Mathematical Subject Classification: 11N25, 11S40
UDC 511.33

## L. Balyas

## I. I. Mechnikov Odessa National University

## THE DISTRIBUTION OF THE SOLUTIONS OF THE CONGRUENCES OF SPECIAL FORM MODULO $p^{n}$

Баляс Л. Розподілення розв'язків конгруенцій спеціального типу за модулем $p^{n}$. Ми отримуємо нетривіальну асимптотичну формулу для числа розв'язків конгруенції $a x^{3}+b y^{4} \equiv c\left(\bmod p^{n}\right)$.
Ключові слова: тригонометрична сума, асимптотична формула, розв'язок порівняння.

Баляс Л. Распределение решений сравнений специального вида по модулю $p^{n}$. Мы получаем нетривиальную асимптотическую формулу для числа решений сравнения $a x^{3}+b y^{4} \equiv c\left(\bmod p^{n}\right)$.
Ключевые слова: тригонометрическая сумма, асимптотическая формула, решение сравнения.

Balyas L. The distribution of the solutions of the congruences of special form modulo $p^{n}$. We obtain nontrivial asymptotic formula for the number of the solutions of the congruence $a x^{3}+b y^{4} \equiv c\left(\bmod p^{n}\right)$
Key words: exponential sum, asymptotic formula, solution of the congruence.
Introduction. In 1918 I. M. Vinogradov and G. Polya nearly at the same time got the non-trivial estimate for the number of quadratic residue classes prime modulo in the interval $[1, x]$, where $x<p$. It was the first problem on the distribution of solutions of the congruence $f(x, y) \equiv 0\left(\bmod p^{n}\right)$, where $f(x, y)$ is a polynomial with coefficients from the field $\mathbb{Z}_{p}$. Nowadays the problem on the incomplete residue system is defined in the following manner.

Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a polynomial with integer coefficients and let $\mathbb{Z}_{q}$ be a residue class ring modulo $q$, where $q \in \mathbb{N} \backslash\{1\}$; let $A_{q}\left(a_{1}, b_{1}, \cdots, a_{n}, b_{n}\right)$ be the number of solutions of the congruence

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right) \equiv 0 \quad(\bmod q),\left(x_{1}, \cdots, x_{n}\right) \in R, \tag{1.1}
\end{equation*}
$$

where

The purpose of our work is the derivation of the asymptotic formula for the congruence of special form with the use of the solutions of proper congruences modulo $p^{n}$, where $p$ is prime and $n \in \mathbb{N} \backslash\{1\}$.

Notation. Latin letter $p$ (with an index or without one) is always the notation of a prime number.
$\mathbb{Z}_{p}$ - residue class field prime modulo $p$.
$\mathbb{Z}_{q}$ - residue class ring modulo $q$.
" <", " $O$ " - Landau and Vinogradov symbols respectively.
$\left(a_{1}, \ldots, a_{k}\right)$ - greatest common divisor of $a_{1}, \ldots, a_{k} \in \mathbb{Z}$.
$\nu_{p}(a)$ - index of power, with which a prime number $p$ is included in canonical decomposition of $a \in \mathbb{Z}$. If $(a, p)=1$, then $\nu_{p}(a)=0$.

Auxiliary arguments. The purpose of our work is the derivation of the asymptotic formula for congruence analogously to Postnikova work [2].

$$
\begin{equation*}
a x^{3}+b y^{4} \equiv c \quad\left(\bmod p^{n}\right), \tag{2.1}
\end{equation*}
$$

where $p \geq 5,(a, b, c, p)=1$.
The congruence (2.1) is equivalent to the congruence

$$
\begin{equation*}
y^{4} \equiv c-a x^{3} \quad\left(\bmod p^{n}\right) \tag{2.2}
\end{equation*}
$$

Let $\left(x_{0}, y_{0}\right)$ be an arbitrary solution of the congruence

$$
\begin{equation*}
y^{4} \equiv c-a x^{3} \quad(\bmod p) . \tag{2.3}
\end{equation*}
$$

If there is no such solution, our initial congruence has no solutions at all.
Firstly one can concede that $x_{0} \not \equiv 0(\bmod p)$. For every $t, t=\overline{0, p^{n-1}}$ we set $A(t) \equiv c-a\left(x_{0}+p t\right)^{3}\left(\bmod p^{n}\right)$.

