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ON A ONE CLASS OF THE SOLUTIONS OF THE NONLINEAR
FIRST-ORDER DIFFERENTIAL EQUATION
WITH OSCILLATING COEFFICIENTS

IMToroses C. A. IIpo oaun Kiac po3B’aA3KiB HediHiliHOrO JudepeHniajibHOro
PiBHAHHSA IIEePINOTO MOPAJAKY 3 KOJMBHUMHU Koedinienramu. Jlns meniniitaoro mau-
depeRTiaTEHOTO PIBHSHHAS MEPIIOTO MOPSJKY, KoedimieHTH SIKOTO 3006paKyBaHi y BHIVISI
abCOMOTHO Ta PIBHOMIpHO 301KHWX psaaiB Pyp’e 3 MOBUIBHO 3MIiHAMMH KoedimieHTaMA Ta
JacTOTOIO, OTPAEMAHO YMOBH iCHYBAHHSI YaCTHHHOTO PO3B’I3KY aHAJIOTIYHOI CTPYKTYPH B pe-
30HAHCHOMY BHIAJIKY.

Kiarouosi cioBa: pudepeHnianbuuit, HoBiMbHO 3MiHHAH, psaan Pyp’e.

MTéromes C. A. O6 oaHOM KJiacce pellleHH# HeJuHelHoro AuddepeHnUAaIb-
HOTO ypaBHEHHUs MEePBOro MOpAJAKa ¢ OCMULIAPYOmMuMa Kosddunuearamu. Jas
HesuHelHOTO ANddEPEeHIUAILHOTO YPABHEHHAS IEPBOTO MOPSIKA, K03bdUIAEHTE KOTOPOTO
TIPeICTABUMBL B BUJAE a0COMIIOTHO H PABHOMEPHO CXOASINAXCS panoB Oypre ¢ MeAjieHHO Me-
HSAOMUMACT Ko3bunueHTaMl I 9acTOTOH, MOXYIeHBl YCIOBHSA CYINECTBOBAHUS JACTHOTO
pellleHnsl aHAJOTHYHOM CTPYKTYPHL B PE3OHAINHCHOM CIydae.

KiroueBbie cioBa: auddepennuaabublii, MeJIEHHO Mensmommaiicst, psiapl Oypoe.

Shchogolev S. On a one class of the solutions of the nonlinear first-order
differential equation with oscillating coefficients. For the nonlinear first-order differ-
ential equation, whose coeflicients are represented as an absolutely and uniformly convergent
Fourier-series with slowly varying coefficients and frequency, the condidtions of existence of
the particular solution of analogous structure are obtained at resonance case.

Key words: differential, slowly-varying, Fourier series.

INTRODUCTION. This paper is a continuation of research initiated in paper [1].
Here we using the definitions and designations from [1]. In this paper are considered
the next system of the differential equations:

2
dd% - Z ijk(t, E)xk + fj(ta g, O(t, E)) + MXj(t7 = 0(t7 E)? I, 12)7 j=1L2 (1)
k=1
where t,c € G(g0) = {t,e: 0<e <eq, —Le~! <t < Le7!, 0< L <+oo}, colon(zy, zs) €
D C R? aj; € S(m,20), fj € F(m,l,20,0), X1, X2 € F(m,l,£0,0) with respect ¢,, 0
and analytic with respect zy,z9 € D; u € (0,u9) C RT. Functions aj, f;, X;
(7,k = 1,2) are real, and eigenvalues of matrix (a;x(¢,€)) have a form Fiw(t,e),
where w € RT.

In paper [1] the conditions of existence of the particular solutions belongs to class

F(m*, I*,¢*,8) (m* < m,, I* <, * < gp) are obtained (the definitions of classes
S(m,eq), F(m,l,&0,0) given in [1]). Tt was assumed that the conditions:

inf |aya(t,e)| > 0,
G(EO)I 12(t, €)|
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inf |kw(t,e) —np(t,e)|>v>0, k=1,2; neZ,

G(eo)
p(t, ) = df/dt, means considered noresonance case. The purpose of this paper is
to obtain analogous results in resonance case, means when eigenvalues of matrix
(a;r(t,€)) have a form +ire(t,e), r € N. In order to simplify the presentation
instead of system (1) we consider the first-order differential equation of special kind.
The results for this equation can be easily extended to a system (1) and to the same
systems of the more general kind [2].

