

Due to Lemma 3 one can take $c(\sigma)=\inf _{l-k \geqslant \sigma}(k+l-\sigma) / 2$, where (k, l) runs over the set of exponent pairs. However even rougher choice of c leads to satisfiable values of f such as in $[6,(8.71)]$.

Lemma 9. Let $\sigma \geqslant 5 / 8$. Compute

$$
\begin{gathered}
\alpha_{1}=\frac{4-4 \sigma}{1+2 \sigma}, \quad \beta_{1}=-\frac{12}{1+2 \sigma}, \quad m_{1}=\frac{1-\alpha_{1}}{\mu(\sigma)}-\beta_{1}, \\
\alpha_{2}(k, l)=\frac{4(1-\sigma)(k+l)}{(2+4 l) \sigma-1+2 k-2 l}, \quad \beta_{2}(k, l)=-\frac{4(1+2 k+2 l)}{(2+4 l) \sigma-1+2 k-2 l}, \\
m_{2}(k, l)=\frac{1-\alpha_{2}(k, l)}{\mu(\sigma)}-\beta_{2}(k, l), \quad m_{2}=\inf _{\alpha_{2}(k, l) \leqslant 1} m_{2}(k, l),
\end{gathered}
$$

where (k, l) runs over the set of exponent pairs. Then

$$
m(\sigma) \geqslant \min \left(m_{1}, m_{2}, 2 f(\sigma)\right)
$$

Note that for $\sigma \geqslant 2 / 3$ the condition $\alpha_{2}(k, l) \leqslant 1$ is always satisfied.
Proof. Follows from [6, (8.97)] and from $T^{\alpha} V^{\beta} \ll T V^{\beta+(\alpha-1) / \mu(\sigma)}$ for $\alpha<1$ and $V \ll T^{\mu(\sigma)}$.

Substituting pointwise estimates of $m(\sigma)$ from Lemma 9 instead of segmentwise from Lemma 8 into (12) we obtain following result.

Theorem 5. The statement of Theorem 4 remains valid for

$$
C_{4}=0.133437785 \ldots
$$

Conclusion. We have obtained nontrivial error terms in asymptotic estimates of

$$
\sum_{n \leqslant x} \lambda_{r}^{(e)}(n)
$$

for $r=1,2,3,4$. Cases of $r=1$ and $r=2$ depend on the method of exponent pairs. Cases of $r=3$ and $r=4$ depend on lower bounds of $m(\sigma)$. Note that case of $r=4$ may be improved under Riemann hypothesis up to $C_{4}=1 / 8$, because Riemann hypothesis implies $\mu(\sigma)=0$ and $m(\sigma)=\infty$ for $\sigma \in[1 / 2,1]$.

1. Carmichael R. D. Note on a new number theory function / R. D. Carmichael // Bull. Amer. Math. Soc. - 1910. - feb. - Vol. 16, no. 5. - P. 232-238.
2. Erdős P. Carmichael's lambda function / P. Erdős, C. Pomerance, E. Schmutz // Acta Arith. - 1991. - Vol. 58, no. 4. - P. 363-385.
3. Friedlander J. B. Small values of the Carmichael function and cryptographic applications / J. B. Friedlander, C. Pomerance, I. E. Shparlinski // Cryptography and Computational Number Theory. - Basel : Birkhauser Verlag, 2001. - Vol. 20 of Progress in Computer Science and Applied Logic. - P. 25-32.
4. Graham S. W. An algorithm for computing optimal exponent pair / S. W. Graham // J. Lond. Math. Soc. - 1986. - Vol. 33, no. 2. - P. 203-218.
5. Huxley M. N. Exponential sums and the Riemann zeta function V / M. N. Huxley // Proc. Lond. Math. Soc. - 2005. - Vol. 90, no. 1. - P. 1-41.
6. Ivić A. The Riemann zeta-function: Theory and applications / A. Ivić. - Mineola, New York: Dover Publications, 2003. - 562 p.
7. Krätzel E. Lattice points / E. Krätzel. - Dordrecht : Kluwer, 1988. - 436 p.
8. Krätzel E. Estimates in the general divisor problem / E. Krätzel // Abh. Math. Semin. Univ. Hamb. - 1992. - dec. - Vol. 62, no. 1. - P. 191-206.
9. Lelechenko A. V. Linear programming over exponent pairs / A. V. Lelechenko // Acta Univ. Sapientiae, Inform. - 2013. - Vol. 5, no. 2. - (in press).
10. Lelechenko A. V. Functions involving exponential divisors: bibliography. - 2014. URL: https://github.com/Bodigrim/expdiv-bibliography.
11. Pétermann Y.-F. S. Arithmetical functions involving exponential divisors: Note on two papers by L. Tóth / Y.-F. S. Pétermann // Ann. Univ. Sci. Budap. Rolando Eőtvős, Sect. Comput. - 2010. - Vol. 32. - P. 143-149.
12. Subbarao M. V. On some arithmetic convolutions / M. V. Subbarao // The theory of arithmetical functions: Proceedings of the Conference at Western Michigan University, April 29 - May 1, 1971. - Vol. 251 of Lecture Notes in Mathematics. - Berlin : Springer Verlag, 1972. - P. 247-271.
13. Suryanarayana D. On the true maximum order of a class of arithmetic functions / D. Suryanarayana, R. Sita Rama Chandra Rao // Math. J. Okayama Univ. - 1975. Vol. 17. - P. 95-101.
14. Titchmarsh E. C. The theory of the Riemann zeta-function / E. C. Titchmarsh ; Ed. by D. R. Heath-Brown. $-2^{\text {nd }}$, rev. edition. - New-York : Oxford University Press, 1986. - 418 p .
