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Long-time tails in the dynamics of polymers in dilute solutions
with hydrodynamic memory

The dynamics of polymers in dilute solutions is studied taking into account the
hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-
Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead
of the Stokes force, and the motion of the solvent is governed by the nonstationary
Navier-Stokes equations. The obtained generalized RZ equation is solved in the
continuum approximation. It is shown that the time correlation functions describing
the polymer motion essentially differ from those in the RZ model. In particular, as
t — oo, they contain long-time tails.

Most of the theoretical investigations on the dynamics of flexible polymers are
based on the Rouse-Zimm (RZ) model [1 — 4]. In this theory the polymer molecule is
modeled as a chain of beads under Brownian motion. The beads interact with the
neighbors along the chain and with the solvent. The solvent contributes a frictional
force against the motion of a monomer and a random force due to the random collisions
exerted on monomers. In the Rouse model, the solvent is considered as nonmoving.
Within the Zimm theory, the motion of each monomer also affects other monomers,
by way of the flow it induces in the ambient medium. The Zimm model predicts the
correct dynamical behavior for dilute polymer solutions in 6-conditions. The Rouse
model is applicable for good solvents, where the corrections due to the hydrodynamic
interactions and excluded volume effects cancel each other to a large extent, or in
situations when the surrounding polymers screen out the hydrodynamic interactions
[3, 4]. Both models assume Gaussian equilibrium distribution of the beads. The models
hold for polymer properties, which involve length scales large compared to monomer
sizes. Although the RZ model has been proven as a universal theory well describing
the long-time behavior of the polymer macromolecules, there is still a number of
unresolved problems in the understanding of the polymer dynamics in solution [S —
7]. For example, the diffusion coefficient calculated from the continuous RZ model
systematically deviates from the experimental values for both the natural and synthetic
macromolecules.

In the present work we propose a generalization of the RZ theory that could give a
better understanding of the dynamical behavior of polymers in dilute solutions. We
take into account the fluid inertia during the motion of the polymer in the solvent. The
hydrodynamic interaction is considered solving the nonstationary Navier-Stokes
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equations. The resistance force on the moving bead is assumed not the Stokes one,
proportional to the velocity of the bead. We model this force by the Boussinesq friction
force [8], which, at a given time ¢, is determined by the state of the bead motion in all
the preceding moments of time. We thus have a possibility to obtain solutions valid
for almost arbitrary ¢ (for incompressible fluids, however, ¢ >> b/c, where b is the
monomer size and ¢ the sound velocity). In other words, the effects of hydrodynamic
memory are taken into account. Such effects have been extensively studied in the
physics of simple liquids and in the theory of Brownian motion (see e.g. Ref. [9]) with
very important consequences. In particular, the memory effects reveal in the famous
long-time “tails” of the velocity autocorrelation function (VAF), first discovered by
means of computer experiments [10, 11]. The concept of the Brownian motion lies in
the basis of the RZ theory of polymer dynamics. It is thus natural to expect that the
memory effects will be important for polymers as well.

Within the RZ model the motion of the nth polymer segment (the bead) is described
by the equation

a’3 (1) =, -
M=l Ry fehy
2t

1

n- o)

- . .. .. Feh .
Here, X is the position vector of the bead, M is its mass, 1 is the force from the
neighboring beads along the chain, f, is the random force due to the motion of the

molecules of solvent, and fnﬁ is the friction force on the bead during its motion in the
solvent. In the RZ model the latter force was

. &,
fF==t [%—v(xn )}, )

with V ()?n) being the velocity of the solvent in the place of the nth bead, due to the
motion of other beads. The friction coefficient for a spherical particle of radius b is &
= 6mnb, where 1 is the solvent viscosity. However, this expression holds only in the
case of steady-state flow. In the general case the resistance against a body depends on
the whole history of its motion, i.e. on velocities and accelerations in the preceding
moments of time. We use, for incompressible fluids, instead of Eq. (2) the Boussinesq
force [8, 12, 13]. This means to replace, in the Fourier representation with respect to
the time, the friction coefficient & with a frequency dependent quantity

£ =£[1+xb+;(xb)2}, 3)

where p is the solvent density and ¥ =+/—i@P /1 , Rey > 0. Equations (1 — 3) have
to be solved together with the hydrodynamic equations for the velocity of the solvent,
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Here p is the pressure. The quantity @ is an external force per unit volume [4],

G(X)=-2 /7 (%0 (¥-%,) 5)

n

The solution of Egs. (4) can be, for any of the Cartesian component ¢, (x, y, or z),
written in the form

e (F)= [ Sty (P70 (7), ©)

with the Fourier transformation (FT) of the Oseen tensor [15]

~ rar
HY, (F) =48, +Br—2’3, 7

A= (8znr)” {e*‘ —y[(1=e7)y ]} ,
B=(8mnr)" {e}' +3y[(1=e7) s ]} : ®)

Here y = ry (3) and the prime ° denotes the differentiation with respect to y.