MAIN RESULTS
1. Statement of the Problem. We consider the next first-order differential

equation:
d
d—f;’ = f(t,e,00t,6)) + pX (L5, 0(t,¢), ), (2)
where t,& € G(gg), |z| < d < 400, f € F(m,l,£0,0), X € F(m,1,¢0,6) with respect
t,e,0 and analytic with respect z, at |z| < d.
We study the problem of existence of the particular solutions of the classes
F(m*, I*,e*,0) (m* < m,, I* <, e* < &) of the equation (2).
2. Auxiliary results.
Lemma 1. Suppose we are given the following linear first-order differential equa-

tion i
o = Nz Fult,e, 00,0)), 3)

where X € S(m, e0), u € F'(m,l,20,0). Let condition:
inf |ReA(t,s)|=v>0. 4
G(EO)| (t.e) =" (4)

Then the equation (8) has a particular solution x(t,£,0) € F(m,l,e9,0) for any func-
tion u € F(m,l,e0,0), and ezists Ko € (0,400) such that

Ky
2/ F(m,1,20,6) < ~ [l Fmt,e0,6)- (5)

Proof. We represent the function u in the form of Fourier-series:
O
u(t,e,0) = Z Uy (t, £) exp(ing).
n=—oo
The desired solution will be sought in the form of a Fourier series:
O
z(t e, 0) = Z &y (t, €) exp(ind). (6)
n=—oo
Then for coeflicients x,(¢,2) we obtain the following differential equations:

dzx,,

W = Un(tag)zn + u’n(t7€)7 n € Z: (7)

where 0,(t,2) = A(t, &) — inp(t, €).
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We consider the following solution of equation (7):

¢ ¢
zp(t,e) = /un(ﬂg)exp /an(s7£)ds dr, (8)
L T

where the sign in lower limit of integration coincides with the sign of ReA(t,€).
We consider the case m =0 and ReA(t,e) < —v < 0. We have:

t

up (T, €) exp /an(s7£)ds dr,

T

5
3
—
u@#
™
N
Il
—

o |t

t

t
sup |an(t,2)] < sup |un(t,€)] /exp /Re)\(s,s)ds dr <
G(=o) G(eo)

L T
£

t
< sup Jun(t,€)| / exp (—y(t — 7)) dr =
G(eo)

1 L 1
= — sup |un(t,€)| (1 — exp (—’y (t + —))) < — sup |un (2, )] (9)
Y Geo) € Y G(eo)

It is easy to show that a similar estimate holds in the case ReA(t,2) > v > 0.
Thus in case m = 0 Lemma are proved. For the case m > 1 using arguments similar
to those given in [3], and using estimation (9), we obtain the Lemma.

We suppose, that

™|t

2
/f(t, £,0)d0 = 0¥ (t,) € Gleo). (10)
0

We consider the function:

Eo(t, e, 0) = Mo(t,e) + £(L, ¢, 6),

where -
E(t,e,0) = LIf(t,£,0)] = Z I;’;Z] exp(ing),
Yooy

and function My(t,¢) are defined as the root of equation:

27
P(t,e, M) :/X(t,e,o,M+§~(t,e, 6))d6 = 0. (11)
0

Lemma 2. Let the equation (2) such that:
1) the function f(t,¢e,8) satisfy condition (10);
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2) the equation (11) has a root My(t,2) such that

OP(t, e, M)

Re EWi

inf

= 0. 12
G(zo) "> (12)

Then exists py € (0, po) such that V u € (0, uy) exists the non-degenerate transfor-
mation of kind

z =11(t,6,0, ) + ¥a(t,€,0, 1)y,
where 1,99 € F(m,l, ¢, 8), reducing the equation (2) to kind:

d
d—f = pho(t,e)y + pPr(t, e, 0, W)y + pev(t,e, 0, p)y+
+ec(t,e, 0, m) + pPd(t, e, 0, 1) + pY (t,2,60,9, 1), (13)

where X\g € S(m,eq), r,d € F(m,l,e0,0), v € F(m —1,1,£0,8), function Y belong to
class F'(m, 1, e0,0) with respect t,¢,0 and contain terms not lower than second order
with respect y.

