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The new analytical method of inversion of Laplace transforms is proposed in the article for
the functions that contain exponents that linearly depend on Laplace transform parameter.
This method is based on the transform’s expansion into the Taylor series and term-by-term
application of Laplace transform inversion. The theorems which confirm the validity and
correctness of such approach are proved. This method deals with the generalized functions,
so some useful consequences relating with inverse generalized functions are derived. The
method is verified by the comparison with the formulas previously known from literature.
The new formulas for Laplace transform’s originals are given.
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1. INTRODUCTION

The integral transforms are widely used in many engineering and mathe-
matical problems. The methods for inversion of Laplace transform are divided
into two main groups: analytical and numerical ones. The numerical inversion
of Laplace transform causes some doubts for its validity since, as it is well
known [1], the Laplace transform inversion problem is not correct one. So, it is
important to have new approaches for analytical inversion of Laplace transform
despite many developed methods in this area.

The original function can be recovered by the Bromwich contour integral
y+ioc0

f(t) =5 [ F(s)eds if f is continuous at ¢ [2]. Since the function e is
Y—1%00

oscillatory on the contour (v —i00, 7y +1i00) the approximations of this integral

need to know an abscissa of convergence . The relations that allow direct

calculation of the original function from its transform dispensing contour inte-

gration were derived by the change of variables in [3]. The obtained integrals

are usually calculated numerically.
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The original function’s behavior at the points ¢ = 0 and ¢ — oo can be found
by the initial-value and terminal-value theorems from the transform’s function
behavior at the points s — oo and s = 0 respectively if it is known that original

functions exist [4], [2]. The asymptotic expansions near some point aq can be
oo

used F(s) = 3 ¢,(s — ag)™ if the series is absolutely convergent [5]. In this
v=0
case the asymptotic behavior of the original function at the point ¢ — co can

[e.@]
be derived by the series f(t) = e®t 3" e t=Av 1
v=0 v

T(-)

For some functions the Laplace transform inversion problem can be reduced
to the problem of solving the Volterra integral equation of the first (when
x(s) = f(s)/k(s)) or second (when z(s) = f(s)/(1 + k(s))) kind [12]. These
equations are usually solved numerically. The inversion of the Laplace trans-
form in UMD-spaces for resolvent families associated to an integral Volterra
equation of convolution type was analyzed in [6].

The method for the mutual inversion of the Fourier-Laplace transforms
was proposed by L.I. Slepyan in [7], [§8]. In some cases it allows to derive the
original function without usual inversion of Fourier and Laplace transforms. In
more complex cases it allows to simplify the Laplace transform, which should
be inverted.

The function that is presented by F(s) = % and satisfy some conditions
can be inverted with the help of residues by the second expansion theorem
[9], [4]. But the analytical finding of all poles of the transform function in

many cases is impossible. If ¢(s) has distinct zeros ag,k = 1,n, then Heav-

n
iside’s expansion formula can be used f(t) = Z p/(zk) et [10]. The inverse

formula L=1[F(1/s)] = (¢ ff Ydu — == fff )J1(2y/ut)du was proven
under some conditions in [11]
The first expansion theorem deals with the functions that can be expanded
oo

into series F'(s) = > -i#r. The original function f(t) can be derived in this

n=0
oo
case as f(t) = Z ant™ [12], [5]. Many methods were presented in [5].
=0
particular, the approach dealing w1th the functions that can be expanded into

series F(s) = Z Sor F(s) = Z F,.(s) under some conditions was proposed

by G. Doetsch 1n [5]. But there Were no examples of dealing with generalized

functions.
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As it is seen, the problem of analytical inversion of Laplace transform is
relevant and extremely important. The method, proposed in the article, can
be used for some dynamic problems of elasticity, for example it can be applied
for the non-stationary statement of the elastic semi-strip as development of the

methodic proposed in [13].

2. THEORETICAL RESULTS

The present article is dedicated to the analytical inversion of Laplace trans-

form of the following form

N
F (co + Z cieSAi> (1)
i=1

Here A; > 0,1 =1,N, ¢;,1 = 1, N,¢g # 0 are real constants or functions,
which do not depend on parameter of Laplace transform s, N > 1 is natural

number, F' is a known function.

2.1. Caseg 1l

The inversion of (1) depend on the correspondences between A;,i = 1, N.
First consider the case when A; = n;A4,¢ = 1,N, n;,% = 1, N are natural
numbers, for some fixed number 1 < ¢ < N. Then the transform (1) can be

rewritten in the following form

N
F (co 'y A) )
=1

Denote the function of the complex variable s e 44 as z. Since Rs > 0,

then |e™%44| = |z| < 1. The expression (2) can be rewritten as

N
flz)=F (CO +) cw”k) (3)
k=1

It is supposed that the function (3) satisfies Cauchy-Riemann conditions
in some domain |z| < ¥ < 1.
N
For example, if F <co+ > ckz”k> = N%, than this function
k=1 co+ 3 erm
k=1

has max n, = 7 singular points z = as.i = L7. So, the points s; =
1<k<N k n g p % 79 y 1 ) p 7
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—Aiq Ina;,7 = 1,7 are singular points for the function (2). Since v in the for-
y+ioco

mula of the inverse Laplace transform ﬁ [ f(s)es'dt is the abscissa in the
y—100

semi-plane of the Laplace integral’s absolute convergence [5], so s > v > 0,

where v = max{ max %{—Ailnai} ,O}. Thus, when s > v > 0 it is ful-
1<i<v a

filled that |[e=*44¢| = |2| < ¥ < 1, where ¥ = e %44, So, the function (3) in the
domain |z| < ¥ < 1 does not have any singular points. By the the proved in
[14] lemma this function satisfies Cauchy-Riemann conditions in the domain

|z| < ¥ < 1. Some other examples of the function (3) are given in Appendix

A.

Theorem 1. If the function (3) satisfies Cauchy-Riemann conditions in some

: . A S F9()
domain |z| <9 <1, then L™' |F o+ 3 cie™*™da ) | = 3 L126(t—kA,),
i=1 k=0
where the function f(z) has the form (3).

Proof. T Proof of the correctness of the function’s (3) expansion into
Taylor series
By the theorem’s statement the function (3) satisfies Cauchy-Riemann con-
ditions and, therefore, it is holomorphic and regular [15] for all |z| < ¥ < 1.
According to the theorems [15] the regular function (3) in the circle K :
|z| < ¥ can be presented by Taylor series

(k)
r =3 L0 @

Power series inside the circle of convergence can be term-by-term integrated
and differentiated any number of times, moreover the radius of convergence of
the derived series is equal to the radius of convergence of the original series
[16].

