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ABSTRACT: The surface tension of the Lennard-Jones fluids is described on the basis of
the information about Ising model. We use the global isomorphism approach developed
earlier for the bulk properties. It is shown that in broad interval of phase coexistence from
triple point Ttr to 0.9 Tc the surface tension for Lennard-Jones fluids like noble gases can
be reproduced on the basis of the information on the Ising model with mean deviation
less than 3% (except for neon). In a 2D case, we use the Onsager exact solution of the
Ising model. We suggest the surface tension expression using the result of Woodbury (J.
Chem. Phys. 1972, 57, 847). This expression has correct critical scaling behavior and can
be used in the whole temperature region from triple point to critical one. The effective
interfacial thickness is introduced on the basis of the Ornstein−Zernike equation and is related to the correlation length of the
Ising model.

■ INTRODUCTION

Lattice models play an important role in our understanding of
the behavior of the real systems which are too complex to be
treated in a controllable way. In general discrete models are used
independently, therefore a direct comparison between different
systems is impossible. Situations where the physical quantities of
different models or substances can be related are of great
interest. The principle of corresponding states (PCS) plays an
important role here.1,2 The PCS as the global statement about
the phase diagram of some class of substances which have
similar thermodynamic properties is the guide in searching
simple empirical laws in reduced variables.
One of these laws is the (approximate) rectilinear density
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where T is the temperature, nl,g are the densities of the liquid and
vapor phases, correspondingly, and nc and Tc are the critical
density and the temperature. It has beenknown more than a
century since the work of Cailletet and Mathias.3 It is explicitly
used in the famous Guggenheim equation of state for simple
fluids.4 Because of that, the relation in eq 1 can be used for
targeting the critical point in computer simulations.5 The
deviations from linearity in eq 1 is noticeable in mercury where
the interaction varies with the thermodynamic state6 and is
noticeable in water because of the nonmonotonic behavior of
the thermal expansion coefficient. Nevertheless, eq 1 can serve
as a good approximation in the whole region of vapor−liquid
coexistence excluding close vicinity of the critical point.
Another important empirical linearity is the Zeno line (ZL)

linearity7 which states the linear temperature behavior for the
n−T line determined by the unit compressibility value:
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The latter is fulfilled trivially for the van der Waals equation and
is known as the Batschinski law.8 Here TZ and nZ are determined
via virial coefficients:7
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Recently, in a series of works by Apfelbaum and Vorob’ev9−11 it
was pointed out that this linearity holds for broad class of
molecular fluids and liquid metals.
In works of Kulinskii et al.12−14 the global isomorphism

approach was introduced and applied to the study of bulk
properties of the Lennard-Jones fluids. This approach is based
on the topological equivalence between phase diagram of the
Ising model and the liquid−vapor diagram for the class of fluids
for which the linearities (eqs 1, 2) hold empirically with good
accuracy.
The lattice gas (LG) representation of the Ising model is

given by the Hamiltonian (see, e.g., ref 15):

∑ ∑ε μ= − −
⟨ ⟩

H n n nLG
i j

i j
i

i
, (4)

There is the nearest cite−cite attraction with the energy ε, the
repulsive part is modeled by the restriction for the occupation
number of a cite ni = 0,1, and μ is the chemical potential. Note
that in case of the Ising model, the RLD (1) is fulfilled trivially
because of the spin-flop symmetry. In that case the Zeno-line
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analog is the line x = 1 where x is the molar part =x N/ of N
occupied sites in a lattice with total sites.
The class of fluids which obey the above-mentioned linearities

includes systems with the Lennard-Jones (LJ) potential as well
as other generalized Mie-potential and Yukawa fluids as well as
fluids with square well potential.16−18 In such case simple
geometrical transformation between thermodynamic states of
fluid and lattice systems can be constructed (see12,13):

̃ = * + ̃
̃ = *

̃
+ ̃n x t n

x
zt

T t T
zt

zt
( , )

1
, ( )

1 (5)

with

=
* −

z
T

T T
c

c

The inverse transformation is

=
*

*
* −

̃ =
* −

x
n

n
T

T T
t

z
T

T T
,

1
(6)

Here, t ̃ is the temperature variable of the LG model normalized
by its critical temperature value tc: t ̃ = t/tc. The parameters T*
and n* of a linear Zeno-element:
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are determined via the Boyle point in van der Waals (vdW)
approximation (see, e.g., ref 19):
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Here Φattr(r) is the attractive part of the interaction potential

Φ(r), d is the diameter of the particle so that = πb d2
3

3. The

density parameter n* represents the high density state with n* ≈
1/b:
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The parameter z is related to the scaling properties of the
Hamiltonian (eq 4) and in particular to its asymptotic attractive
part ∝r−6 of the LJ potential:13
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as follows