Proof. We make in the equation (2) the substitution:

37:50(75’5)‘9)4'2’ (14)

where z — the new unknown function, for which we obtain the equation:

d

= = 9(L,,0) + ph(t,, 0) + up(t, 2, 0)z + nZ(L,€,0, 2, ), (15)
where

1 9¢ &

- _EW € F(m— 1,1750)9)7 h= X(t78707M0 +§) € F(m7l7£070)7
~ 2

p XM oy gy, 7= LEXGEOOTYE) g )y,

oz 2 O

By condition (11) we have:
Tolh(t,z,8)] = 0.
We make in equation (15) the substitution:
o = pzoltys,0) + %, (16)
where zg = L[h(t,¢,0)| € F(m,l, &g, 0), and Z — new unknown function. We obtain:
j; = cei(t, 6,0, p) + p*di (L€, 0, 1) + pp(t, €, 0)2+

+ulqlt,e,0,0)F + pZ(t,e,0,%, 1), (17)

where

%) 1
1 = _gg +g¢€ F(m_17l7£070)7 dl =pzo+ — Z(t7£707/'1’z07/"’) € F(m7l7£70)7
1
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_ l aZ(tv £, '97 H20, M)
W 0z

~ 2 ~
€ F(m,l,e0,0), Z = 10°Z(t,e, 0, pzo + 11z, 1)
2 922

We make in equation (17) the transformation:

(0 <y <1).

7= (141t =,0)y, (18)

where ¢ = Llp(t,,0)]. For sufficiently small p this transformation is non-degenerate,
and as result of its application we obtain the equation (13), in which:

Ao(t,e) =Tolplt, e, 0)], (19)

e = (Ut pd)her, d= (14 )y, 1= (L) (p = g(14+ p) = O)

~ 00 ~ 15 ~
v = —é (1 +M¢)_1a_zf7 Y= (1 +N¢)71Z(t7£797 (1+ ¢)yau)

Lemma 2 are proved.

3. Principal results.

Theorem. Let the equation (2) satisfy condidtions of Lemma 2. Then exists
w2 € (0, p0), e1(p) € (0,20) such that ¥ p € (0,p2), € € (0,21(u)) the equation (2)
has a perticular solution z(t,e,0, ) € F(m —1,1,e1(u), 0).

Proof. Based on Lemma 2 for sufficienly small p we reduce the equation (2) to
the equation (13). In equation (13) we make the sustitution:

.
/11 2

(20)

where ¥ — new unknown function. Since the function Y contain the terms njt lower
the second order with respect y, we obtain:

dy o ~ ~
;g:umu¢m+u%maaum+uwmaauw+
TP (e, 0, 1) + e d(t,e,0,1) + (e + p2) Y(t,¢,0,5, 1) (21)
E + MQ 7 7 7/”' € + /,LQ 7 7 7 2 7 7 ? *
Consider corresponding to equation (21) the linear nonhomogeneous equation:
d_go:/,b)\(te)quic(teﬂu)Jr ’ d(t, e, 0, ) (22)
dt (N2 0 E+/,LQ &5 Yy £+M2 3 &y Yy .

Based on (19) and condidtion (12) we have:

inf |ReXo(t, )| > 0.
é&,)l eXo(t, €)]

Then based on Lemma 1 the equation (22) has a particular solution go(t, ¢, 0, 1) €
F(m —1,l,20,0), and exists K; € (0, +0o0) such that:

”d”F(ml,l,Eo,e)) .

~ 5 I’
o100 < K1 (o elloon 1000+ 4
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We construct the process of successive approximations, defining as initial approx-
imation 7y, and subsequent approximations defining as solutions from class F'(m —
1,1leq, #) of the equations:

dys - - - €
L ot €)For 1 + HPr(t, e, 0, )T + pev(t, &, 0, W)Gs + +—— c(t,e, 0, u) +
dt £+ p
I =
+- g dt,e,0,p) + (= + p*) Y(t,6,0,, 1), s=0,1,2,... . (23)

Using techniques contraction mapping principle [4] it is easy to show that exists
po € (0,u0) and e9(p) = Kop, where Ko — sufficiently small constant, such that
V€ (0,p2), Ve € (0,e2(p)) the process (23) converges to the solution y(t, ¢, 8, u) of
the equation (21), From its based on (21) and Lemma 2 we obtain the theorem.

CoNcLUSION. Thus, for the equation (2) with the oscillating coefficients the suffi-
cient conditions of the existence of the solution which represented by a Fourier-series
with slowly varying coefficients and frequency are obtained in a one critical case.
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