IT Application of the inverse Laplace transform to the series (4)

Thus, the series (4) has the radius of convergence R = ¢, within which this

series can be term-by-term integrated. That is the following is true:

N
F (co + Z cie_S”iAq)
i=1

(k

A o S®(0)
kZ_O Kl )Zk]:Z o O kAd)

=0

~

Lt =L
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Let’s prove that the derived series

2 %0
> k'( )5(t—kAq) (5)
k=0
converges in the sense that all series
(Z e - kAq>,so<t>) =3 Oka,) (©)
k=0 ' k=0 '

absolutely converge for all functions o(t) € S, U K°, where S, C S, S is the
main space containing all infinitely differentiable functions which when [¢| — co
tends to zero with all their derivatives of any order faster than any power 1/|¢|
[17], S, contains such infinitely differentiable functions that when ¢ — +o00
tends to zero with all their derivatives of any order faster than e **, K9 is
the main space containing all continuous functions that are zero outside some
bounded domain [17]. Obviously, if the absolute convergence of series (6) is
proved for all functions from the spaces S, and K, then it will also take place
for the functions from the main spaces K™, m > 0, K, since K ¢ K™ C K"
[17].

Let’s prove the convergence of the following series
F*®
> o twan) g

III Proof of the series’ (7) convergence for ¢(t) € S,

According to [18] if the limit 11m 32 = K < oo exists then the convergence

[e.e]
of the series > b, with positive terms implies the convergence of the series
=1
oo n
> ay with positive terms.
n=1
Let’s make a comparison with the series

> | r(k)(Q
kZ_O‘f ELIN ®)

which is the series with positive terms. By Abel’s theorem [16], the convergence
of the series (4) in the circle K : |z| < ¢ implies the convergence of the series
(8) when 0 < zg < . Let’s set 29 = e ¥4
Since ¥ = e Y44 and gy > 0 is small, then 0 < zy < V.

7 — gg for some small fixed gg > 0.
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Let’s prove that

kAg)| lp(kAg)|
lim —& (kA = lim 1 < (9)
k—s00 |f(kk)'(0)] 2k k—oo 2K

for the functions ¢(t) € S,.
Let’s rewrite the limit (9) in the following form lim Mkaq)\k or, the
k—oo (e*l’Aq—ao)
same, lim lp(kAq)l -
k—oo ¢—kvAq (11— 7_5014 >
vaq

Accordingly to [19] (I4+2z)" > 1+ mnz,x > —1,n > 1. Note that this
inequality also holds when n = 0 and n = 1. Thus,

lp(kAg)| < [p(kAg)|
k —_
e_kl’A’l (1 — e_EUOAq) e_kVAq (1 - ke—equq)

- <land — qu > —1.

Due to the fact that p(t) € S,, p(kAy) decreases on 400 faster than e "*4a.
So, lg}go ‘@EIZ?A(Bl = 0. And hm (1 —k ,VAq) = 00. Then by the theorem of
the limit of the quotient [20] 1t is derived that

L lekAy)
k=00 o—kvAq (1 - kerOAq)

0<

(10)

since from zg = e ¥4 — g5 > 0 it follows that

=0 (11)

Thus from (10) with regard to (11) by the property of comparison of limits
[20] it is derived that lim letA)l  — 0 < co. That is (9) holds. Then

k—o0 ¢—kvAq (150
e—qu

by the theorem the series (7) converges for all functions p(t) € S,.

IV Proof of the series’ (7) convergence for o(t) € K°

Note that for the functions ¢(t) € K, since they are equal to zero outside
some bounded domain, there exists a number N such that |p(kA,)| = 0 for
k > N. In this case, the convergence of the series (7) can be proved by
another theorem, according to which if, at least starting from some place (say,

for n > N), the inequality a, < b, holds, then the convergence of the series
o0

o0
> b, with positive terms implies the convergence of the series ) a, with
n=1 n=1
positive terms [18]. Then for £ > N the following correspondence takes place

0= Whp(k/lqﬂ < %zg. Hence the series (7) is convergent for all
functions ¢(t) € K°. Thus, it is proved that the series (6) converges absolutely
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for all functions ¢(t) € S, U K°, and the series (5) converges in the sense
indicated earlier.

The proved convergence of the series (5) implies the correctness of the
term-by-term application of the series (5) to any function from the spaces
K™ m>0,K,S,.

V Proof that the resulting series (5) is the original for the Laplace
transform (2)

Now let’s prove that the resulting series (5) is the original for the Laplace

transform (2). For this, the Laplace transform is applied to the series (5)
.~ /0 YO ka,
k=0 k=0

Let’s prove that the series

(k)
; f kk'(o) efskAq (12)

converges to the known transform (2).

The series (12), taking into account the change of variables z = e~*4

7, can
be written as (4), that is, it is an expansion of the function f(z) (3) in Taylor
series. According to the theorems [15] and the proved regularity of the function
f(2), it is derived that the series (12) converges to the function f(z) (3) with
the radius of convergence R = ¢, which corresponds to the entire range of the
variable |z| < 9.

The statement of the theorem is proved.

2.2. CASE 2

m
Let’s consider the most general case when A; = > njjAq,,1 =1, N, nj,i =
j=1
1,N,j = 1,m,m > 1 are natural numbers, for some fixed numbers 1 < ¢; <
N, moreover Ay, # Ag.,j # k,j,k = 1,m. Then the transform (1) can be

rewritten as
F e+ Z cie 71 v (13)

sA

Denote the functions of the complex variable s as z; = e ~7%,j = 1,m.

Since Rs > 0, then |e 4% | = |zj| < 1. The expression (13) can be rewritten
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as
N m
f(Z1>"'7Zm):F CO_'_ZCk’HZ;ij (14)
k=1 j=1

It is supposed that the function (14) satisfies Cauchy-Riemann conditions

in some domain |z;| < ¥; <1,j =1,m.

N m )
For example, if F' [ co + > cx z;.”” = — 1~ than this func-
k=1 j=1 cot 3 ex I 2
k=1 j=1 L
tion has [Jax mp =1 singular points zj1 = «;(z2,...,2m),t = 1,1n. So,
the points s; = 14,4 = 1,n that can be found from the equation s; =
—ﬁ Inq; (e=$ifaz ... e%am) i = 1,5 are singular points for the function
1
y+ioco
13). Since 7 in the formula of the inverse Laplace transform 5 s)estds
Y 211
y—100

is the abscissa in the semi-plane of the Laplace integral’s absolute convergence
[5], so Rs > v > 0, where v = max{lrgaé( v;i,0}. Thus, when Rs > v > 0 it is
<i<n

fulfilled that [e 4% | = |zj| < ¥; < 1,j = T, m, where 9, = ¢ 4

So, the function (14) in the domain |z;| < 9¥; < 1,j = 1,m does not have any

G, =1,m.

singular points.