Substituting QDZ) from the FT of Eq. (5) to v; from (6), and the result into the FT of

equation of motion (1), we obtain a generalization of the RZ equation, which in the
continuum approximation reads

i, = ?[f;”‘”’ (n)+ £2 (n)+ M@*x? (n)]+

2.0
3k, T 0°xp

a® om*

N

2

+jde;‘;3nm + f5 (m)+ M xg (m) | ©)
0

Here a is the mean square distance between neighboring beads along the chain. We

have used that the force between the beads can be obtained from the effective potential

u= (31{,3T/2a2 )2:]:2 (%, - X%, )2 , which follows from the equilibrium distribution
of the beads [4], P(r,, )= (271'(12 n —m|/3)73/2 exp [—3%,2,,1/(2612 |n— m|)] .Due to

the dependence of the Oseen tensor on the difference 7,

nm

=X, —X, ,Eq.(9)is nonlinear
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and thus hardly solvable analytically. We use the common approach, preaveraging the

Oseen tensor over P (Vm) that gives:
(Hp ), =8,5h" (n=m), (10)
he (n—m)= (67173 |n —m|)_”2 (na)fl [1—\/;zexp (22 )erfc (Z)] ,

/
with z = ya (ln —ml / 6)1 2. In the case without memory [4] the function / at large

ln — m |behaves as ~ In — ml -2; now the effective interaction between the beads disappears
more rapidly, ~ [ — ml| 2. Since Eq. (9) contains only the diagonal terms, it can be

solved using the FT in the variable n, x* (n) =y, + 22 ol )7;) Cos (ﬂnp/N) , where
the boundary conditions at the ends of the chain have been taken into account [4],
ox (t,n)/an =0 at n =0, N. The inverse FT then yields the following equation for

the Fourier components ¥ :

o = fo[-ieE -Mo +K, ] (11
-1
where E¢ = &° [1 +(2-8,, )Nh;j,] ,and K, = 3wpk, T/(Nay, p = 0, 1,2, ... The
matrix h;j; is defined by the expression
1 F ok T pn Tpm
® =—\dn|dm h®(n—m)cos——cos——
"= ! ! (7 =m)cos— N (12)

In obtaining Eq. (11) it has been taken into account that the nondiagonal elements
of the matrix are small in comparison with the diagonal ones and can be in the first
approximation neglected; the substantiation of this is the same as in Ref. [3, 4]. Equation
(11) can be investigated as it is usually done in the theory of Brownian motion using

the fluctuation-dissipation theorem (FDT) [14] or the properties of the forces fpw [9].

The forces acting on different beads n and m are uncorrelated, so that their correlator
is~9 . In going to the continuum approximation the Kronneker symbol § has to be
replaced by the §-function, &(n-m). Thus, in the Fourier representation we have

BT pe £90,40,,0 (0+0)

(foto)= (26 )an oo , (13)

Equation (11) then yields the following expression for the time correlation function

v, (t)= <yﬂtp (O)yap (t)> :
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kBT T —iot
= 5[4
v, () (2—5,,0)7rN_J; @ -iE? - Mo +K, 2, (14)

in agreement with the FDT [13, 14]. The generalized susceptibility is
—1 —1
a,(o)= [(2 - 5/}0)N:| x[—iaﬁﬁ -M®o* + Kp] , and the forces corresponding

to the coordinates y;j’a are Nf :; . Using the Kramers-Kronig dispersion relation [13],

the same initial value of the function Yy, ate= 0 as in the RZ theory is immediately
-1

obtained: ¥, (0) =k;Ta, (0) = kBT(ZNKp) , p > 0. Equation (14) gives the

solution of the model, for the Fourier amplitudes of the correlation functions of the
positions of beads. Knowing (1), other correlation functions of interest can be found,

e.g. the VAF ¢, (1)= <Va (O)Vap (t)> =—dzl//p (t)/dtz , or the mean square
displacement (MSD), <Ayf, (t)> = 2[!//p (0)—1//p (I)] . The previous RZ results are
obtained putting ®= 0 in E‘; , Eq. (11), and neglecting the inertial term in the equation

of motion of the bead, so that M = 0. The mode y, describes the motion of the center of
inertia of the coil [4]. In the RZ case one obtains W (0) — y,(¢) = D . The diffusion

coefficient D, =kBT(h80 +1/N§) contains the Zimm (D, =k,Thy, =

-1
=8k,T (3 671'3N1‘[a) ) and Rouse ( D, = k,T /N& ) limits. The internal modes (p
# 0) relaxed exponentially, wp(t) = (kBT/ZNKp)exp(-t/tp), with the relaxation times T,
-1/2 o
7, =&/[K, (1+2Nm,&)] . where hf, =(122°Np) " (na)”.
For the solution of the Rouse case with memory (when the hydrodynamic interaction
contribution in Eq. (11) is negligible for all ®) we refer to our recent work [16]. In the

