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In 1918 I. M. Vinogradov and G. Polya nearly at the same time
got the non-trivial estimate for the number of quadratic residue classes prime modulo
in the interval [1, x], where x < p. It was the first problem on the distribution of
solutions of the congruence f(x, y) ≡ 0 (mod pn), where f(x, y) is a polynomial with
coefficients from the field Zp. Nowadays the problem on the incomplete residue system
is defined in the following manner.

Let f(x1, · · · , xn) be a polynomial with integer coefficients and let Zq be a residue
class ring modulo q, where q ∈ N\ {1}; let Aq(a1, b1, · · · , an, bn) be the number of
solutions of the congruence

f(x1, · · · , xn) ≡ 0 (mod q), (x1, · · · , xn) ∈ R, (1.1)

where

R :=







ai ≤ xi < ai + bi, i = 1, n,
0 ≤ ai < ai + bi < q,

ai, bi ∈ N
⋃

{0} , i = 1, n







. (1.2)

The purpose of our work is the derivation of the asymptotic formula for the
congruence of special form with the use of the solutions of proper congruences modulo
pn, where p is prime and n ∈ N\ {1}.

Latin letter p (with an index or without one) is always the notation
of a prime number.
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Zp – residue class field prime modulo p.
Zq – residue class ring modulo q.
”≪ ”, ”O” – Landau and Vinogradov symbols respectively.
(a1, . . . , ak) – greatest common divisor of a1, . . . , ak ∈ Z.
νp(a) – index of power, with which a prime number p is included in canonical

decomposition of a ∈ Z. If (a, p) = 1, then νp(a) = 0.

The purpose of our work is the derivation of the asymp-
totic formula for congruence analogously to Postnikova work [2].

ax3 + by4 ≡ c (mod pn), (2.1)

where p ≥ 5, (a, b, c, p) = 1.
The congruence (2.1) is equivalent to the congruence

y4 ≡ c− ax3 (mod pn). (2.2)

Let (x0, y0) be an arbitrary solution of the congruence

y4 ≡ c− ax3 (mod p). (2.3)

If there is no such solution, our initial congruence has no solutions at all.
Firstly one can concede that x0 6≡ 0 (mod p). For every t, t = 0, pn−1 we set

A(t) ≡ c− a(x0 + pt)3 (mod pn).
Let the congruence

y4 ≡ c− ax3

0
(mod p), (2.4)

have κ, κ ≥ 1 solutions. From elementary theory of numbers we have that the
congruence

y4 ≡ A(t) (mod pn), (2.5)

also has κ, κ ≥ 1 solutions for every t.
Let us denote y1(t), . . . , yκ(t) as all the solutions of the congruence (2.5). Fur-

thermore, we have κ solutions y1(0), . . . , yκ(0) in the case, when t = 0. Let y(0) be
one of these solutions.

Lemma 1. 2.1 Let s =
[

p−1

p−2
(n+ νp(a))

]

. Then there exists the polynomial f(t),

deg f(t) = s

f(t) = Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)t
s,

such that

yi(t) ≡ yi(0)f(t) (mod pn), i = 1, . . . , κ.

Moreover, all the coefficients Φj(x0) ∈ Z, λj ∈ N ∪ {0}, j = 0, s, λ0 = 0, λj ≥ j p−2

p−1
,

j = 1, s.

Proof. From (y0, p) = 1 we obtain that the congruence (c−ax3

0
)x ≡ 1 (mod pn)

has the unique solution. Let us denote it as x
′

0
.

We shall suppose, that 0 ≤ x0 ≤ p− 1, 1 ≤ x
′

0
≤ pn−1. We consider the expansion

in series of the function

U(w) =
(

1− 3awx2

0
x

′

0
− 3ax0x

′

0
w2 − ax

′

0
w3

)
1

4
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in powers of w:

U(w) =

∞
∑

j=0

Xjw
j .