Theorem 2. If the function (3) satisfies Cauchy-Riemann conditions in some

- N —S in: nquJ
domain |Z]| < 19] < ]-7] = 1,m; then L_l F Co+ Z c;e J=1 =
=1

o0

> kl!..l.km! 8k1+m+kmf(0""’o)5(t—k1Aq1 —...—knAy,), where f(z1,...,2m)

%
8211 ...8zfnm

klv---vkm:

has the form (14).

Proof. I Proof of the correctness of the function’s (14) expansion into
Taylor series
First let’s prove that the function (14) is holomorphic. By the Hartogs-
Osgood theorem [21] a complex-valued function f(z1,...,2,,) is holomorphic
on an open set U C C™ (here C is the complex space) if, for each point a =
(a1, ...,am) € U and each number j(1 < j < m), the function f(a1, ..., aj—1,2;, @41, ..., am)
of one complex variable z; defined on the open set {z; € C|(a1,...,aj—1,2;,aj41,....,am) € U} C
C™, is holomorphic on the indicated open sets of the space C.
Let’s consider m functions f(a1,...,aj—1,2j,@j41,...,am),Jj = 1,m, where

a;j € C,j =1, m are arbitrary points for which it holds that |a;| < ¥; < 1,7 =
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1, m, and prove that they all satisfy Cauchy-Riemann conditions.

f(al,...,aj_l,zj,aj+1,..., <d0+2dkz ]> ,j=1m

m
where dy = co,dy =c [] a;*,k=1,N.
j=1,i#i
N
Note that this function coincides with the function f(z;) = F <co + > ckz;.”“>
k=1

(3) which by the theorem’s condition satisfies Cauchy-Riemann conditions in

the domain |z;| < ¥; < 1,7 = 1,m. So, according to [22| all functions

flar, saj-1,2j, 0541, am),J =
1,7 = 1,m for any points a; € C,j = 1, m such that |a;| < ¥; < 1,7 =1,m.

,m are holomorphic when [z;| < ¥; <

Hence, by the Hartogs-Osgood theorem, the function (14) is holomorphic on
the open set P = {(z1, ..., zm) € C™||z;| < ¥;,j = 1,m}.

According to the theorem [21] the holomorphic in an open polycylinder
P ={(z1, ..., zm) € C™||z;| < ¥;,j = 1, m} function (14) is uniquely expanded

into the absolutely convergent Taylor series

> 15)
| | H J (
K1y km =0 klkm 8z . j=1

IT Application of the inverse Laplace transform to the series (15)

Accordingly, the following is true:

m
) N —s > nij Ag;
L= |F e+ > e 7= =
=1

&8

aki+...4+km m k.
— % 1 oM /(00 T
j=

] ] k
b= 1m0t o

oo
frd E 3oty t _ k A _ k A
oo T PR 92T g (t = k1 dg, mAg,)

Let’s prove that the derived series

- 1 ktethmf(0, ..., 0)
Z kql.. k! 0202k ot =~ krdgy = = kimdg,) (16)
k1, ykm=0 1 m
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converges in the sense that all series

& dk1t-+hm £(0,...0
(k Y R a0 — iy = — kg, ) (1) | =
1yeeskm= 1oEm
o0

i+t
= kl!,,l,km! o f(o""’O)SO(hAql + ..+ kndg,)

[ —— 8zf1...8zfnm
(17)
absolutely converge for all functions ¢(t) € S, U K, where S, and K are the
spaces described in the theorem 1.

Let’s prove the convergence of the following series

o0

1
Z kql. k!

K1, skm=0

okrtthm £(0, ..., 0)
PO i

(k1 dg, + o+ knAg, )| (18)

ITI Proof of the series’ (18) convergence for ¢(t) € S,

1111 Proof of the limit case theorem for multiple series’ convergence

oo
According to [18] and the theorem [23] if for two multiple series > wp, k.,
E1 oo kem =0
o 1
and > Uk, kn With positive terms there are such ko, .., kon, that when
K1, km=0
ki > koi,t = 1,m the inequalities wug,  k, < Uk, k, hold, then the conver-
o0
gence of the multiple series >, Uki,.k, implies the convergence of the
K1y km=0
o 1
multiple series > g, k.. Also the limit case of this theorem can be
E1 ek =0
formulated. If the multiple limit lim Zkpkm — < 00, then the con-
k1yeoykm—r00 Vk1,...km
o
vergence of the multiple series Y vy, ., implies the convergence of the
E1yee ko =0
. . & . . Uky,.k
multiple series > g, k,. Indeed, if  lim L= — K < oo then
k1,...,km=0 v k1, km—r00 Vky;.skm

by the definition of the multiple limit [20] the following holds: for each ¢ > 0,
no matter how small it may be, there exists a number N such that for all
ki > N,i=1,m: |Z:117km K| <eor - o “ELekm o K4 e That is the following
estimation holds uy, .. < (K + 5)% o - By the theorem of the multiplica-

o0
tion of the multiple series by the digit [23], the series >~ (K +¢&)vk, k..
k1, km=0
! oo
converges. Then by the theorem indicated earlier the series Yo Uk ko
K1 ,yeo ki =0

converges.
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1.2 Comparison with the convergent series

Let’s make a comparison with the series

> 1 Gritthm £, m
Z k. k! k1 azkm H 0]’ (19)
k1, kom=0 m 1 --Uem j=1

which is the series with positive terms. The absolute convergence of the series
(15) in the polycylinder P = {(z1,..., zm) € C™||2;] < ¥j,5 = 1,m} implies
the absolute convergence of the series (19) when 0 < zp; < ¥;,j = 1, m. Let’s

set zg; = e ey €j,J = 1,m for some small fixed £; > 0,7 = 1, m. Since

¥ = e_VAqJ',j =1,m and ¢; > 0,5 = 1, m are small, then 0 < 29; < 9,7 =

1,m.

Let’s prove that

ok1+-tkm 0. o
kll..l,km! 5.kl af;im ) | (k1 Agy +.. A km Agyy, )|
lim Zl Zm _
k1,....;km—00 1 oF1+-Akm g0, oy | ™ kj
Byl Fom! P kl ockm jl;[1 2o (20)
. k1A + +k:
_ lim |o(k1Aq mAgr)| <
k1yeeoykm—o00 H Zo;

for the functions ¢(t) € S,.