Let the congruence

$$
\begin{equation*}
y^{4} \equiv c-a x_{0}^{3} \quad(\bmod p), \tag{2.4}
\end{equation*}
$$

have $\kappa, \kappa \geq 1$ solutions. From elementary theory of numbers we have that the congruence

$$
\begin{equation*}
y^{4} \equiv A(t) \quad\left(\bmod p^{n}\right) \tag{2.5}
\end{equation*}
$$

also has $\kappa, \kappa \geq 1$ solutions for every $t$.
Let us denote $y_{1}(t), \ldots, y_{\kappa}(t)$ as all the solutions of the congruence (2.5). Furthermore, we have $\kappa$ solutions $y_{1}(0), \ldots, y_{\kappa}(0)$ in the case, when $t=0$. Let $y(0)$ be one of these solutions.

Lemma 1. 2.1 Let $s=\left[\frac{p-1}{p-2}\left(n+\nu_{p}(a)\right)\right]$. Then there exists the polynomial $f(t)$, $\operatorname{deg} f(t)=s$

$$
f(t)=\Phi_{0}\left(x_{0}\right)+p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots+p^{\lambda_{s}} \Phi_{s}\left(x_{0}\right) t^{s}
$$

such that

$$
y_{i}(t) \equiv y_{i}(0) f(t) \quad\left(\bmod p^{n}\right), i=1, \ldots, \kappa .
$$

Moreover, all the coefficients $\Phi_{j}\left(x_{0}\right) \in \mathbb{Z}, \lambda_{j} \in \mathbb{N} \cup\{0\}, j=\overline{0, s}, \lambda_{0}=0, \lambda_{j} \geq j \frac{p-2}{p-1}$, $j=\overline{1, s}$.

Proof. From $\left(y_{0}, p\right)=1$ we obtain that the congruence $\left(c-a x_{0}^{3}\right) x \equiv 1\left(\bmod p^{n}\right)$ has the unique solution. Let us denote it as $x_{0}^{\prime}$.

We shall suppose, that $0 \leq x_{0} \leq p-1,1 \leq x_{0}^{\prime} \leq p^{n-1}$. We consider the expansion in series of the function

$$
U(w)=\left(1-3 a w x_{0}^{2} x_{0}^{\prime}-3 a x_{0} x_{0}^{\prime} w^{2}-a x_{0}^{\prime} w^{3}\right)^{\frac{1}{4}}
$$

in powers of $w$ :

$$
U(w)=\sum_{j=0}^{\infty} X_{j} w^{j}
$$

We equate the two expressions for the derivative of the function (using the written above equations) and easily get:

$$
\begin{aligned}
& \sum_{j=1}^{\infty} j X_{j} w^{j-1}\left(1-3 a w x_{0}^{2} x_{0}^{\prime}-3 a x_{0} x_{0}^{\prime} w^{2}-a x_{0}^{\prime} w^{3}\right)= \\
& =-\frac{1}{4} \sum_{j=0}^{\infty} X_{j} w^{j}\left(3 a x_{0}^{2} x_{0}^{\prime}+6 a x_{0} x_{0}^{\prime} w+3 a x_{0}^{\prime} w^{2}\right)
\end{aligned}
$$

After this we equate the coefficients at equal powers of $w$ and get the recurrence relation:

$$
\begin{equation*}
(j+1) X_{j+1}=\frac{9 j}{4} a x_{0}^{2} x_{0}^{\prime} X_{j}+\frac{3(j-1)}{2} a x_{0} x_{0}^{\prime} X_{j-1}+\frac{j-2}{4} a x_{0}^{\prime} X_{j-2} \tag{2.6}
\end{equation*}
$$