We equate the two expressions for the derivative of the function (using the written
above equations) and easily get:

∞
∑

j=1

jXjw
j−1(1− 3awx2

0x
′

0 − 3ax0x
′

0w
2
− ax

′

0w
3) =

= −
1

4

∞
∑

j=0

Xjw
j(3ax2

0x
′

0 + 6ax0x
′

0w + 3ax
′

0w
2).

After this we equate the coefficients at equal powers of w and get the recurrence
relation:

(j + 1)Xj+1 =
9j

4
ax2

0x
′

0Xj +
3(j − 1)

2
ax0x

′

0Xj−1 +
j − 2

4
ax

′

0Xj−2. (2.6)

We should notice that X0, X1, X2 can be directly defined:

X0 = 1, X1 = −
3ax2

0x
′

0

4
, X2 = −

3ax0x
′

0

4
−

3

32
a2x4

0x
′2

0 .

Let us consider the following polynomial

Us(w) =
s

∑

j=0

Xjw
j ,

in which a value of s will be defined later. Now in view of this formula we shall
consider the following equations:

U4
s (w)−B(w)4 = (Us(w)−B(w)) (Us(w) +B(w))

(

U2
s (w)−B(w)2

)

(2.7)

where B(w) =
(

1− 3awx2
0x

′

0 − 3ax0x
′

0w
2
− ax

′

0w
3

)
1

4

.

From the expansion in series of B(w) we obtain that the coefficients at powers of
w in the expansion in series at the left of (2.7) go to zero, when j = 0, s. Since the
coefficients Xj ∈ Q, the coefficients of Us(pt) are rational numbers too.

But we have

Us(pt) =
s

∑

j=0

Xjp
jtj .

Let us denote
Xjp

j = pλj
cj

dj
, (cj , p) = (dj , p) = 1. (2.8)

From formula (2.6) we can see that the denominators at j = 2, 3, . . . in formula

Xj+1 =
9j

4(j + 1)
ax2

0x
′

0Xj +
3(j − 1)

2(j + 1)
ax0x

′

0Xj−1 +
j − 2

4(j + 1)
ax

′

0Xj−2
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are the divisors of 22jj!.
From the formula for an index of power, with which a prime number p is included

in canonical decomposition into factors, we have

νp
(

Xjp
j
)

≥ j −
j

p− 1
+ νp(a) = j

p− 2

p− 1
+ νp(a) (2.9)

Let us consider the series U(w) over the field of p-adic numbers Qp. Then from
the result that has been received before we get, that for every w ∈ Qp, ‖w‖p < 1 the
series converges and, furthermore, for w = pt, t ∈ Z we have:

U(pt) = Us(pt) (mod pn), if s =

[

p− 1

p− 2
(n+ νp(a))

]

.

We shall define ej from the congruence ejdj ≡ cj (mod pn) and put

f(t) =

s
∑

j=0

ejp
λj tj .

We know that Xj depend on x0. That is why we shall write that

ej = Φj(x0), j = 0, s.

Thus, we established the assertion of lemma.

Lemma 2. 2.2 Let p ≥ 5 be a prime number. With the notations of Lemma 2.1

for j = 3, 4, . . . , s we have:

min (λj , λj−1, λj−2) ≤ j + 7 +
5j − 7

p− 1
.

Proof. Let us consider for every j = 1, s the following values Xj , Yj , Zj , which
are defined by the relations:

X0 = 1, X1 = −
3ax2

0
x

′

0

4
, X2 = −

3ax0x
′

0

4
−

3

32
a2x4

0
x

′2

0
,

Y0 = 0, Y1 = 1, Y2 = −
3ax2

0
x

′

0

4
,

Z0 = 0, Z1 = 0, Z2 = 1,

and for j = 3, 4, . . . , s, Xj , Yj and Zj satisfy the recurrence relation (2.6).
We shall consider the determinants

∆j =

∣

∣

∣

∣

∣

∣

Xj−2 Xj−1 Xj

Yj−2 Yj−1 Yj

Zj−2 Zj−1 Zj

∣

∣

∣

∣

∣

∣

, j = 3, 4, . . . , s.