=z
D
6

(12)

where D is the spatial dimension.13 For the LJ-fluid, we use
conventional dimensionless units for the temperature T → T/
Φ0, density n → nd3, and pressure P → Pd3/Φ0. The relation
between the LJ parameter Φ0, lattice gas interaction ε in eq 4
and the spin−spin interaction J of the Ising model does not
depend on the spatial dimension and is as follows (see, e.g., refs
15 and 20):

εΦ = = J40 (13)

In 2D and 3D cases for the LJ “6−12”-potential T* = 2 ε and T*
= 4 ε.13 We use eq 13 as the test mark below.
The subject of the paper is to relate the surface tensions of the

lattice gas (Ising model) and the LJ fluid. The results obtained
for the binodal in14,21 give the ground to apply the developed
approach to the surface tension since from the thermodynamic
point of view this physical quantity is the thermodynamic
potential of the surface.22

We review some results of the global isomorphism approach
for the bulk properties and extend it to the surface tension. We
use the result of work23 to construct the surface tension using
the bulk properties (densities of the coexisting liquid and gas
phases). Our core result is the modified Woodbuty's expression
in the simplest Bragg−Williams approximation. The definition
of the interfacial thickness using the Ornstein−Zernike equation
is given. The consequences are checked for 2D and 3D cases
using available data. The results are summarized in the
Conclusion, where also some problems for prospective studies
are noted.

■ GLOBAL ISOMORPHISM FLUID−LATTICE GAS FOR
THE BULK AND SURFACE PROPERTIES

In ref 14, it was shown that the transformations (eq 5) can be
derived from the following relation between the bulk
thermodynamic potentials of the LJ fluid and the lattice gas:

μΨ = = =P h T t V h t g h t( ( ), ( )) ( , ) ( , ) (14)

Here Ψ and are the Gibbsian potentials of the fluid and the
lattice gas (Ising model) correspondingly, P is the pressure and
μ is the chemical potential of the LJ fluid, V - its volume, h is the
field variable conjugated to x, is the number of sites of the
LG. Indeed, taking into account the relationship between the
temperature variables t and T using the thermodynamic
relations:
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it is easy to get the relation between the densities n and x. On
this basis,24,25 the following relation between critical compres-
sibility factors of these systems was obtained:
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where Zc
(LG) is the critical compressibility factor of the LG. The

latter is related with the partition function per spin G1/N of the
Ising model Zc

(LG) = 2 ln Gc
1/N. In the 3D, case tc ≈ 4.51 J26 and

Zc
(LG) = 0.221 for cubic lattice,27 which leads to

≈ =Z Z1.27 0.281c
fl

c
LG( ) ( )

(17)

This value agrees with known result for the value of 3D LJ fluid
and real data for the noble fluids like Ar, Kr, Xe with Zc ≈ 0.29,
which obviously fall into the same class of thermodynamic
similarity. In this way it is possible to explain the results of
work.28 The authors demonstrated, that for classical molecular
fluids, as well as helium, hydrogen, and neon, the fugacity value

ζ = μ μ−e P T P T T( , ) ( , )/id (18)

at the critical point takes the universal value ζc = 1.51 ± 0.01.
Note that for the same class of fluids they reported Zc = 0.276 ±
0.009 which is consistent with the Ising-like value (eq 17). So
both the universality Zc and ζc have the same nature within the
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global isomorphism approach. The specific value of ζ can be
obtained on the basis of the information available for the Ising
model, in a similar way we did for Zc above (see eq 16).
These results indicate that the global isomorphism is valid for

the bulk properties. In particular, the relation 14 can be used as
the staring point to relate the interfacial properties of these
systems. A consideration of the thermodynamics with account of
surface contribution is much more difficult because of the
inhomogeneity.29,30 Nevertheless, we can extend the relation 14
to account for the surface tension term (we put kB = 1):

μ σ σΞ = + = +

= Σ

T T PV A

t h t

ln ( , )

ln ( , )
V latt

(19)

where ΞV(μ,T) and Σ h t( , ) are corresponding partition
functions for the ensembles, σ and σlatt - the surface tensions
and A is the total area of interfacial surface, is the Gibbs energy
per site in LG. The surface tension in lattice models is due to the
following representation of the partition function:

Σ = Λ + Λ + ...latt m m( )
max 1

2 2 (20)

where = ×m m1 2 is the size of the lattice, Λmax, Λ1 are the
maximal and the next eigenvalues of the transfer-matrix
correspondingly.15 In cases where no exact analytical solution
is available for the LG one may use the results of works.31,32

There it was shown that the surface tension in the lattice models
can be expressed as the difference between averages of the local
physical quantity in coexisting phases:

σ = ⟨ ⟩ − ⟨ ⟩t( )latt gas liq (21)