We should notice that $X_{0}, X_{1}, X_{2}$ can be directly defined:

$$
X_{0}=1, X_{1}=-\frac{3 a x_{0}^{2} x_{0}^{\prime}}{4}, X_{2}=-\frac{3 a x_{0} x_{0}^{\prime}}{4}-\frac{3}{32} a^{2} x_{0}^{4} x_{0}^{\prime 2}
$$

Let us consider the following polynomial

$$
U_{s}(w)=\sum_{j=0}^{s} X_{j} w^{j}
$$

in which a value of $s$ will be defined later. Now in view of this formula we shall consider the following equations:

$$
\begin{equation*}
U_{s}^{4}(w)-B(w)^{4}=\left(U_{s}(w)-B(w)\right)\left(U_{s}(w)+B(w)\right)\left(U_{s}^{2}(w)-B(w)^{2}\right) \tag{2.7}
\end{equation*}
$$

where $B(w)=\left(1-3 a w x_{0}^{2} x_{0}^{\prime}-3 a x_{0} x_{0}^{\prime} w^{2}-a x_{0}^{\prime} w^{3}\right)^{\frac{1}{4}}$.
From the expansion in series of $B(w)$ we obtain that the coefficients at powers of $w$ in the expansion in series at the left of $(2.7)$ go to zero, when $j=\overline{0, s}$. Since the coefficients $X_{j} \in \mathbb{Q}$, the coefficients of $U_{s}(p t)$ are rational numbers too.

But we have

$$
U_{s}(p t)=\sum_{j=0}^{s} X_{j} p^{j} t^{j}
$$

Let us denote

$$
\begin{equation*}
X_{j} p^{j}=p^{\lambda_{j}} \frac{c_{j}}{d_{j}},\left(c_{j}, p\right)=\left(d_{j}, p\right)=1 \tag{2.8}
\end{equation*}
$$

From formula (2.6) we can see that the denominators at $j=2,3, \ldots$ in formula

$$
X_{j+1}=\frac{9 j}{4(j+1)} a x_{0}^{2} x_{0}^{\prime} X_{j}+\frac{3(j-1)}{2(j+1)} a x_{0} x_{0}^{\prime} X_{j-1}+\frac{j-2}{4(j+1)} a x_{0}^{\prime} X_{j-2}
$$

are the divisors of $2^{2 j} j$ !.
From the formula for an index of power, with which a prime number $p$ is included in canonical decomposition into factors, we have

$$
\begin{equation*}
\nu_{p}\left(X_{j} p^{j}\right) \geq j-\frac{j}{p-1}+\nu_{p}(a)=j \frac{p-2}{p-1}+\nu_{p}(a) \tag{2.9}
\end{equation*}
$$

Let us consider the series $U(w)$ over the field of $p$-adic numbers $\mathbb{Q}_{p}$. Then from the result that has been received before we get, that for every $w \in \mathbb{Q}_{p},\|w\|_{p}<1$ the series converges and, furthermore, for $w=p t, t \in \mathbb{Z}$ we have:

$$
U(p t)=U_{s}(p t) \quad\left(\bmod p^{n}\right), \text { if } s=\left[\frac{p-1}{p-2}\left(n+\nu_{p}(a)\right)\right] .
$$

We shall define $e_{j}$ from the congruence $e_{j} d_{j} \equiv c_{j}\left(\bmod p^{n}\right)$ and put

$$
f(t)=\sum_{j=0}^{s} e_{j} p^{\lambda_{j}} t^{j} .
$$

We know that $X_{j}$ depend on $x_{0}$. That is why we shall write that

$$
e_{j}=\Phi_{j}\left(x_{0}\right), j=\overline{0, s} .
$$

Thus, we established the assertion of lemma.
Lemma 2. 2.2 Let $p \geq 5$ be a prime number. With the notations of Lemma 2.1 for $j=3,4, \ldots, s$ we have:

$$
\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right) \leq j+7+\frac{5 j-7}{p-1}
$$