In particular,∆3 = −
3ax2

0
x
′

0

4
.

From now on we consider appearing fractions modulo pn.
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We know that
(

x
′

0, p
)

= 1. But then νp(∆3) = νp(a). Furthermore, for j ≥ 4 we

easily get

∆j =
j − 3

4j
ax

′

0∆j−1 = (ax
′

0)
j−3 1

j(j − 1)(j − 2)
∆3. (2.10)

Let us denote

νp
(

Xjp
j
)

= νp(λj), νp
(

Yjp
j
)

= νp(µj), νp
(

Zjp
j
)

= νp(τj).

It is clear that µj = λj−1, τj = λj−2. And from formula (2.10) we obtain

j(j − 1)(j − 2)

∣

∣

∣

∣

∣

∣

Xj−2p
j−2 Xj−1p

j−1 Xjp
j

Yj−2p
j−2 Yj−1p

j−1 Yjp
j

Zj−2p
j−2 Zj−1p

j−1 Zjp
j

∣

∣

∣

∣

∣

∣

=
(

ax
′

0

)j−3

∆3p
3j−3.

We factor out from the rows of the determinant

pmin (λj ,λj−1,λj−2), pmin (µj ,µj−1,µj−2), pmin (τj ,τj−1,τj−2)

and come to conclusion:

min (λj , λj−1, λj−2) + min (µj , µj−1, µj−2) + min (τj , τj−1, τj−2) ≤ 3j − 3.

But we already know that

µj , µj−1, µj−2 ≥ (j − 3)
p− 2

p− 1
+ νp(a),

τj , τj−1, τj−2 ≥ (j − 4)
p− 2

p− 1
+ νp(a).

That is why we obtain:

min (λj , λj−1, λj−2) ≤ 3j + (2j − 7)
p− 2

p− 1
+ (j − 6)νp(a).

When νp(a) = 0, the result takes the form:

min (λj , λj−1, λj−2) ≤ j + 7 +
5j − 7

p− 1
.

Now we consider the case, when x0 ≡ 0 (mod p). If the congruence y4 ≡ c

(mod p) has no solutions, the congruence (2.5) has no solutions (x, y) under the
condition x ≡ 0 (mod p).

That is why we suggest that our congruence has a solution. Let y1, . . . , yk be
all its solutions. A solution of the congruence (2.5) we search in the form x = pt,
yj = yj(t), j = 1, k, where

yj(t) ≡ yj(0)
(

1 + p3a1t
3 + pλ2a2t

6 + · · ·+ arp
λr t3r

)

, t = 0, pn−1.

Moreover, r ≤
[

n−1
3

]

and

λj ≥ 4, j = 2, . . . , r, (ai, p) = 1, i = 1, . . . , r.
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Let A(T1, T2) be the number of solutions of the congruence (2.2),
which belong to the rectangle R = {0 ≤ x ≤ T1, 0 ≤ y ≤ T2}. Then let A(T1, T2) be

the number of pairs of fractional portions
{

x
pn ,

y
pn

}

, that have got into the rectangle
{

0 ≤ u ≤ T1

pn , 0 ≤ v ≤ T2

pn

}

, when a pair (x, y) range over the set of the solutions of

the congruence (2.2).

Let χ(v) be the characteristic function of the interval
[

0, T2

pn

]

. Using the descrip-

tion of the solutions of the congruence (2.2), we can write

A(T1, T2) =
κ
∑

i=1

∑

x0

∗
∑

0≤t<
T1

p

X

(

yi(t)

pn

)

+
κ
∑

i=1

∑

0≤t<
T1

p

X

(

yi(t)

pn

)

=
∑

1
+
∑

2
,

where the sign ”∗” means the summation over such x0 ∈ Zp, that x0 6= 0 and the
congruence y4 ≡ c− ax3

0 (mod p) has solutions (it has κ, κ ≥ 1 solutions y0 ∈ Zp).
Furthermore, yi(t) runs all the solutions of the congruence (2.5) in the first sum

and the congruence y4 ≡ c− a(pt)3 (mod pn) (2.5)
′

for the second sum respectively.
We shall extend the characteristic function χα,β(u) of the interval [α, β], 0 <

β + α ≤ 1 periodically with period 1 to the whole real axis. We need the following
assertion.