. L. . . . k1A ctbkmA
Let’s rewrite the limit (20) in the following form  lim |<p(m1 “ +A i (fc"f)|
P | <e—” aj 7Ej> J
j=1

. k1Ag +..+kmA
or, the same,  lim [tk Ay o) —
k1,eeeskm—>00 ﬁ ~kjrAg; ﬁ (1_ sA ) J
: —-v a;

Jj=1 j=1 e

Accordingly to [19] (1 + z)" > 1+ nz,z > —1,n > 1. Note that this
inequality also holds when n = 0 and n = 1. Thus,

’(hAm*’ A kA, )l _ p(kiAg + A kA,

I e hvde 11 (14_- i ) T e ] (1 A—kjg:é%gf)
j=1 j=1 ’ 5=1 j=1 e
since from zp; = e Ay gj > 0,7 = 1,m it follows that ,fj,;qj <l,7=1,m
e
and — ;q —1,7=1,m.
Due to the fact that €Sy, p(k1Ay, + ... + knA decreases on +oo
SO SO q1 dm
faster than e=¥(14aq+thkmden) go, lim [kt Agy o Agwn)|_ 0. And

m

—kivAqg.

k1yeeskm—r00 Ile JV2a
j=1
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m
by the theorem of limit of the product [20] i lim  [] (1 —k 877> = 00.

| T— VA,
1yeeeskm—00 1 ']8 a5

Then by the theorem of the limit of the quotient [20] it is derived that
[p(k1Ag, + - + kmAg,, )|
k1, km—00 ﬁ e—ij/qu ﬁ <1 _ ]{7 gj )

j —vAg;
j=1 j=1 eV

=0 (22)

111.3 Proof of the comparison theorem for multiple limits
Let’s prove for the multiple limits the following comparison theorem. If for
the sequences Ty, .. k> Yki,... ks Zk1,.... ke the inequalities xp, ko < Ykyookn <
Zky,. ke @lways hold, and the sequences xy, . k.., 2k, ,... k,, tend to the common
multiple limit lim Ty ook = lim Zk1,..km = @, then the sequence
k1,....km—00 k1,eeykm—00

Yky,.... km @10 has the same multiple limit i likm Yki,....km = @. Let’s fix some
153K m =00

arbitrary € > 0. For it there is some number N7 that when k; > Ni,i = 1,m
the following holds a—¢ < xy, .. %, < a+e. Also there is some number Nj that
when k; > Ni,i =1, m the following holds a — € < zy, . k,, < a+e. Choosing
N > max { Ny, Na} for k; > N,i =1, m both previous double inequalities hold
and then a — e < g, ko < Ykt ,kom < 2k, ke < @+ €. Thus,

a—€ <Yk, ko <@+e O |yp .k, —a]<e
when k; > N, ¢ =1,m. That is

li _
kl""v}el'}nl—)oo ykl"")km a
is proved.
Thus from (21) with regard to (22) by the proven property of comparison

of multiple limits it is derived that
A A

Eiyodim—oo T oA M e, \F
H e i a5 H 1 — 71/{4(1'
j=1 j=1 e

That is (20) holds. Then by the theorem the series (18) converges for all
functions p(t) € S,.

IV Proof of the series’ (18) convergence for o(t) € K

Note that for the functions ¢(t) € K, since they are equal to zero outside

some bounded domain, there exist numbers kg1, ..., kg, such that

lp(k1Ag, + ... + kmAg,,)| =0
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for k; > koi, i = 1,m. In this case the convergence of the series (18) can be

proved by the indicated earlier theorem of the comparison of the multiple series

with positive terms. Then for k; > ko;, ¢ = 1, m:

1 |ektthmg(0,...,0)
0 = ]ﬂ!“'km! 8zf1..azﬁlm |()0(k:1Aq1 + es + kmAqm)| S
1 [oftthm£(0,.,0) | 1 &,
S f( 5ty ) Hzg’
bl | o ooy |10

is derived. Therefore, the series (18) is convergent for all functions o(t) € K°.
Thus, it is proved that the series (17) converges absolutely for all functions
o(t) € S, UK, and the series (16) converges in the sense indicated earlier.

The proved convergence of the series (16) implies the correctness of the
term-by-term application of the series (16) to any function from the spaces
K" m>0,K,S,.

V Proof that the resulting series (16) is the original for the
Laplace transform (13)

Now let’s prove that the resulting series (16) is the original for the Laplace
transform (13). For this, the Laplace transform is applied to the series (16)

&)
8k1+~“+k7nf(0 0)
L 1 s b A koA | -
B 0o 1 dFLtthm £(0,...,0) fsj§1 kjAq;
by T g Rkt 9201 gz m

Let’s prove that the derived series

m

oo
1 okt tkm 0,...,0 —s 3 kjAqg;
Z P % f(km )e = (23)
kl,-.-,k}»m:() 1eeecbome 821 azm
converges to the known transform (13).
The series (23), taking into account the change of variables z; = ey 5=

1,m, can be written as (15), that is, it is an expansion of the function
f(z1, .., zm) (14) in Taylor series. According to the theorems [21] and the
proved holomorphy of the function f(z1,...,2m), it is derived that the series
(23) converges to the function f(z1,...,2m,) (14) with the radiuses of conver-
gence r; = ¥;, j = 1, m, which corresponds to the entire range of the variables
2| < 95,5 =1,m.

The statement of the theorem is proved.
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2.3. RELATION WITH THE CONVOLUTION
Let’s consider the function of the structure (1)
1

N
co+ Y ciesAi
i=1

(24)

and the most general form of the transform, the partial case of which is the
function (24)

L(s
wt(s) = co —{ I((L)(s) (25)

N
Here f(t) = 0(t), K(t) = >_ ¢id(t — A;) for the function (24). As it was
i=1
shown in [14], the equation (25) can be written using convolution [17]

N
[coé(t) + 3t — A | xa(t) = 8(t) (26)
i=1

That is, finding the original z(t) is reduced to the solving of the convolution
equation (26). So, the derived results from the theorems regarding the function
(24) can be verified using the convolution. Also the following consequences can

be formulated

Consequence 1 [coé(t) + > bt — nlAm)} = > fT()é(t —kAp),
i=1 k=0
where f(z) = —t—-.

co+ Y cpzk
k=1

Consequence 2

N
cod(t) + Y cid(t —kiAg — ... — kmAg,)
i=1
00 1 ak1+...+kmf<0 0)
— ) ) 5t—k‘A _—]{mA ,
ky .%:m:o k. k! azlfl..ﬁz,’f,{” ( 144, o)
where f(21,...,2m) = 1

N moopg :
cot > e [] 2 7
k=1 j=1
The verification of the theorems for some examples of the function (24)

using given consequences is done in Appendix B.
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3. CONCLUSIONS

In the article the new method for the analytical inversion of the Laplace
transform is proposed for some cases. The theorems are proved. The results
derived by the new method are compared with the formulas known in literature.
The new formulas of analytical inversion of Laplace transform are presented.
This method can be used for the mechanical problems dealing with Laplace

transform.