Zimm model, when the hydrodynamic interaction is strong for all frequencies that
significantly contribute to the studied correlation functions, we have in Eq. (11)

i
EY = [(2—51)0)th,] . The Oseen matrix (12) can be calculated with arbitrary

degree of precision, e.g. for p = 0 we have the exact result

. 3T 2 1y ..
hoozghgo[l—ﬁg—g(e erfcz—l):|, (15)

where Z = (N ya/ 6)”2 . Then the correlation functions can be in the #-representation

calculated using the standard methods of the theory of Brownian motion [9]. Here we
show the main terms of the asymptotic expansion of the time correlation functions that
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can be obtained also using the expansion of the susceptibility o (@) in small (-i ®)'"2. In
the case of the diffusion of the coil as a whole we obtain the expression

¥, (0)~w, (1) =D, [f—%(w)m +] (16)

where D is the Zimm diffusion coefficient. The characteristic time T, = R*p/n is
expressed through the hydrodynamic radius of the coil [3, 4]. Consider now the internal
modes of the polymer, p = 1. The components of the matrix (12) are calculated as in
Ref. [4], and can be expressed through special functions, so that their expansion is
known to any desired power of (-i®)'>. The first correction to the results of the model
without memory is determined by the coefficient at the term ~ (-i®w). The first
nonvanishing correction to the susceptibility (xp((n) is given by the term ~ (-i®)>2. The
coefficient at this term is determined by the expansion coefficients of the terms

proportional to (-iw) and (-iw)*? in the expansion of h;’p . Using Eq. (15), we thus find
for the correlation function wp(t)

v, 2 \E 116 T 1T, (1)
v,(0) 452°\m| 3n'pr, P T\t ) (7

where p > 1, 1>>1,, and T,= (N'"a)*(m/k,T)/(3mp*)'? is the Zimm relaxation time.

Finally, we give the result for the intermediate scattering function G (l; s t) that is
used in the description of the dynamic light or neutron scattering from a polymer coil
[3] (k isthe change of the wave vector at the scattering). Acting in a similar way as in

Ref. [3] but taking into account that our solutions are obtained for large ¢, it can be
approximated by the expression

G (k,t)= N exp{-k* [, (0)-v, (1) ]}x
NeE (| 8N'a'K ¢ Y, (t) 1
36 3n° p=24.. ¥, (0) pG (18)

xexp| —

valid for kR << 1 (in the opposite case the function G(k.f) becomes very small at large
times). One can see from this equation that the contribution of the internal modes is
small and thus hardly detectable against the diffusion term given by the first exponent.
However, our predictions concerning the diffusion of the coil as a whole could be
directly measured in the scattering experiments. The diffusion contribution dominates
at the times 7 >> 7, where the characteristic time for the diffusion is 1, = R*/D...

We conclude that in the generalized RZ model, when the memory of the viscous
solvent is taken into account, the relaxation of the correlation functions describing the
polymer motion essentially differs from the original theory. The MSD at small times
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is ~ £ (instead of ~ 7). At long times it contains additional (to the Einstein term)
contributions, the leading of which is ~ 72 The internal modes of the polymer motion
now do not relax exponentially. The longest-lived contribution to the correlation
function of the bead displacement is ~ ¥ in the Rouse case [16], and ~ >, when the
hydrodynamic interaction is strong. The found peculiarities can be investigated
experimentally, e.g. by the dynamic light or neutron scattering. Due to the long-range
character of the hydrodynamic field, the characteristic time of the Zimm model, 1, =
R%p/m is connected with the size of the whole polymer coil and sufficiently large from
the point of view of the experiments. The differences from the original model thus
seem to be experimentally accessible. As seen from Eq. (17) and (18), the tails in the
MSD lead to a slower decay of the scattering function. This corresponds to diffusion
with an effectively smaller diffusion coefficient than predicted by the previous theory.
This was one of the unresolved “puzzles” between the theory and experiments. We
believe that the presented theory could help to solve this and other existing problems
in the interpretation of the dynamic scattering experiments on polymers [5 — 7] and
thus to contribute to a deeper understanding of the dynamical properties of polymers.
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B. JTucvi, H. Tomosa, A. B. 3amoecxuii

I[OJIFOBpeMeHHBIe XBOCTbI B JIHHAMHUKE 110/IUMEPOB B pa363BJIeHH]>IX
pacTrBopax ¢ FHZ[pOZ[l/lHaMl/l‘leCKOﬁ NaMATbIO