Here is the local variable which corresponds to the spin
distribution in the slice far from the interface. E.g. in the simplest
Bragg-Williams approximation is reduced to
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1
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where p(si) is a distribution of the ith spin in the slice. Due to the
symmetry between the coexisting phases
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the substitution of eq 22 into eq 21 leads to
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Here l0 is the lattice spacing.23 Further we put l0 = 1 (in
dimensionless units) for simplicity. Neglecting the correlations
leads to very crude approximation, especially in the fluctuation
region. There the direct comparison of eq 21 with known values
of the surface tension gave inadequate difference between the
theoretical prediction and experimental data.23 In order to
correct this inconsistency yet to conserve analytical simplicity
for the functional dependence of the on x, we modify eq 23.
To do this we analyze the contribution to the critical behavior of
the surface tension from the basic expressions of statistical
mechanics in the following section.
Note that the result (eq 21) has its analogue in case of fluid

systems. Indeed, mechanical definition of the surface tension is

∫σ = − τ
−∞

∞
P P z z( ( )) d

(24)

where Pτ is tangential component of the pressure.33 Limits of
integration correspond to homogeneous phases and therefore
ultimately the integral is a difference of the bulk quantities:

σ = Π +∞ − Π −∞( ) ( ) (25)

where

∫Π = − τz Pz P x x( ) ( ) d
z

0 (26)

The limits in eq 25 may be reduced to some characteristic length
ξeff. We call it the effective thickness of the surface and define it
in following section. Its temperature dependence should
resemble the behavior of the correlation length. In particular,
such effective thickness diverges at the critical point with the
critical exponent ν of correlation length.34,35

Taking into account the relation 5 between densities in eq 23,
we get the following density dependence of the surface tension
of the LJ fluid:

σ ∝ −n n( )liq gas
2

(27)

near the critical point where nliq and ngas are close to each other.
This relation is in accordance with the result of36,37 obtained on
the basis of the classical Kirkwood−Buff formula for the surface
tension. Note that in comparison with the Parachore approach38

σ = − ≈C n n a( ) , 3.55l g
a

(28)

which is widely used for the surface tension data processing (see,
e.g., refs 39 and 40) the expression 21 depends not only on the
density difference nl−ng on the binodal but also on the binodal
diameter (eq 1). Though the Parachore expression eq 28 looks
very simple it seems that it can not be justified on the basis of the
exact Kirkwood−Buff formula for the surface tension. Moreover,
as we will see below in 2D case the surface tension for the lattice
model does not have simple scaling form of eq 28. In the
following section, we demonstrate how eq 21 can be modified
on the basis of the Trietzenberg−Zwanzig formula41 which is
known to be equivalent to the Kirkwood−Buff expression.

■ MODIFIED WOODBURY’S EXPRESSION AND THE
EFFECTIVE WIDTH OF THE INTERFACE

To find simple modification of the Woodbury expression, eq21,
consistent with the critical asymptotic we use the Trietzenberg−
Zwanzig formula41

∬σ = T n z n z K z zd ( ) d ( ) ( , )1 2 2 1 2 (29)

As is known eq 29 is equivalent to the Kirkwood-Buff
expression.42 Here

∫ ρ ρ ρ= −K z z C z z( , )
1
4

d ( , ; )D
2 1 2

1 2
2 1 2 (30)

ρ = (x,y) is the vector along planar interface and C2 is the direct
correlation function for corresponding inhomogeneous state.
Note that the square gradient van der Waals approximation
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b n z
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with b = const, which follows from (eq 29) in local
approximation for the kernel K2 ∼ δ(z1 − z2), leads to
inaccurate critical asymptotic σvdW ∝ |τ|2β−ν.
Near the critical point the density profile can be represented

as follows:
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whereΔn = nl − ng withΔn ∼ τβ and the profile function has the
following asymptotes:
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Note that the main contribution to the criticality of the surface
tension in eq 29 is due to the symmetric part of the function C2.
Since the surface tension σ vanishes at the critical point its
critical behavior is governed by the excessive (over the critical
value) part of C2. Using the standard relation:
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It is assumed that the characteristic size of integration region in
eq 33 is of order of the correlation length ξ at least in the vicinity
of the critical point. Therefore, in the leading order K2 scales as
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which contributes to the critical asymptotics of the surface
tension. Substitution of this result into eq 29 yields to the
standard scaling result for σ:

σ
ξ

τ τ∝ Δ ∝ | | = | |η
β ν η ν
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In the case of a fluid, there is uncertainty in the determination of
ξ because there are two correlation lengths of the bulk phases as
well as the width of the interface itself. In Ising model two bulk
correlation lengths coincide due to the “particle-hole”
symmetry. Taking this into account we modify the Woodbury
formula as follows:

σ
σ
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Here the length ξeff can be treated as the effective thickness of
the interface in units of molecular size. Further we use the
dimensionless units for length scale in units of molecular
diameter. The amplitude factor σ0 is determined by matching
some reference point and further will be used as a fitting
parameter. Expression 37 has the correct critical asymptote for
the surface tension σ ∝|τ|(D−1)ν provided that the effective
thickness of the surface behaves as ξeff ∝ |τ|−ν. Formula 37 can
be used to obtain the surface tension of the LJ fluid, if we
augment it by the global isomorphism relations (eq 5). So eq 37
satisfies asymptotic behavior which follows from the fluctuation
theory and is coherent with the statistical mechanics formulas
for the surface tension. The value of ξeff is of the order of the
correlation length.34 It can be estimated via the density profile
n(z) on the basis of widely used “10−90“ rule. In fact the value

of interfacial thickness depends on its definition and
approximations for the pair correlation function used (see,
e.g., ref 43).
Now let us try to define the width of the interface as the

characteristic of the density profile from the basics of liquid state
theory. We consider the Ornstein−Zernike (OZ) relation
between the full and direct pair correlation functions G2 and C2
correspondingly in inhomogeneous state:29

∫= +G C C G n1 2 1 2 1 3 3 2 3 3( , ) ( , ) ( , ) ( , ) ( ) d2 2 2 2
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Introducing the operator form of eq 38

̂ = ̂ + ̂G C Q n[ ]2 2 (39)

Here the operator Q̂ is as following

̂ = ̂ ★ ̂Q C G2 2

where ★ stands for the convolution. In homogeneous case of
the only bulk phase with uniform equilibrium density neq = 1/veq
the OZ relation can be treated as the relation between some
specific volumes defined by the full and direct correlation
functions:

̃ = ̃ +
C G

v
k k

1
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1
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1/ eq
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simply because of dimension reasonings. Note that for
molecular fluids in the vicinity of the critical point G2 is long
ranged and C2 is short ranged functions correspondingly.29

In case of the planar geometry only z-dependence
perpendicular to the plane surface is relevant and therefore
the OZ relation can be rewritten as the relation between some
characteristic scales related with corresponding correlation
functions. Therefore, we can write the formal inverse form of
eq 39:

̂ ̂ = + ̂ ̂− −
Q G n z Q C( )

1
2

1
2 (41)

In order to define the length scale connected with the width of
the interface from eq 41 we derive:

∫ ∫ ∫∂ ̂ ̂ = ∂ + ∂ ̂ ̂− −
Q G V n V Q C Vd d dz z z

1
2

1
2 (42)

Obviously, all terms have the dimension of inverse length. We
note that the density term and the quantity:

∫Λ = ∂ ̂ ̂−
Q G V( ) dz

1
2

has the same local character as Λ is determined by the spatial
behavior of the direct correlation function which can be seen
from the comparison with eq 40. Their difference varies at larger
scale which is identified with the characteristic length of the full
correlation function term in eq 42. Then eq 42 can be rewritten
in an equivalent form:

∫ ∫= Λ ∂ + Λ ∂ ̂ ̂− − −
n V Q C V1 d ( ) dz z

1 1 1
2 (43)

As has been noted above the first term in eq 43 can be associated
with ξw as it is determined by the long ranged correlation
function:

∫ξ = Λ ∂ ̂ ̂− − −
Q C V( ) dw z

1 1 1
2
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The latter, of course, determines the characteristic interfacial
width which diverges at the critical point the same way as the
correlation length does. The other term

∫ξ = Λ ∂− − n Vdz0
1 1

represents “dual“microscopic length scale which is related to the
direct correlation function C2 as it is remains short ranged even
at the critical point and its integral over the distance is
determined by the density. Thus, eq 43 takes the form

ξ ξ
+ =

T T
1
( )

1
( )

1
w0 (44)

where all lengths are dimensionless in terms of molecular size.
Clearly, it is assumed that ξ0(Tc) = 1 as ξef f(Tc)→∞ and ξw(T)
> (≫) 1. From physical point of view one can expect that for
fluid systems ξw(T) > ξ0(T) since ξ0 is related with the direct
correlation function spacial behavior which is short ranged.
Taking into account monotonic decrease of the interfacial width
ξw for simple fluids where orientational correlations rather weak
it is possible to derive the lower estimate for the triple point
temperature Ttr basing on the inequality:

ξ ≥T( ) 2w tr (45)

The proposed definition for the interfacial width does not
depend on the arbitrariness of the “p/(1 − p)“ rule or the
specific exponential factor which determines the density profile.
Note that since the quantity ξw connected with the intrinsic
interfacial width and taking into account the definition of ξef f, we
may assume that ξef f(Ttr) > ξw(Ttr) as the surface tension
includes the capillary wave contribution which increases the
value of the surface tension and widens the interfacial profile
especially near the triple point. Below we check the validity of eq
45.