Proof. Let us consider for every $j=\overline{1, s}$ the following values $X_{j}, Y_{j}, Z_{j}$, which are defined by the relations:

$$
\begin{aligned}
& X_{0}=1, X_{1}=-\frac{3 a x_{0}^{2} x_{0}^{\prime}}{4}, X_{2}=-\frac{3 a x_{0} x_{0}^{\prime}}{4}-\frac{3}{32} a^{2} x_{0}^{4} x_{0}^{\prime 2}, \\
& Y_{0}=0, Y_{1}=1, Y_{2}=-\frac{3 a x_{0}^{2} x_{0}^{\prime}}{4}, \\
& Z_{0}=0, Z_{1}=0, Z_{2}=1,
\end{aligned}
$$

and for $j=3,4, \ldots, s, X_{j}, Y_{j}$ and $Z_{j}$ satisfy the recurrence relation (2.6).
We shall consider the determinants

$$
\Delta_{j}=\left|\begin{array}{ccc}
X_{j-2} & X_{j-1} & X_{j} \\
Y_{j-2} & Y_{j-1} & Y_{j} \\
Z_{j-2} & Z_{j-1} & Z_{j}
\end{array}\right|, j=3,4, \ldots, s .
$$

In particular, $\Delta_{3}=-\frac{3 a x_{0}^{2} x_{0}^{\prime}}{4}$.
From now on we consider appearing fractions modulo $p^{n}$.

We know that $\left(x_{0}^{\prime}, p\right)=1$. But then $\nu_{p}\left(\Delta_{3}\right)=\nu_{p}(a)$. Furthermore, for $j \geq 4$ we easily get

$$
\begin{equation*}
\Delta_{j}=\frac{j-3}{4 j} a x_{0}^{\prime} \Delta_{j-1}=\left(a x_{0}^{\prime}\right)^{j-3} \frac{1}{j(j-1)(j-2)} \Delta_{3} \tag{2.10}
\end{equation*}
$$

Let us denote

$$
\nu_{p}\left(X_{j} p^{j}\right)=\nu_{p}\left(\lambda_{j}\right), \nu_{p}\left(Y_{j} p^{j}\right)=\nu_{p}\left(\mu_{j}\right), \nu_{p}\left(Z_{j} p^{j}\right)=\nu_{p}\left(\tau_{j}\right) .
$$

It is clear that $\mu_{j}=\lambda_{j-1}, \tau_{j}=\lambda_{j-2}$. And from formula (2.10) we obtain

$$
j(j-1)(j-2)\left|\begin{array}{ccc}
X_{j-2} p^{j-2} & X_{j-1} p^{j-1} & X_{j} p^{j} \\
Y_{j-2} p^{j-2} & Y_{j-1} p^{j-1} & Y_{j} p^{j} \\
Z_{j-2} p^{j-2} & Z_{j-1} p^{j-1} & Z_{j} p^{j}
\end{array}\right|=\left(a x_{0}^{\prime}\right)^{j-3} \Delta_{3} p^{3 j-3} .
$$

We factor out from the rows of the determinant

$$
p^{\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right)}, p^{\min \left(\mu_{j}, \mu_{j-1}, \mu_{j-2}\right)}, p^{\min \left(\tau_{j}, \tau_{j-1}, \tau_{j-2}\right)}
$$

and come to conclusion:

$$
\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right)+\min \left(\mu_{j}, \mu_{j-1}, \mu_{j-2}\right)+\min \left(\tau_{j}, \tau_{j-1}, \tau_{j-2}\right) \leq 3 j-3
$$