Lemma 3. (Vinogradov’s ”glasses”, see [1]) Let 0 < ∆ < 1

2
, ∆ ≤ β−α ≤ 1−∆.

Then for every natural r there exists the periodical function with period 1 ϕ(u) such,
that:

ϕ(u) = 1, if α+∆ ≤ u ≤ β −∆;

ϕ(u) = 0, if 0 ≤ u ≤ α+∆ or β +∆ ≤ u < 1;

0 ≤ ϕ(u) ≤ 1, if α−∆ ≤ u ≤ α+∆ or β −∆ ≤ u ≤ β +∆,

and the function is monotone in each of these intervals.
Moreover, the function ϕ(u), has the expansion in a Fourier series

ϕ(x) = β − α+
m=+∞
∑

m=−∞
m 6=0

ame2πimu,

where |am| ≤ min
(

1

|m| , β − α, 1

|m|

(

r
π|m|

)r)

.

Furthermore, we need the theorem of Vinogradov on the estimate of the expo-
nential sum.

Theorem 1. Let f(x) = a1x + a2x
2 + · · · + an+1x

n+1 be a polynomial with
real coefficients. Moreover, ar = a

q
+ θ

q2
, (a, q) = 1, 1 < q < r for some r ∈

{2, 3, . . . , n+ 1}. Let us define τ from the condition:

1. q = P τ , 1 < q ≤ P ;

2. τ = 1, P < q < P r−1;
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3. q = P r−τ , P r−1 < q < P r.

Then
∣

∣

∣

∣

∣

P
∑

x=1

e2πimf(x)

∣

∣

∣

∣

∣

< (8n)
nl
2 m

2ρ
τ P 1−r,

where m ∈ N, l = log 12n(n+1)
τ

, ρ = τ
3n2l

.

Theorem 2. 3.1 Let p ≥ 5 be a prime number and 1 < T2 ≤ pn, p
5n+43

9 ≤ T1 ≤

pn, n ≥ 13. Then for the number of the solutions A(T1, T2) of the congruence (2.2)
(with the condition (a, p) = 1), for which the following asymptotic formula is true:

a (T1, T2) =
T1T2

pn
·
N(a, c; p)

p
+O

(

T
1− 1

28n3 log 27n3

1 e7n(log n)2
)

, (3.1)

where N(a, c; p) is the number of the solutions of the congruence y4 ≡ c−ax3 (mod p).

Proof. From the equation (3.1) it follows, that it is sufficient to us to calculate
the inner sums in the sums

∑

1 and
∑

2. Let us calculate the inner sum in the first
sum. From the description of y(t) (see Lemma 2.1) we obtain:

∑

t1<
T1
p

χ

(

y(t)

pn

)

=
∑

t1<
T1
p

χ

(

Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)t
s

pn

)

,

where s =
[

p−1
p−2 (n+ νp(a))

]

.

We shall consider the most important case, when νp(a) = 0, because the general
case may be resolved to the case νp(a) = 0. We choose 0 < ∆ ≤

T1

2p (we shall

define its value more precisely later). Let ϕ1(u) be the function from the Vinogradov
lemma about ”glasses” for α = −∆, β = T2

pn + ∆ and let ϕ2(u) be the function for

α = ∆, β = T2

pn −∆. We can see from Picture 1, that for every u ∈ R the inequality

ϕ1(u) ≤ χ(u) ≤ ϕ2(u) takes place and that is why

∑

u∈[0,1)

χ(u) =
∑

u∈[0,1)

ϕ1(u) +O (∆) =
∑

u∈[0,1)

ϕ2(u) +O (∆) . (3.2)

From the lemma about ”glasses” we have

−∆ 0 ∆ T1
p
−∆ T1

p
T1
p

+∆

ϕ1(u) ϕ2(u)