■ APPLICATION TO 2D CASE
The phase coexistence in a two-dimensional fluid system was
demonstrated by simulating the liquid−vapor interface of the LJ
fluid.44 The phenomenon also has found a practical applications
within the study of the thermodynamic properties of methane
monolayer on the graphite substrate.45 Here we apply the results
of previous section to the 2D case. For 2D Ising model the exact
result for the surface tension σlatt is known from Onsager’s
solution:46

σ τ τ τ= + = | | + = −⎜ ⎟⎛
⎝

⎞
⎠t t

t
o t t( ) 2 ln tanh

1
4 ( ), 1 /latt c
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This is the expression for the surface tension in longitudinal
direction (i.e., along lattice bonds).47,48 We use it because the
“force” acts in the normal direction to the surface and in such a
case the potential J can be related with the amplitude of the LJ-
potential which is spherically symmetric. From numerical point
of view the difference between surface tension in different
direction is insignificant in the region of temperature under
consideration.49

In view of the Woodbury’s result we can represent eq 46 in a
form of eq 21:
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The function m( ) can be decomposed into even and odd
parts: = ++ −, so from eq 47 we derive:

σ λ
λ

λ= +
−

= − +
⎛
⎝⎜

⎞
⎠⎟t t

m t
m t

m m m( ) ln
1 ( ( )))
1 ( ( ))

, ( ) ( )/ ( )latt

(49)

As we have noted above this result is inconsistent with the
Parachore phenomenological approach regardless on the
specific choice of the effective exponent a in eq 28. Of course,
using eq 47 we can determine only up to the arbitrary factor.
Elementary algebra gives

λ = − − − + +

− + − + +
m

m m

m m
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1 1 1 1

8 8
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and finally we can write
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8 84

According to the relations eq 5 and eq 19 with z = 1/3 in the 2D
case:21

=
* −

t T
t

T
T T

( )
3

c (50)

and

= * = ΦT T /4 /2c 0 (51)

Furthermore, we will use the dimensionless quantities T → T/
Φ0 and n → nd2. Thus, the isomorphism leads to the following
result for the surface tension on the liquid−vapor interface in
2D LJ fluid in the same units as those for the lattice gas:

σ σ=T t T( ) ( ( ))fl latt (52)

The corresponding critical behavior of eq 52 is

σ = − +
→ −

T T T( )
16
3

(1 / ) ...fl T T c0c (53)

The surface tension for the 2D LJ fluid σf l(T) as the function of
reduced temperature T/Tc is shown in Figure 1.
Note that the surface tension of the lattice model in eqs 46

and (52) is given in dimensionless units: σlatt = γlatt l/J, where J is
the interaction constant of the Ising model.46 The surface
tension of the LJ fluid is measured in corresponding units: σf l =

Figure 1. Surface of the 2D Lennard-Jones fluid as the functions of
reduced temperature (in units of the critical temperature) according to
eqs 46 and 52.
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γf lb/Φ0, where Φ0 and d are the parameters of the LJ potential
(11). The simulations of the surface tension for the 2D LJ fluid
are scarce and we use the data of the only known to us work of
Zeng.50 Since the critical temperature for the data in50 is not
known exactly we use eqs 46, 51, and 52 with the parameters σ0
and T* as the fitting parameters in the following expression for
the surface tension

σ σ= +
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟T

t T
t T

( ) 1
( )
2

ln tanh
1

( )fl 0
(54)

where t(T) is given by eq 50. The value of σ0 can be obtained
considering the low-temperature asymptote:

σ σ=
→

Tlim ( )
T

fl
0

0 (55)

and determines the scale for the surface tension. From the low
temperature asymptote of the Onsager’s result (eq 46) and eq
13, we obtain

σ
ε

= =
J

2 0.50 (56)

which is consistent with the physical meaning of the surface
energy because at t = 0 this is exactly the work for a spin to flop.
The temperature parameter T* is related to the critical
temperature by eq 51. The least-squares fitting of the data by
the expression eq 54 gives the following results

σ ≈ * ≈ = =T T T0.50, 2.46 4 , 0.615c
dat

c
dat

0
( ) ( )

(57)

These values are in good correspondence with theoretical
values eq 51 and eq 56. In addition, in the critical point limit T
→ Tc the corresponding slope of σf l(T) is

σ
≈ −

T T

d

d /
1.346fl

c (58)

this value agrees well with eq 53 taking into account relation 13.
The result of fitting the data is shown in Figure 2. Note that
obtained value for σ0 also perfectly corresponds to the
theoretical estimate (eq 56). This justifies the consistency of
our approach.