But we already know that

$$
\begin{aligned}
& \mu_{j}, \mu_{j-1}, \mu_{j-2} \geq(j-3) \frac{p-2}{p-1}+\nu_{p}(a), \\
& \tau_{j}, \tau_{j-1}, \tau_{j-2} \geq(j-4) \frac{p-2}{p-1}+\nu_{p}(a)
\end{aligned}
$$

That is why we obtain:

$$
\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right) \leq 3 j+(2 j-7) \frac{p-2}{p-1}+(j-6) \nu_{p}(a) .
$$

When $\nu_{p}(a)=0$, the result takes the form:

$$
\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right) \leq j+7+\frac{5 j-7}{p-1} .
$$

Now we consider the case, when $x_{0} \equiv 0(\bmod p)$. If the congruence $y^{4} \equiv c$ $(\bmod p)$ has no solutions, the congruence $(2.5)$ has no solutions $(x, y)$ under the condition $x \equiv 0(\bmod p)$.

That is why we suggest that our congruence has a solution. Let $y_{1}, \ldots, y_{k}$ be all its solutions. A solution of the congruence (2.5) we search in the form $x=p t$, $y_{j}=y_{j}(t), j=\overline{1, k}$, where

$$
y_{j}(t) \equiv y_{j}(0)\left(1+p^{3} a_{1} t^{3}+p^{\lambda_{2}} a_{2} t^{6}+\cdots+a_{r} p^{\lambda_{r}} t^{3 r}\right), t=\overline{0, p^{n-1}}
$$

Moreover, $r \leq\left[\frac{n-1}{3}\right]$ and

$$
\lambda_{j} \geq 4, j=2, \ldots, r,\left(a_{i}, p\right)=1, i=1, \ldots, r .
$$

Main Results. Let $A\left(T_{1}, T_{2}\right)$ be the number of solutions of the congruence (2.2), which belong to the rectangle $R=\left\{0 \leq x \leq T_{1}, 0 \leq y \leq T_{2}\right\}$. Then let $A\left(T_{1}, T_{2}\right)$ be the number of pairs of fractional portions $\left\{\frac{x}{p^{n}}, \frac{y}{p^{n}}\right\}$, that have got into the rectangle $\left\{0 \leq u \leq \frac{T_{1}}{p^{n}}, 0 \leq v \leq \frac{T_{2}}{p^{n}}\right\}$, when a pair $(x, y)$ range over the set of the solutions of the congruence (2.2).

Let $\chi(v)$ be the characteristic function of the interval $\left[0, \frac{T_{2}}{p^{n}}\right]$. Using the description of the solutions of the congruence (2.2), we can write

$$
A\left(T_{1}, T_{2}\right)=\sum_{i=1}^{\kappa} \sum_{x_{0}}^{*} \sum_{0 \leq t<\frac{T_{1}}{p}} X\left(\frac{y_{i}(t)}{p^{n}}\right)+\sum_{i=1}^{\kappa} \sum_{0 \leq t<\frac{T_{1}}{p}} X\left(\frac{y_{i}(t)}{p^{n}}\right)=\sum_{1}+\sum_{2},
$$

where the sign "*" means the summation over such $x_{0} \in \mathbb{Z}_{p}$, that $x_{0} \neq 0$ and the congruence $y^{4} \equiv c-a x_{0}^{3}(\bmod p)$ has solutions (it has $\kappa, \kappa \geq 1$ solutions $\left.y_{0} \in \mathbb{Z}_{p}\right)$.

Furthermore, $y_{i}(t)$ runs all the solutions of the congruence (2.5) in the first sum and the congruence $y^{4} \equiv c-a(p t)^{3}\left(\bmod p^{n}\right)(2.5)^{\prime}$ for the second sum respectively.

We shall extend the characteristic function $\chi_{\alpha, \beta}(u)$ of the interval $[\alpha, \beta], 0<$ $\beta+\alpha \leq 1$ periodically with period 1 to the whole real axis. We need the following assertion.