A. SOME OTHER EXAMPLES OF FUNCTIONS OF THE STRUCTURE (2)

A.1. LOGARITHMIC CASE

The transform (2) can be written in the following form

N
In |co + Z cie” i (A.1)
i=1
The function (3) in this case can be written as
N
f(z) =Inlco + Z ez (A.2)
k=1
This function has = singul ints z; = a;,4 = 1,n. S
is function has max njy = 7 singular points 2 = o, ,n. So,
the points s; = _A%, Ina;,i = 1,7 are singular points for the function (A.1).
y+ioco
Since < in the formula of the inverse Laplace transform %m [ f(s)etdt is

y—100
the abscissa in the semi-plane of the Laplace integral’s absolute convergence

[5], so Rs > v > 0, where v = max{ max %{—Ailnaz} ,0}. Thus, when
1<i<v a

Rs > v > 0 it is fulfilled that [e=*4| = |z| < ¥ < 1, where ¥ = e7¥44. So, the
function (A.2) in the domain |z| < ¥ < 1 does not have any singular points.
Lemma 1 The function (A.2) satisfies Cauchy-Riemann conditions in the

domain |z| < ¥ < 1 where it has no singular points.

Proof. Cauchy-Riemann conditions for the function f(z) = u(x,y) + iv(z,y)
have the following form [15]:

ou Ov Ou ov
= = —— A.
or Oy Oy Ox (4:3)
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The function (A.2) can be rewritten in the following form

N
co + E cpz2"*
k=1

N N
. <Co Y e +z‘y>"k) ot S enla +ig)™ >0,
_ k=1

f(z) =In

N N (A4)
In (—co - > ez + zy)"k) ,co0+ > cp(x +1y)™ <0
k=1 k=1
Calculate partial derivatives of the first function in (A.4):
> amla+ il S (e + i)
cpng(x + 1y)" cenpi(x + ty)"k
of k=1 Of _ix
A L = (A.5)
Ox N _ oy N, .
+ > cp(@ +iy)™ co+ > cx(@ +iy)™
k=1

k=1

Note that partial derivatives of the second function in (A.4) have the same
form (A.5).

Let’s rewrite the denominator

1 _ 1 1

N N ) N Nk .
cot X ez cot 3 ex(atiy)®k  cot 3 e 3, Chy kT (iy)!
k=1 k=1 k=1 =0

1
N [ng /2] ol N [(np—1)/2] 241 1 -
R S S
1 _ Re—ilm
= Retilm — Re2+Im?

Here
[nk/2]

R (If y _CO+ZCk Z 021 ng— 2[ 1)ly2l’
k=1 =0

[(nk—1)/2] (4.6)
y) — ch Z Cgl—l—lxnk—%—l(_l)lyﬂ—l-l
" )
k=1

where [ny/2] and [(ny — 1)/2] are integer parts of division.
Analogically to the denominator, the nominator can be rewritten as

N TLkl

N
cxnp(x +iy)" = chnk Z o1 (i) =
k=1 k=1

N
— Z Cknk; Z C?Li_ll,nk—%—l(_l)ly%



The case of analytical inversion of Laplace transform 79

N [(nkx—2)/2]
chnk Z Csitl ng—2— 2( 1)ly21+1
k=1
=re—+iim,
where
N [(nk—1)/2]
re(z,y) =Y cxny, Z O @™ 2 (1) ly?,

k=1
[(nk—2)/2]

N
k=

Then the partial derivatives (A.5) can be rewritten in the following form

of  (re+iim)(Re—ilm)
o Re? + Im? B
re Re+imIm imRe—relm Ou . Ov
T RE+Im2 " REtIm? oz oz
of (ire—im)(Re—ilm)
Ay Re? + Im? N
—imRe+relm reRe+imIm Ou Ov

Re? + Im? + Re? + I'm? _57y+Z87y'

Here
Ou _ reRe+imIm Ov _ imRe —relm
dr  Re2+Im? ' dr  Re2+1Im? ’
Ou  —imRe +relm dv _ reRe+imlIm
dy  Re2+Im? Oy  Re2+1Im?

so it is seen that Cauchy-Riemann conditions (A.3) are fulfilled for both func-
tions in (A.4). Consequently, it is derived that the function (A.2) satisfies
Cauchy-Riemann conditions (A.3) for all |2| < ¥ < 1.

A.2. TRIGONOMETRIC CASE

The transform (2) can be written in the following form

N
sin (co + Z cie_s"iA‘1> (A.7)
i=1
or

N
0S (co + Z cie_S”iAq> (A.8)
i=1
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The function (3) in this case can be written as

N
f(z) = sin (co + Z cm"’“) (A.9)
k=1

N

f(z) = cos (co + Z ckznk) (A.10)
k=1

It is obvious that the functions (A.9) and (A.10) have no singular points.

Lemma 2 The function (A.9) satisfies Cauchy-Riemann conditions through-

out the definition.

Proof. First let’s present the function (3) in the form f(z) = u(z,y) +iv(z,y):

N N
[)=F (CO - chz‘"’“) =F (co + ZCk(a: —|—iy)n’“) —

k=1 k=1
N ng
= F (Co +D ey Cpam™ l(zyﬂ) -
k=1 =0
N [nk/2] A1l
= F<co + ch Z Cﬁix”k*m( 1)ly? ( )
k=1 =0
N o [(
+ chk Z 07212+1xnk—2l—1(1)ly2l+1) —
k=1
= F (Re + zIm)
Here Re(w,y), Im(z,y) are defined by (A.6). Calculate Re},, Imj, Rey,
Im!.
[(nk—1)/2]
;_ ORe ch Z C2L (g, — 20221 (1),
N [nk/Q]
ORe
R / — — CQl TN — 2l 1 l 2[ 2l—1,
ey 48y ; g )( )y ’
[(nk—1)/2]

Im ZE 8Im Z cx Z C2l+1 —9] — 1)xnk72172(_1)ly21+1;

8Im [(”k*l)/Q]
I /y ch Z Cgi+1$nk_2l_1(—1)l(2l + ]-)le
k=1 =0
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Calculate the following differences:

N [(nk—1)/2]
Re; — Im; = ch< Z Cﬁi(nk — Ql)xnk—%—l(_l)ly%_
k= =0

1

[(nk—1)/2]

_ Z Cgi+1xnk—2l—l(_1)l(21+ 1)y2l> —
=0

N l=1)/2) !
_ nE—20—1/ 1\, 2l : on

=0

ny!
@+ 1)!(n:— 20 — 1)!(2l + 1))> =0;

N (1 /2]
Re, + Imj, = Z ck< Z Cgix”k_Ql(—l)l(Zl)ym_l—}—
k=1 =0

+ Z C’rglij_l (nk _ 2l o 1)$nk_2l_2(—1)ly21+1> —

N /2] ng! — 1, 21—1
_ ch Z m(%)x R (=1)'y -

nk! o )
B (20 — 1) (ng — 21 + 1)!(7% — 204 1)z"* 21(f1)ly21 1) _o

So, it is derived that
Re,, = I'my, Rej, = —I'myj, (A.12)

takes place.