χ(u)
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∑

t1<
T1
p

χ

(

Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)t
s

pn

)

=

=
∑

t1<
T1
p

ϕ1

(

Φ0(x0) + pλ1Φ1(x0)t+ · · ·+ pλsΦs(x0)t
s

pn

)

+O (∆) =

=
T1T2

pn+1
+O

(

T1∆

p

)

+

∞
∑

m=1

|am| ·
∑

t1<
T1
p

e2πi
yi(0)(pλ1Φ1(x0)t+··· )

pn +O (∆) .

(3.3)

Let us define the largest value of j, for which by Lemma 2 the following condition
takes place:

min (λj , λj−1, λj−2) ≤ j + 7 +
5j − 7

p− 1
≤ j + 7 +

5j − 7

4
≤ (n− 1) . (3.4)

Thus, we get that j =
[

4n−25
9

]

.
Now with the help of Vinogradov theorem we shall get the estimate for the inner

sum with respect to t in the formula (3.3) on such index of
[

4n−25
9

]

or
[

4n−25
9

]

− 1,
for which λj ≤ n− 1. Thus, we have 4n−34

9 ≤ λj . From (yi(0), p) = 1, (Φj(x0), p) = 1

we get, that the coefficient at tj has the form of the irreducible fraction
yi(0)Φj(x0)

p
n−λj

and 1 ≤ n− λj ≤
5n+34

9 .

By our suggestion p
5n+34

9 ≤ T1 ≤ pn, and that is why we have, that pn−1 ≥ T1

p
≥

p
5n+34

9 . In terms of Vinogradov theorem P = T1

p
, and this means, that we have come

to the first case of the theorem. Let us put pn−λj = P τ . That is why P τ ≤ P , τ ≤ 1.
On the other side we have n − λj ≤ 1, p ≤ P τ , p ≤ p(n−1)τ . We have the estimate
1

n−1 ≤ τ ≤ 1.

Let us put l = log 12(s−1)s
τ

. By virtue of the fact, that s ≥ n, τ < 1, s ≤ 3
2n, we

have that log 12(n− 1)n ≤ l ≤ log 27n2(n− 1).
Let us denote more

ρ =
τ

3(s− 1)2l
,

1

7n3 log 27n2
≤ ρ ≤

1

3(n− 1)2 log 12(n− 1)n
.

And then Vinogradov theorem gives the following result:

∣

∣

∣

∣

∣

∣

∣

∑

t1<
T1
p

e2πim
yi(0)(pλ1Φ1(x0)t+···+pλsΦs(x0)ts)

pn

∣

∣

∣

∣

∣

∣

∣

≤

≤ (12n)
3
4n log 27n2(n−1)m

1
3(n−1)2 log 12(n−1)n

(

T1

p

)1− 1
7n3 log 27n3

.

We divide the sum over m into two parts: m ≤ 1
∆ and m > 1

∆ . We use the estimate

|am| ≤
1
|m| for the first sum and the estimate |am| ≤

1
|m|

(

2
π|m|∆

)2

for the second
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sum.
And then, using Abel lemma on partial summation, choosing

∆ =

(

T1

p

)

−

1

7n3 log 27n3

and taking account of the condition n ≥ 13, we obtain:

∑

1
=

κ
∑

i=1

∑

x0

∗
∑

t<
T1
p

χ

(

yi(t)

pn

)

=

=
κ
∑

i=1

∑

x0

(

T1T2

pn+1
+O

(

(

T1

p

)1− 1

14n3 log 27n3

e7n log2
n

))

.

We do the same things for the second sum and obtain the similar result. And after
that we get the asymptotic formula (3.1).

Remark 1. One can consider the congruence xm + y3 ≡ 1 (mod pn) on the

condition, that (m, p) = 1, p ≥ 5 and get similar results.

Nontrivial asymptotic formula for the number of the solutions of
the congruence ax3 + by4 ≡ c (mod pn) was obtained.
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