Now we may use eq 37 in order to determine the effective
interfacial thickness ξeff for LG based on the Bragg-Williams
approximation:

ξ
σ

σ
= +

−
=

η−⎛
⎝⎜

⎞
⎠⎟

m t
t

t
m t
m t

A
2

( )
( )

ln
1 ( )
1 ( )

, 1/4eff
0

1/1

(59)

Taking into account the relation between temperature variables
eq 50 we get the effective thickness for the LJ fluid. Now we
compare ξeff(t(T)) with the available data from51 for the
correlation length and the interfacial thickness of the 2D LJ fluid
(see Figure 3). It is important that we do not have any fitting

Figure 2. Comparison of the surface tension (eq 52) including (eq 57) with the results of fitting data from ref 50.

Figure 3. Effective interfacial thickness for 2D LJ fluid from eq 37 and
eq 59 with σ0 = 1/2, η = 1/4.

Figure 4. Log−log plot of the surface tension data σ(T).
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parameters in this case because all quantities we get earlier
basing solely on the lattice model. The temperature depend-
encies of the interphase boundary thickness obtained from the
NVE- and NVT-simulations according to “10−90” rule52 are
also presented for comparison. But it appears that only the
values of the correlation length51 fit best to the curve. Bearing in
mind that the theoretical curve for the 2D LJ fluid has sense only

in the interval between the triple and the critical points 0.41 <
T/ε < 0.5.53−55 Now we are able to estimate the triple point
temperature basing on the inequality (eq 45) and solving the
equation ξef f(Ttr) = 2. The solution gives the value Tt ≈ 0.38
which is pretty close to value Ttr ≈ 0.41 obtained in
simulations.56,57 As we noted above, ξef f > ξw and the estimate
based on the approximate equality ξef f(Ttr) = 2 indeed

Figure 5. Value ξ τν, ν = 0.625 for 3D Ising model obtained from low temperature expansion (see ref 58).

Table 1. Effective Critical Exponent ν Obtained by σ ∝ τ2ν-Fitting the Data for the Surface Tension (See Figure 4)

fluid Ar Ne Kr Xe CH4 CO2 H2S N2 H2O H2 He

ν 0.64 0.7 0.65 0.63 0.66 0.64 0.63 0.63 0.63 0.72 0.69

Table 2. Fitting Parameters for the Transformation (Eq 61)

fluid Ar Ne Kr Xe CH4 CO2 H2S N2 H2O H2 He

a 0.08 0.09 0.07 0.08 0.06 0.11 0.06 0.06 0.07 0.08 0.13
ϰ0 × 10−2 −0.3 3.5 −2.0 −0.2 1.1 −0.7 −1.3 −0.9 −0.8 −4.2 −2.0

Figure 6. Results for Ar.

Figure 7. Results for Ne.
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underestimate the triple point temperature. Based on this result,
we see that the correlation length of the isomorphic lattice
model can play a role of the effective thickness of the surface for
the fluid in eq 37.

■ APPLICATION TO 3D CASE

Now we can use the model eq 37 to reproduce the data for the
surface tension of the LJ fluid from the information on the
binodal. According to eqs 5 and 9 in the 3D case:

ε=
* −

= * =t T
z

T
T T

z T( )
1

, 1/2, 4

and

* = * =n n T T3 , 3c c

Substituting these relations as well as the projective trans-

formation for the density (eq 5) into eq 37, we obtain

Figure 8. Results for Kr.

Figure 9. Results for Xe.

Figure 10. Results for CH4.

Figure 11. Results for CO2.
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σ σ
σ

ξ
= *

− *

−

*
η−

t
z

T T
T T

n n

n

n

n
/

2
/

(1 / )
lntr

c liq gas liq

gas

0

eff
1 2

(60)

where nliq,gas are the densities of the coexisting phases along the
binodal. In contrast to 2D case considered above we do not have
universal low temperature asymptotic. We use the value of the
surface tension at the triple point σ(Ttr) as a natural scale
because of the monotonic increase of σ(T) and therefore
decrease of ξef f(T) with lowering the temperature along the

saturation curve. It is important that density dependence in eq
60 is determined by the corresponding approximation for the
lattice model and does not use any approximation for the pair
correlation function of fluid system.
In order to test our approach in as broad temperature interval

and number of substaces as possible we use the corresponding
NIST data (http://webbook.nist.gov/chemistry/fluid/). It is
expected that the results based on the global isomorphism
approach will be coherent with the data for simple fluids like

Figure 12. Results for H2S.

Figure 13. Results for N2.

Figure 14. Results for N2O.