Using (A.11), the properties of trigonometric functions and Euler formulae
the function (A.9) can be rewritten as f(z) = sin (Re + iIm) = sin Re cos(iIm)+
cos Resin(iIm) = sin Re cosh I'm + i cos Re sinh Im = u(z,y) + iv(x,y), where

u(z,y) = sin Re cosh I'm, v(z,y) = cos Resinh Im.

ou Ov Ou IJv.

Calculate the partial derivatives 3, 5y Oy ox

2~ cos ReRel, cosh Im + sin Re sinh ImIm;

— = —sgin ReRe; sinh I'm 4+ cos Re cosh I'mI m;;
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0

Y% _ cos ReRe!, cosh I'm + sin Re sinh ImIm! :
Dy y y

0

A ReRe!, sinh Im + cos Re cosh ImIm,.
Oz

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.9) for all z.
Lemma 3 The function (A.10) satisfies Cauchy-Riemann conditions through-

out the definition.

Proof. Using (A.11), the properties of trigonometric functions and Euler for-
mulae the function (A.10) can be rewritten as f(z) = cos(Re+ilm) =

cos Re cos(ilm)—sin Resin(ilm) = cos Re cosh Im—isin Resinh Im = u(x,y)+

iv(z,y), where u(x,y) = cos Re cosh Im,v(x,y) = — sin Resinh I'm.
Calculate the partial derivatives %, %Z’ %Z, g—Z:

ou . ’ . /
—— = —sin ReRe, cosh Im + cos Resinh I'mIm,;
ox

a’U /. . !/
— = —cos ReRe,, sinh I'm — sin Re cosh ImIm,,;
oy ¥ Y
ou . ’ . /
— = —sin ReRe, cosh I'm + cos Resinh ImIm,;
oy ¥ Y
81} /. . /
— = —cos ReRe,, sinh I'm — sin Re cosh I'mIm,,.
Ox

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.10) for all z.

A.3. HYPERBOLIC CASE

The transform (2) can be written in the following form

N
sinh <co + Z cieS”iAq> (A.13)

i=1
or
N
cosh (co + Z cie_S”"Aq> (A.14)
i=1

The function (3) in this case can be written as

N
f(z) = sinh (co + Z ckz”’“> (A.15)

k=1
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or N
f(z) = cosh <CO + Z ckz”k> (A.16)
k=1
It is obvious that the functions (A.15) and (A.16) have no singular points.
Lemma 4 The function (A.15) satisfies Cauchy-Riemann conditions through-

out the definition.

Proof. Using (A.11), the properties of hyperbolic functions and Euler for-
mulae the function (A.15) can be rewritten as f(z) = sinh(Re 4+ iIm) =
sinh Re cosh(iIm) + cosh Re sinh(iIm) = sinh Re cos I'm + i cosh Resin I'm =

u(z,y) +iv(x,y), where u(z,y) = sinh Re cos I'm, v(z,y) = cosh Resin Im.

ou Ov Ou IJv.

Calculate the partial derivatives ', 5y Oy Ox

gu = cosh ReRe!, cos Im — sinh Resin ImIm!;
x
gv = sinh ReRe’y sin I'm + cosh Re cos ImI m;;
Y
8u / . . /
Foie cosh ReRe,, cos Im — sinh Re sin I'm.Imy;
Y
gv = sinh ReRe!, sin Im + cosh Re cos ImIm,.
x
Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.15) for all z. O

Lemma 5 The function (A.16) satisfies Cauchy-Riemann conditions through-

out the definition.

Proof. Using (A.11), the properties of hyperbolic functions and Euler for-
mulae the function (A.10) can be rewritten as f(z) = cosh(Re +ilm) =
cosh Re cosh(ilm) — sinh Resinh(iIm) = cosh Re cos Im + isinh Resin I'm =
u(z,y) +iv(x,y), where u(z,y) = cosh Re cos Im, v(z,y) = sinh Resin I'm.

: : : Ju Ov Ou Jv.
Calculate the partial derivatives §2, 8y’ Oy’ Oz

0

a—u = sinh ReRe!, cos Im — cosh Resin ImIm!;
x

0

@ cosh ReRe!, sin I'm + sinh Re cos ImIm.;

oy Y y

ou

= sinh ReRe; cos I'm — cosh Resin ImIm;;

0y



84 Zhuravlova Z. Yu.

0
2V = cosh ReRe! sin Im + sinh Re cos ImIm.,.

ox

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.16) for all z.

A.4. EXPONENTIAL CASE

The transform (2) can be written in the following form

N
exp (co + Z ciesniAq> (A.17)

=1

The function (3) in this case can be written as

N
f(z) =exp (co + Z ckznk> (A.18)

k=1

It is obvious that the function (A.18) has no singular points.

Lemma 6 The function (A.18) satisfies Cauchy-Riemann conditions through-

out the definition.

Proof. Using (A.11) and Euler formulae the function (A.18) can be rewritten as

f(2) = e (cos Im + isin Im) = e cos Im + ief® sin Im = u(z, y) + iv(z, y),

Re cos Im, v(z, y) = ef€sin Im.

: : : du v Ou Ov.
Calculate the partial derivatives 3, 5y 0y ox

where u(z,y) = e

du

o e Re! cos Im — e sin ImIm/;

x

v .

Er eReRe’y sin I'm + et cos ImIm’y;
Y

ou .

50 = eReRe'y cos Im — e sin ImImy;
Yy

ov .

— = eMRe! sin I'm + " cos ImIm,.

ox

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.18) for all z.
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B EXAMPLES AND VERIFICATION
VERIFICATION WITH THE PREVIOUSLY KNOWN RESULTS

B.1.

The verification of the proposed method is done on the known transforms.
Consider the functions 1— 1,5 x and ——x when 4 > 0. From [24] it is known
that

-1
L [1_68A] Zét—nA (B.1)
1 o0
] = (~1)"6(t — nA) (B.2)

n=0

L' —
[1 + e~s4

Let’s show that the results derived from theorem 1 are consistent with the

known results (B.1)-(B.2).

According to theorem 1
1 oo
L [1_6_&4} [z=e* =L [1—z] kEZO(S(t kA), (B.3)
which is congruent to (B.1).
1 1 o
-1 —sA -1 k
|:1+e—sA:| [Z € } |:1+Z:| ;}( ) 5<t k )7 ( )

which is congruent to (B.2)

So, the known results (B.1)-(B.2) are equal to the results derived from
theorem 1 (B.3)-(B.4).

