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ABSTRACT. In this paper, we consider a system of
three bodies connected by gravity, two of which are of
comparable mass (the Sun and Jupiter), and the third is
negligible and it is located in one of the triangular La-
grange points (restricted 3 – body problem). We used the
equations of motion in a planar coordinate system that
rotates together with massive bodies. Several programs
have been written in the programming environment Pascal
ABC, in order to build the trajectory of a small body, to
indicate the osculating orbit around a massive body, to
display equipotential surfaces.  
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1. Introduction 
 

Triangular Lagrangian points are important for plane-
tary systems and planetary satellites. For example, aster-
oids are located close to this points of the Sun – Jupiter
system. They move along the same orbit as Jupiter, in
front and behind it, and are called, respectively, the
Greeks and the Trojans. Similar asteroids were also found
at Neptune, Uranus, Mars and Earth. There are very sparse
clusters of interplanetary dust in the triangular points of
the Earth-Moon system, so called Kordylewski clouds.
Thus the study of the stability of the trajectories of small
space objects near the triangular Lagrange points is inter-
esting and relevant task. 

 
2. Calculations 
 

In the rotating coordinate system, the potential is:  
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where 1 2,M M – the masses of massive bodies, 1 2r , r – the 
distance from a point A to them, w – the angular velocity
of the coordinate system 3r – the distance from a point to
the axis of rotation.  

Here the first two terms correspond to the gravitational
potential of all bodies, and the third – the potential of
centrifugal force.   

Let the first body be at the origin of the Cartesian
coordinate system, the plane of rotation – in the plane XY,
the second body – on the axis OX (in the positive part). 
Then ,X Y – coordinates of the third body ', 'X Y – the 
velocity of the third body '', ''X Y – the acceleration of the
third body, a – the distance between the massive bodies; 

1 2,R R  – distance from the third body to the first and sec-
ond bodies; w– the angular velocity of the system  
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Let the rotation system of two bodies directed
conterclockwise at right-handed coordinate system. 

In order to simplify computing, we scaled coordinates
in units of a , velocity in units a w , acceleration in units 
of 2a w , mass in units of the total mass 1 2M M . 
Then 2 11m m  . The equations of motion in projections 
(e.g. Subbotin, 1968, Andronov, 1990): 
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First term is the gravity law for the first and second
bodies. Other forces appear because the coordinate system
rotates. The third term – the centrifugal force, and the
fourth  term – the Coriolis force. We integrated these
equations using the Runge – Kutta method of 4th order. 

Strict concept of stability motion is a complicated
mathematical concept. But we used, an intuitive concept
of stability. If a sufficiently long period of time the Trojan
body will not leave the area near the Lagrange point, the
motion in our understanding is considered stable. This
area is considered as a region, where the potential energy
of the Trojan body is higher than the one at the Lagrange
point (located behind the second body). Using the dichot-
omy method, by this criterion we determined the maxi-
mum speed value in different directions. 

Fig.3 shows the speed limit for Lagrange points L4 and
L5, where the angle is measured from the axis OX in the
rotation direction of the system. We can see that the two
graphs are symmetrical and shifted relatively to each
other. The bodies at different Lagrangian points, moving
out in the same direction, are under the effect of Coriolis
force directed the same. This force is directed in one case
to the small body, and the other – from the small body, so
we must introduce different directions of the reference
angle. Then it was introduced the system of reference
angle where the graphs for different points coincide. The
direction of velocity 0° - direction of orbital motion at the
Lagrangian point.The angle is measured at the point L5 in 
the direction of rotation second body, and at the point L4 - 
backwards. The body, which has a direction parallel to the
direction at first body, has the greatest speed limit.  

In opposite, a body, which has perpendicular direction
of motion, has a lower limit speed. 

Odessa Astronomical Publications, vol. 27/1 (2014) 41



 

 

 
Figure 1: Example of motion in the rotating coordinate system 
without affecting the second body, a computer simulation. Left – 
the motion relative to the second body, right – in the inertial 
reference system. 

 
Figure 2: The greatest speed limit is the steady motion of a body 
around a Lagrange point, and the minimum – motion at all area. 
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Figure 3: The dependence of the speed limit on flying of the Sun 
– Jupiter system (in the same frame of reference edges). The 
time of motion is 20 orbital periods. 
 

3. Conclusions 
 

We determined maximum speed, at which a small body 
leaves the neighborhood of the triangular Lagrangian 
points for the Sun-Jupiter system and the Earth-Moon 
system, as well as its dependence on the velocity direction 
of the body at the Lagrangian point. For different Lagran-
gian points, opposite directions for reference angle 
between the velocity vector and the line of centers of mass 

bodies were introduced (clockwise in one point and 
conterclockwise in another). With this choice of 
measuring direction angles, the graphs of limiting 
velocities almost coincided. This can be explained by the 
fact that the body in different Lagrange points with the 
same initial velocity vector have the same effect of the 
Coriolis force. However, at one point, this force will be 
directed to the second body (Jupiter), and another – from 
the second body. 
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Figures 4, 5: The dependence of the speed limit on the direction 
flying of Sun – Jupiter system (up) and the difference between 
the two graphs (bottom). 
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Figure 6: The dependence of the speed limit on the direction 
flying of Earth – Moon system. 
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