Lemma 3. (Vinogradov's "glasses", see [1]) Let $0<\Delta<\frac{1}{2}, \Delta \leq \beta-\alpha \leq 1-\Delta$. Then for every natural $r$ there exists the periodical function with period $1 \varphi(u)$ such, that:

$$
\begin{array}{ll}
\varphi(u)=1, & \text { if } \quad \alpha+\Delta \leq u \leq \beta-\Delta \\
\varphi(u)=0, & \text { if } \quad 0 \leq u \leq \alpha+\Delta \text { or } \beta+\Delta \leq u<1 \\
0 \leq \varphi(u) \leq 1, & \text { if } \quad \alpha-\Delta \leq u \leq \alpha+\Delta \text { or } \beta-\Delta \leq u \leq \beta+\Delta,
\end{array}
$$

and the function is monotone in each of these intervals.
Moreover, the function $\varphi(u)$, has the expansion in a Fourier series

$$
\varphi(x)=\beta-\alpha+\sum_{\substack{m=-\infty \\ m \neq 0}}^{m=+\infty} a_{m} e^{2 \pi i m u}
$$

where $\left|a_{m}\right| \leq \min \left(\frac{1}{|m|}, \beta-\alpha, \frac{1}{|m|}\left(\frac{r}{\pi|m|}\right)^{r}\right)$.
Furthermore, we need the theorem of Vinogradov on the estimate of the exponential sum.

Theorem 1. Let $f(x)=a_{1} x+a_{2} x^{2}+\cdots+a_{n+1} x^{n+1}$ be a polynomial with real coefficients. Moreover, $a_{r}=\frac{a}{q}+\frac{\theta}{q^{2}},(a, q)=1,1<q<r$ for some $r \in$ $\{2,3, \ldots, n+1\}$. Let us define $\tau$ from the condition:

1. $q=P^{\tau}, 1<q \leq P$;
2. $\tau=1, P<q<P^{r-1}$;
3. $q=P^{r-\tau}, P^{r-1}<q<P^{r}$.

Then

$$
\left|\sum_{x=1}^{P} e^{2 \pi i m f(x)}\right|<(8 n)^{\frac{n l}{2}} m^{\frac{2 \rho}{\tau}} P^{1-r}
$$

where $m \in \mathbb{N}, l=\log \frac{12 n(n+1)}{\tau}, \rho=\frac{\tau}{3 n^{2} l}$.

Theorem 2. 3.1 Let $p \geq 5$ be a prime number and $1<T_{2} \leq p^{n}$, $p^{\frac{5 n+43}{9}} \leq T_{1} \leq$ $p^{n}, n \geq 13$. Then for the number of the solutions $A\left(T_{1}, T_{2}\right)$ of the congruence (2.2) (with the condition $(a, p)=1$ ), for which the following asymptotic formula is true:

$$
\begin{equation*}
a\left(T_{1}, T_{2}\right)=\frac{T_{1} T_{2}}{p^{n}} \cdot \frac{N(a, c ; p)}{p}+O\left(T_{1}^{1-\frac{1}{28 n^{3} \log 27 n^{3}}} e^{7 n(\log n)^{2}}\right) \tag{3.1}
\end{equation*}
$$

where $N(a, c ; p)$ is the number of the solutions of the congruence $y^{4} \equiv c-a x^{3}(\bmod p)$.

Proof. From the equation (3.1) it follows, that it is sufficient to us to calculate the inner sums in the sums $\sum_{1}$ and $\sum_{2}$. Let us calculate the inner sum in the first sum. From the description of $y(t)$ (see Lemma 2.1) we obtain:

$$
\sum_{t_{1}<\frac{T_{1}}{p}} \chi\left(\frac{y(t)}{p^{n}}\right)=\sum_{t_{1}<\frac{T_{1}}{p}} \chi\left(\frac{\Phi_{0}\left(x_{0}\right)+p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots+p^{\lambda_{s}} \Phi_{s}\left(x_{0}\right) t^{s}}{p^{n}}\right)
$$