Let’s consider some examples of application of the proved theorems

SOME EXAMPLES BASED ON THE THEOREM 1
1

B.2.
1
(1—de—sA)«

Example 1 Consider the following functions

when A, d > 0 are some digits, a is a natural digit
The Taylor series can be easily constructed for the functions f(z)

and g(z) = m:
(a+k 1) k:

f( ) 2 a O¢+1
(=D)FdFa(at1).. (a—Hc—l)Zk

()_1+Z %l
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According to theorem 1

1 [m} = [z= 4] = L7 [f(2)] =

+de (a+1)k!(a+k‘ )5(t—kA)
k=1

L [wes@a} == =L ()] =

_ 5 +§: (—Dkd*a(a +k1!)...(a+k— 1)5(15—/@4).
k=1

Finally the following formulas are derived

_ 1 B 2 da(a+1)..(a+k—1)

L 1[(1_dem)} 5(t +; - 5(t —kA) (B.5)
_ 1 > kdk (a+1)..(a+k—-1

L [(1+de sA) ]_ +Z k!) : )5(t_kA)

k=

—_

(B.6)
Let’s verify the derived formulas (B.5)-(B.6) with the use of convolution.
It can be done for any fixed o and any d > 0. Let’s prove this for a = 2.
According to (B.5), (B.6)

L [(dleA} )+ de (k+1)6(t — kA), (B.7)

L7t [(1} =6t Z YdR(k +1)6(t — kA) (B.8)

1+ de—s4)2
Consider the following convolut1on
@(t)>

({5(15) —2d5(t — A) + d*5(t — 24)] Z dF(k+1)8(t — kA) |,

// §) —2d6(& — A) + d*5(¢ — 24)] x

x [5( — &)+ de k+1)6(z — & — kA)| o(z)dzde =

k=1

= p(0) — 2dp(A) + d>p(24) + i d*(k+1)p(kA)—
k=1
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—2) dkp(kA) + ) d* (k= 1)p(kA) = 9(0) = (6(1), ¢ (1))
k=2 k=3
So, it is proved that

+de (k+1)0(t — kA)| = 8(t).

[6(t) — 2do(t — A) + d*5(t — 2A)]

The equality

t) + i dF(k +1)5(t — kA) | * [0(t) — 2do(t — A) + d?5(t — 24)] = (1)

k=1

is proved similarly. So, the correctness of the formula (B.7) is shown.
Consider the following convolution

90(75)) =

+Z DFdR(k +1)0(t — kA)

([5@5) +2do(t — A) + d*S(t — 2A)]

// §) +2d5(& — A) + d*5(¢ — 24)] x

[ +i D¥d"(k +1)d(x — € — kA) | plz)dwdg =
k=1
= ¢(0) + 2dp(A) + d*p(24) + f: DFd*(k + 1)p(kA)—
k=1
—2§: 1)*d*kp(kA) +§: Jp(kA) = ¢(0) = (3(t), (1)) -
k=3

So, it is proved that

[6(t) +2ds(t — A) + d*5(t —

() + > (~D)Fd"(k+1)8(t — kA) | = 6(t).
k=1

The equality

)+ Z DEdF(k +1)0(t — kA) | *[8(t) + 2d6(t — A) + d?5(t — 2A4)] = 6(t)

is proved similarly. So, the correctness of the formula (B.8) is shown.
Example 2 Consider the following functions In ‘1 — de_SA‘ and In (1 + de_SA)
when A, d > 0 are some digits.
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The Taylor series can be easily constructed for the functions f(z) =
In|1—dz| and g(z) =In (1 + dz):

> dk
Zz

According to theorem 1
|1 —de~*4]] = - z L5t — kA)

~UIn (1 4 de=*4)] = Z < 1>k St — kA)

B.3. SOME EXAMPLES BASED ON THE THEOREM 2

where A, B,p,q > 0, A #

, 29 = e~ *P the initial function

Example 1 Consider the function W,
B. After the change of the variables z; = e~*4

1

can be rewritten as f(z1,22) = The Taylor series can be easily

1—pz1—qz2”
constructed for this function: f(z1,29) = m = Z Z +Jp qulz%,
1=0j=
where C! = (IZT]] ) are binomial coefficients.
According to theorem 2
1
1 _
e qesB] Y Lyt -iA-iB) ()
=0 j=0
Consider the following convolution
[6(t) — pd(t — A) — qd(t — B ZZ LSt —iA—jB)| e(t) | =

=0 j=0

/ / — po(€ — A) — gb(¢ — B)] x

chﬂp @6(x — € —iA—jB)| p(x)dzds =

=0 j=0

ZZ . qu (iA+jB) ZZ Z+‘7 ')pq o(iA+ jB)—

=0 5=0 i=1 j=
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ZZ”" ,pqsa(zA+jB) (0) = (5(1), o(t))

=0 j=1

So, it is proved that

[0(t) —pd(t —A) —q¢d(t — B +Jp Po(t —iA—jB)| = d(t).
=0 j=0

The equality

oo o0

S0l d(t —iA — B)| *[6(t) ~ pi(t — A) — ab(t — B)] = 8(1)
i=0 j=0
is proved similarly. So, the correctness of the formula (B.9) is shown.
Let’s prove that when A = B > 0 the inverse formula (B.9) is congruent
to the inverse formula (B.5) for the case 1.

When A =B >0 lfpe_s’}fqe_SB = 1—(p+2)e—sA' According to (B.5) when
d=p+qa=1

L1 [1 — ! -~ ] = Z(p—i—q)ké(t— kA) (B.10)

A
ptget] =~

Let’s show that the expression (B.9) coincides with (B.10) in the case when
A = B. We have

ZZ L't — (i +§)A) =[k=i+j]=

=0 5=0
9] k 9]
= 6t —kA)> CipF gl =D (p+q)Fo(t — kA),
k=0 §=0 k=0

which coincides with (B.10).
Example 2 Consider the function W, where A, B,p,q > 0, A #

B. After the change of the variables z; = e‘SA, 29 = e—*B the initial function

can be rewritten as f(z1,22) = m. The Taylor series can be easily con-
structed for this function: f(z1,22) = m = % ZO(—l)”'JpquC;ﬂzle
i=0j=
According to theorem 2
1 X o
-1 _ 1\t I At d s _
L 1—|—p65A—|—q633} _ZZ( 1)™p'qICl;0(t —iA—jB) (B.11)
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Consider the following convolution

([5(t) +pi(t—A)+qé(t —

Z Z 1)Hplg/ Cf;6(t —iA - jB)
=0 5=0

// €) + pO(E — A) + gb(€ — B)] x

=Y > (=1)"p q”(l.!jf)so(m +jB)—

i=1 =0
=S SR (A + ) = ¢(0) = (600, ()
i=0 j=1 )

So, it is proved that

[0(t) +pd(t — A) + ¢d(t — B)]*

The equality

x[0(t) + pd(t — A) + qd(t — B)] = (¢)

[e.o] o0
{Z > (1)l p'd5(t —iA— jB)
i=0 j=0
is proved similarly. So, the correctness of the formula (B.11) is shown.