AHHOTALUA

N3yyaercs quHAMHKA [TOJIMMEPOB B pa30aBIEHHBIX PACTBOPAX C YYETOM I'H[I-
POIMHAMUYECKOI MaMATU KaK CIEACTBUS MHEPLMOHHBIX CBOHCTB XHIKOCTH. B
otnnume ot Teopun Paysa-3umma, BMecto CTOKCOBO# CHIIbl HA MOHOMEDHI (Oy-
CHHKH) IeficTBYeT cuiia TpeHust byccrHo, a IBHKeHHE pacTBOPHUTEIS OTIMCHIBACT-
csl HecTalmoHapHbIM ypaBHeHHeM Hasbe-Ctokca. [TonydyeHo 06061meHHOe ypaB-
Henue Paysa-3uMma Ju1si BEKTOPOB IOJIOKEHUN TOJMMEPHBIX 3B€HbEB. B KOHTH-
HyaJlbHOM NPUOIMKEHUN HAlAEHbI BpEMEHHbBIE KOPPENIILMOHHbIE QYHKIIMU, OTIH-
ChIBAIOIIIME ABIOKEHME ronuMepa. [TokazaHo, YTO HHEPLUMOHHbBIE CBOWCTBA BSI3-
KOr'0 PacTBOPHTEINS CYLIECTBEHHO BIMSIOT Ha MOBEACHUE 9TUX QyHKUMI. Penak-
cauysi BHyTPEHHUX MOJ ITOJMMepa OTJIMYAeTCsl OT TPAJAULMOHHON 9KCIIOHEHIIH-
anpHOM, a uddy3us Ka1yOka Kak 1Eelnoro He IUHINTEHHOBCKas. DTO IEMOHCTPHU-
pyeTcs aCUMIITOTHKOM CpeHEeKBaIpaTHUYHOTO CMELICHUs KiIyOKa, KOTOpoe Mpu
t — o0 COJEPXKUT OTIOTHUTEIbHBIN “XBOCT” ~ 2. B KOppensunOHHbBIX HYHKIMIX
BHYTPEHHHUX MOJ TaKXe MOSBISIOTCSA XBOCTBI, U3 KOTOPBIX HAnOoJIee OO KHU-
BYIIUIT IpornopuroHaneH +*2. B npenene 001bIINX BpEMEH HalJeH TUHAMUYeC-
KM CTPYKTYpHBIH GakTop paccesHus Ban Xoga.

B. Jlicu, H. Tomosa, O. B. 3amoscokuit

JloBroyacori xBocT y nuHaMini noyiMepis pa3zoaBiieHUX PO34MHIB 3
riIpoAMHAMIYHOI0 MaM”’sITel0

AHOTALIA

BuBuaerbcs nuHaMiKa moJiiMepiB y pa30aBiIeHUX PO3UMHAX 3 BPaxXyBaHHSIM
rizpoauHaMiyHoOi mam”sTi K Haciinka iHepuiliHMX BiactuBocTel piaunu. Ha
BiaMiHYy Bix Teopii Pay3a-3imma, 3amicTh cunn CTokca Ha OYCHHKH JTi€ cuita TepTs
Bycune, a pyx po34MHHUKA IiIKOPSETHCS HECTALIOHAPHUM piBHSHHAM Hap”e-
Crokca. Onep:kaHo y3arayibHeHe piBHsHS Pay3a-3iMma 171 BEKTOPIB MOJI0XKEHHS
JIAHKH TToJTiMepa. Y KOHTHHYaJIbHOMY HAOJIMKeH] 3HalIeHI YacOBl KOPEeSLiiHI
(yHKIi1, sIKi OMUCYIOTH pyX mojiMepa. [TlokaszaHo, 110 iHepLiliHI BIACTUBOCTI B”513-
KOro PO3YMHHHUKA CYTTEBO BIUIMBAIOTH Ha MOBEAIHKY HuX (yHkuii. Penakcamis
BHYTPIIIHIX MOJT TIOJIIMEpa BiJPI3HAETHCS BiJl TPAAUIIITHOL eKCITOHEHTH, a Tudy-
31 Ki1yOKa SIK Hitoro He eifHInTeHOBa. Lle AeMOHCTPYETHCS aCUMIITOTUKOIO Ce-
PEeIHBOKBAAPATUYHOTO 3MIILIEHHS KITyOKa, sIKe IPH ¢ —> oo Ma€ JOAATKOBUI “XBicT”
~ "2, BUBUEHA TaKOX YaCOBa ACMIITOTHKA AMHAMIYHOT'O CTPYKTYPHOTO (hakTopa
poscitoBanHs Ban XoBa.
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