where $s=\left[\frac{p-1}{p-2}\left(n+\nu_{p}(a)\right)\right]$.
We shall consider the most important case, when $\nu_{p}(a)=0$, because the general case may be resolved to the case $\nu_{p}(a)=0$. We choose $0<\Delta \leq \frac{T_{1}}{2 p}$ (we shall define its value more precisely later). Let $\varphi_{1}(u)$ be the function from the Vinogradov lemma about "glasses" for $\alpha=-\Delta, \beta=\frac{T_{2}}{p^{n}}+\Delta$ and let $\varphi_{2}(u)$ be the function for $\alpha=\Delta, \beta=\frac{T_{2}}{p^{n}}-\Delta$. We can see from Picture 1 , that for every $u \in \mathbb{R}$ the inequality $\varphi_{1}(u) \leq \chi(u) \leq \varphi_{2}(u)$ takes place and that is why

$$
\begin{equation*}
\sum_{u \in[0,1)} \chi(u)=\sum_{u \in[0,1)} \varphi_{1}(u)+O(\Delta)=\sum_{u \in[0,1)} \varphi_{2}(u)+O(\Delta) \tag{3.2}
\end{equation*}
$$

From the lemma about "glasses" we have


$$
\begin{align*}
& \sum_{t_{1}<\frac{T_{1}}{p}} \chi\left(\frac{\Phi_{0}\left(x_{0}\right)+p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots+p^{\lambda_{s}} \Phi_{s}\left(x_{0}\right) t^{s}}{p^{n}}\right)= \\
& =\sum_{t_{1}<\frac{T_{1}}{p}} \varphi_{1}\left(\frac{\Phi_{0}\left(x_{0}\right)+p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots+p^{\lambda_{s}} \Phi_{s}\left(x_{0}\right) t^{s}}{p^{n}}\right)+O(\Delta)=  \tag{3.3}\\
& =\frac{T_{1} T_{2}}{p^{n+1}}+O\left(\frac{T_{1} \Delta}{p}\right)+\sum_{m=1}^{\infty}\left|a_{m}\right| \cdot \sum_{t_{1}<\frac{T_{1}}{p}} e^{2 \pi i \frac{y_{i}(0)\left(p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots\right)}{p^{n}}}+O(\Delta) .
\end{align*}
$$

Let us define the largest value of $j$, for which by Lemma 2 the following condition takes place:

$$
\begin{equation*}
\min \left(\lambda_{j}, \lambda_{j-1}, \lambda_{j-2}\right) \leq j+7+\frac{5 j-7}{p-1} \leq j+7+\frac{5 j-7}{4} \leq(n-1) \tag{3.4}
\end{equation*}
$$

Thus, we get that $j=\left[\frac{4 n-25}{9}\right]$.
Now with the help of Vinogradov theorem we shall get the estimate for the inner sum with respect to $t$ in the formula (3.3) on such index of $\left[\frac{4 n-25}{9}\right]$ or $\left[\frac{4 n-25}{9}\right]-1$, for which $\lambda_{j} \leq n-1$. Thus, we have $\frac{4 n-34}{9} \leq \lambda_{j}$. From $\left(y_{i}(0), p\right)=1,\left(\Phi_{j}\left(x_{0}\right), p\right)=1$ we get, that the coefficient at $t^{j}$ has the form of the irreducible fraction $\frac{y_{i}(0) \Phi_{j}\left(x_{0}\right)}{p^{n-\lambda_{j}}}$ and $1 \leq n-\lambda_{j} \leq \frac{5 n+34}{9}$.