Let’s prove that when A = B > 0 the inverse formula (B.11) is congruent
to the inverse formula (B.6) for the case 1.

When A =B >0 1+p€_s,}+q6_33 = 1+(p+11)6_3‘4' According to (B.6) when
d=p+qa=1

-1 1 _ = _1\k Esip
L [1+(p+q)6_3‘4] _kzo( D*(p+ q)"0(t — kA) (B.12)

Let’s show that the expression (B.11) coincides with (B.12) in the case when

DD ()THCL gt —iA = jB) | = 3().

sO(t))
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A=B zo S (—1)HIC, qﬂé(t—(zﬂ)m—[kzz'm:kio(—l)ka(t—
=0 j= =

k o 00
kA) > C,]Cpk_qu = S (—=1)*(p + q)*6(t — kA), which coincides with (B.12).
§=0 k=0
Analogically to the examples 1-2 the inverse formulas for the following

functions can be written:

Ll{ _1 — }:ZZ( )JCZﬂqué(t—zA JjB)

— sA sB
1—pe +qe =0 =0

and

Example 3 Consider the more general functions (l_pefsAl_qefsB)a

when A, B,p,q > 0,A # B, « is a natural digit. After

1
(1+p875A+q6758)0‘

the change of the variables z; = e 4, 25 = e %P the initial functions can
be rewritten as f(Zl,ZQ) = m,g(21722) = m The Taylor
series can be easily constructed for these functions:
1 o i jViri(a) ;g
— _ Jj ity iJ
21,29) = = —— 212,
f( 1 2) (1 —pz — qZQ)a Zz;jz;)p q 7/']' 1~2
1 N i)
g(z1,20) = = —1)"HIptgd Tt T
(21, 22) (1+ pz1 + gz2)® ZZ;JZ%( ) itjr 1

Here (o) = a(a+1)...(a+n —1) = (a), when n > 0 and ¢p(a) = 1.

According to theorem 2

—-1 1 _Z:e—sA: —-1 JO _
. [(1—1765’4—(]653)04} - [ ] L™ [f (21, 22)]
:Zzpiqﬂ'wzﬁ’(‘ Vst —ia—jB),
=0 =0 ilg!
_ 1 I )
L [(1+p€_s’4+qe—53)a} - [Z =€ A] =L 1[9(21,22)] =
=33 (-y)itpig wl;]]( )5(15_1.14_],3)'
i=0 j=0

Finally the following formulas are derived

Ll[( ! } ZZ qﬂ/’@“ 5(t—iA—jB) (B.13)

1 — pe—sA — ge—sB)a ilj!
p q 1=0 j=0 J:
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(1 _|_pefsA+qefsB)a -

o0

(—1)"p'q Lﬁj.(,a) 5(t —iA—jB)
117!
=0

=0 7

(B.14)
Analogically to (B.13)-(B.14) the inverse formulas for the following func-

tions can be written:

10.

11.

1 et | =S > v s - ia - jp)

1 — pe—sA 4 ge—sB)a ilj!

L [ 1 ] N ZZ(—l)ipiqufs(t_iA_jB)

(14 pe=sA — ge=sB)a ilj!
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2Kypasavosa 3. IO.

BI/IHA,LLOK AHAJIITUYHOT'O OBEPHEHHS TTEPETBOPEHHS JIATIJTACA

Pesrome

YV maHiit craTTi 3aIpONOHOBAHO HOBHII METO/[ aHAJITUYHOrO ODEpHEHHs IlepeTBOpeHHs Jla-

wIacy Jjisi TPaHC(OPMAHT, IO MICTSTh €KCIIOHEHTH, sKi JIHIHHO 3a/IeKaTh Bij mapamMerpa

neperBopenus Jlammacy. Jlanuit MmeTon 3acHOBaHUiT HA PO3BHHEHHI TPAHC(HOPMAHTH y PsifT

Teitiopa u mo4yieHHOMY 3aCTOCYBaHHI obepHeHoOro neperBopenHs Jlamracy. losemeno Teo-

pemu, o MiATBEPKIYIOTH JOCTOBIPHICTH Ta KOPEKTHICTH Takoro migxomy. Lleit meron Bu-

KOPHCTOBYE y3araJbHeHi QyHKI[I, TOMy OTPUMAHO JiesiKi KOPUCHI HACJIAKY, 10 OB s13aHi 3



94 Zhuravlova Z. Yu.

y3araJibHeHUMHU (PYHKIIsIMU. MeTos1 mepeBipeHuil MIJISXOM MOPIBHAHHS 3 BIJIOMUMH 3 JIiT€pa-
Typu dopmynamu. Orpumani HOBI ¢popMysu Jjisi OpUrnHaiB Bij Tpancdopmant Jlamacy.
Karowosi crosa: nepemeopennsa Jlanaacy, anasimuywne obepruenns, padu Tetnopa, yzazans-

HeHT PYHKUIL, 320pmKa.

Kypasaésa 3. FO.
CAyYAll AHAJIMTUYECKOTO OBPAIIEHUS TTIPEOBPA3OBAHUSA JIATIJIACA

Pesrome

B mannoit cTarhbe mpeIoXKeH HOBBI METOJ, aHAJTHUTUYECKOTO OOpAIeHus MPeoOPa3OBaAHUS
Jlanmaca jyist TpancgopMaHT, KOTOPbIE COAEPKAT SKCIIOHEHTDI, JINHEHHO 3aBUCHIIE OT I1apa-
Merpa npeobpazoBanus Jlamnaca. JlaHHBII METOI OCHOBAH Ha PA3JI0XKEHUN TPAHCHOPMAHTHI
B psaz Teisiopa 1 movYIeHHOM IprMeHeHnH oOpaTHOro npeobpasosanus Jlamraca. lokazanb
TEOPEMBI, TIOATBEPKIAOIINE JTOCTOBEPHOCTh U KOPPEKTHOCTb TAKOTO IMOMIXOJA. DTOT METO/T
HCIIOJIb3yeT O0OOIEHHBIE (DYHKIUH, IO3TOMY MOJIyYEHbl HEKOTODPbIE MOJIE3HBIE CJIEICTBUS,
CBsI3aHHBIE C OOpaTHBIMHU 000OMEHHBIMU (DyHKIUsAMHU. MeTo 1 MPOBEpEeH IIyTéM CpaBHEHUSI C
M3BECTHBIMU U3 JinTepaTypbl dpopmynamu. [lomydensr HOBble (DOPMYJIBI JjIsl OPUTHHAJIOB OT
Tpanchopmant Jlamaca.

Karoueswie caosa: npeobpaszosanue Jlanaaca, anasumuveckoe obpawerue, padv. Tetinopa,

0606uLeHHblEe PYHKUUU, C8EPMKQ.
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