Figure 15. Results for H2.
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noble gases and CO2, CH4 and we demonstrate this below. As
follows from the result of the previous section, we identify ξef f
with the correlation length of the Ising model. To test this
assumption we use the results of58 for the correlation length ξIs
of 3D Ising model based on the low-temperature expansion59 in
the interval 0.01 ≤ 1 − t/tc ≲ 1 (see Figure 5). This is because
the NIST data have greater error in close vicinity of the critical
point. This can be seen from the analysis of the scaling behavior
σ ∝ τ2ν (see Figure 4 and Table 1). Therefore, we will not
analyze the critical asymptotics. Thus, all exponents in eq 37

should be treated as the effective ones rather than the exact
asymptotical values.60,61

Now we check the validity of eq 37 along with the assumption
that ξef f(T) can be directly related to the correlation length of
the Ising model in the region of coexistence up to the triple
point (see eq 61). With this in mind we put η = 0 in eq 37. Using
the binodal data we determined ξef f(T) from eq 37 and now we
can compare it with the correlation length of the Ising model. In
order to do this we performed additional homogeneous, i.e.,
temperature independent, transformation of the Ising model
correlation length ξIs:

ξ ξ ξ→ = + ϰ− − −T a t T( ) ( ( ))Is eff Is
1 1 1

0 (61)

The scale parameter a comes from the scale transformation
between the spacial scales of the lattice and the fluid. The shift
parameter ϰ0 takes into account fluctuational shift of the critical
point due to inaccuracy of the data which we truncated close to
it because of the difference between effective exponent ν in fluid
(see Table 1) and νIs = 0.625 used in58 (see also Figure 5). The
corresponding values of a and ϰ0 are in Table 2. The results of
fitting the surface tension data basing on eqs 37 and 61 are
shown in Figure 6−16 along with the corresponding deviations.
The value of σ0 is given by eq 56 as before. As we see for simple
fluids which are commonly considered as fluids with LJ type of
interaction between particles, the deviations do not exceed 5%
in the whole region. Here we note remarkably low deviation
(<1%) from the surface tension data for carbon dioxide CO2.
This fluid can be considered as the “canonical“ example of the
Ising-like fluid not only because of the LJ type of interaction but
also due to well-known fact that its crystalline phase has cubic

Figure 16. Results for He.

Table 3. Values of ξef f(Ttr) for the LJ Fluids

fluid Ar Ne Kr Xe CH4 CO2 H2S N2 H2O H2 He

ξ T
d
( )eff tr 3.2 3.0 3.3 3.3 3.5 3.4 3.9 3.6 3.8 2.2 1.4

Figure 17. Results for effective thickness ξeff(Ttr).

Figure 18. Results for H2O.
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symmetry and therefore it perfectly matches with the cubic Ising
model used as the isomorphic lattice model.
Obtained results allow us to analyze the values of the

interfacial effective width at the triple point ξef f(Ttr). For classical
LJ-fluids we get ξef f(Ttr) ≈ 3−4 d (see Table 3). All of them
satisfy the inequality (eq 45) except in case of helium with
ξef f(Ttr) ≈ 1.43 d (see Figure 17). This indicates that the
quantum corrections should be taken into account. These values
are close to that obtained in square gradient approximation of
van der Waals based theories.62

As has been noted above the deviation from spherical
symmetry of the interactions is correlated with the greater value

of interfacial width and therefore one can expect that ξef f(Ttr) ≳
4. Though in such situation the Ising-based model eq 60
becomes inadequate and we can not claim that the values of
ξef f(Ttr) are correct. Indeed, the results of application of Ising
model based result for the correlation length in eq 60 for the
surface tension of molecular fluids like water, methanol,
dodecane (ξef f(Ttr) > 5) etc. demonstrate much bigger
deviations of order 20% (see Figure 18). The Zeno line in
water and the binodal diameter have noticeable curvature in low
temperature region of triple point.63 Therefore, simple
projective transformations (eq 5) are not adequate, and the
isomorphic lattice model for such fluids is more complex than

Figure 19. Results for CH3OH.

Figure 20. Results for C2H6.

Figure 21. Correlation between ξef f(Ttr) and the interparticle distance in liquid phase at the triple point ξ =
π( )n Ttr

3
4 ( )

1/3

l tr
. The Ising-like LJ-fluids are

below the line.
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standard Ising model. This is because the orientational
correlations are essential for such fluids and simple Ising
model is not adequate isomorphic lattice model in such cases
(see also ref 64). Results for CH3OH and C2H6 are given in
Figures 19 and 20.
It is interesting to compare ξef f(Ttr) with another character-

istic scalethe average distance between particles in liquid
phase:

ξ
π

=
⎛
⎝⎜

⎞
⎠⎟n T

3
4 ( )tr

l tr

1/3

The correlation between ξef f(Ttr) and ξtr is shown in Figure
21. It demonstrates that Ising-like fluids are separated from
more complex ones (above the dashed line). As it is clear from
Figure 21 for fluids like water, methanol and ammonia where
orientational correlations due to hydrogen bonds are essential
the ratio takes greater values. Also we see that in addition to

standard simple fluids there are two fluids benzene C6H6 and
cyclohexane C6H12 which are characterized shorter value of
ξef f(Ttr) than other liquids with the same value of ξtr. These two
fluids demonstrate rather good correspondence between Ising
based model eq 60 and the data (see Figures 22 and 23).
Obviously, only when the contribution of orientational

degrees of freedom is negligible then the isotropic Ising model
could serve as the valid isomorphic lattice model. Pitzer’s
acentric factor ω is commonly used as the measure of non
sphericity.65 In refs 24 and 66, it was demonstrated how to
include ω into the global isomorphism approach. Because ω is
defined phenomenologically now we can not relate it with some
parameter of the isomorphic lattice model. This would allow to
extend the approach for the case of fluids with short linear
Lennard-Jones chains as their surface tension follows the
universal argon-like behavior according to the results of Galliero
et. al.40