By our suggestion $p^{\frac{5 n+34}{9}} \leq T_{1} \leq p^{n}$, and that is why we have, that $p^{n-1} \geq \frac{T_{1}}{p} \geq$ $p^{\frac{5 n+34}{9}}$. In terms of Vinogradov theorem $P=\frac{T_{1}}{p}$, and this means, that we have come to the first case of the theorem. Let us put $p^{n-\lambda_{j}}=P^{\tau}$. That is why $P^{\tau} \leq P, \tau \leq 1$. On the other side we have $n-\lambda_{j} \leq 1, p \leq P^{\tau}, p \leq p^{(n-1) \tau}$. We have the estimate $\frac{1}{n-1} \leq \tau \leq 1$.

Let us put $l=\log \frac{12(s-1) s}{\tau}$. By virtue of the fact, that $s \geq n, \tau<1, s \leq \frac{3}{2} n$, we have that $\log 12(n-1) n \leq l \leq \log 27 n^{2}(n-1)$.

Let us denote more

$$
\rho=\frac{\tau}{3(s-1)^{2} l}, \frac{1}{7 n^{3} \log 27 n^{2}} \leq \rho \leq \frac{1}{3(n-1)^{2} \log 12(n-1) n} .
$$

And then Vinogradov theorem gives the following result:

$$
\begin{aligned}
& \left|\sum_{t_{1}<\frac{T_{1}}{p}} e^{2 \pi i m \frac{y_{i}(0)\left(p^{\lambda_{1}} \Phi_{1}\left(x_{0}\right) t+\cdots+p^{\lambda_{s}} \Phi_{s}\left(x_{0}\right) t^{s}\right)}{p^{n}}}\right| \leq \\
& \leq(12 n)^{\frac{3}{4} n \log 27 n^{2}(n-1)} m^{\frac{1}{3(n-1)^{2} \log 12(n-1) n}}\left(\frac{T_{1}}{p}\right)^{1-\frac{1}{7 n^{3} \log 27 n^{3}}} .
\end{aligned}
$$

We divide the sum over $m$ into two parts: $m \leq \frac{1}{\Delta}$ and $m>\frac{1}{\Delta}$. We use the estimate $\left|a_{m}\right| \leq \frac{1}{|m|}$ for the first sum and the estimate $\left|a_{m}\right| \leq \frac{1}{|m|}\left(\frac{2}{\pi|m| \Delta}\right)^{2}$ for the second
sum.
And then, using Abel lemma on partial summation, choosing

$$
\Delta=\left(\frac{T_{1}}{p}\right)^{-\frac{1}{7 n^{3} \log 27 n^{3}}}
$$

and taking account of the condition $n \geq 13$, we obtain:

$$
\begin{aligned}
\sum_{1} & =\sum_{i=1}^{\kappa} \sum_{x_{0}}^{*} \sum_{t<\frac{T_{1}}{p}} \chi\left(\frac{y_{i}(t)}{p^{n}}\right)= \\
& =\sum_{i=1}^{\kappa} \sum_{x_{0}}\left(\frac{T_{1} T_{2}}{p^{n+1}}+O\left(\left(\frac{T_{1}}{p}\right)^{1-\frac{1}{14 n^{3} \log 27 n^{3}}} e^{7 n \log ^{2} n}\right)\right)
\end{aligned}
$$

We do the same things for the second sum and obtain the similar result. And after that we get the asymptotic formula (3.1).

Remark 1. One can consider the congruence $x^{m}+y^{3} \equiv 1\left(\bmod p^{n}\right)$ on the condition, that $(m, p)=1, p \geq 5$ and get similar results.

CONCLUSION. Nontrivial asymptotic formula for the number of the solutions of the congruence $a x^{3}+b y^{4} \equiv c\left(\bmod p^{n}\right)$ was obtained.

1. Vinogradov I.M. Osnovy teorii chisel / Vinogradov I.M. - M.;L.: Gostehizdat, 1952. - 180 p. (in russian)
2. Postnikova L. P. Raspredelenie reshenij sravneniya $x^{2}+y^{2} \equiv 1\left(\bmod p^{n}\right) /$ Postnikova L. P. // Matematicheskij sbornik. - 1964. - 65 (2). - P. 228-238 (in russian).