We note also that our results for C6 H12 (hexane) and N2 are
comparable in errors (see Table 4) with the results of67 where
the semiempirical equations, which include Pitzer’s acentric
factor, were used.

■ CONCLUSION
As a summary, we have demonstrated that the global
isomorphism approach based on simplest form of the projective
transformations eq 5 can be applied not only for the study of the
bulk properties of coexisting phases but also for the description
of the surface tension. This suggests that thermodynamic
properties in the Lennard-Jones type fluids can be obtained on
the basis of the information about the Ising model. In particular,
the interfacial width is related with the correlation length of the
Ising model below the critical point. Thus, there is no ambiguity
connected with the difference in correlation lengths of the
coexisting phases because the restoration of symmetry of phase
coexistence. The unification of thermodynamic properties as
well as the surface tension along the saturation curve for simple
fluids68 is quite natural within such an approach. We have

Figure 22. Results for benzene.

Figure 23. Results for C6H12.

Table 4. Values of Mean Error for the LJ Fluids and
Corresponding Temperature Interval of Dataa

fluid mean error, % interval T/Tc

Ar 0.57 (0.556, 0.940)
Ne 6.0 (0.552, 0.940)
Kr 0.52 (0.553, 0.940)
Xe 0.71 (0.557, 0.941)
CH4 1.78 (0.475, 0.930)
CO2 0.28 (0.712, 0.962)
H2S 1.57 (0.503, 0.934)
N2 1.37 (0.50, 0.933)
C6H12 2.06 (0.505, 0.934)
C6H6 2.8 (0.496, 0.933)
N2O 0.71 (0.589, 0.945)
H2 0.75 (0.421, 0.923)
He 1.34 (0.419, 0.923)

aThe number of data points in the interval is 66.
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improved Woodbury’s original approach23 in order to get the
correct critical asymptotics for the surface tension via
introducing the effective width of the interface ξw(T) on the
basis of the Ornstein−Zernike equation. From simple physical
consideration it follows that at the triple point ξw(Ttr) ≳ 2. This
corresponds quite well with the known results for this value
defined using the specific forms of the density profile. Here the
results of computer simulations of density profile and surface
tension in Mie(n−6) fluids as well as their n-dependence39 can
be used to test the relation between the correlation length of the
Ising model and the interfacial width proposed here.
Using global isomorphism, we relate this value with the

correlation length of the Ising model thus avoiding the difficulty
with the existence of two correlation length for liquid−vapor
equilibrium. Our approach gives good results for “classical“ LJ
flids like noble gases and carbon dioxide with almost perfect
spherical symmetry of the particle and their interactions. Clearly
it becomes inadequate for more complex fluids like water and
butan. Although the general algorithm for constructing the
isomorphic lattice model for a given class of fluids is not known
some basic physical reasonings like critical compressibility factor
value (see ref 64) and topological equivalence of the phase
diagrams are the guides to build relevant isomorphic lattice
Ising-like models for complex fluids. Sure it is possible to use
more sophisticated approaches for calculating the lattice model
to include the fluctuations of the mean-field. On the basis of the
obtained results we can expect that near the critical point all
approximations will lead to the same critical behavior (eq 36).
Taking into account fluctuations using the relevant approx-
imation for Woodbury parameter in eq 22 is the natural way of
improvement.
The existence of exact results for lattice models is of great

importance for testing the global isomorphism approach. For
example, one may speculate about the analog of the Kramers−
Wannier symmetry15,69 for 2D LJ fluid as the replica of the
corresponding symmetry of 2D Ising model due to global
isomorphism. In such a case, there must be correspondence
between the thermodynamic properties along the binodal
median above and below critical point. This intriguing direct
consequence of the global isomrphism can be tested in
computer simulations.
Another important issue related to the surface tension, the

particle-hole symmetry and the linearity of the binodal diameter
is the Tolman length δT.

70 It is well-known that this finite size
correction to the surface tension vanishes for the symmetrical
models.71−73 In ref 74, it was suggested that the Tolman length
is related to the density diameter at the phenomenological level.
Within the global isomorphism approach, this means that it is
possible to relate the Tolman length to the asymmetry
parameter z explicitly. This also will be the subject of the future
work.
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