Operator Theory:
Advances and Applications, Vol. 191, 515-520
(© 2009 Birkhéduser Verlag Basel/Switzerland

Forced Vibrations of the Infinite Shell
of the Square Cross Section

V.M. Vorobel and V.V. Reut

Abstract. The problem about steady-state forced vibrations of an infinite
shell of the square cross section is investigated. The dispersion curves are
given, the resonance frequencies are found. The stress distribution in a con-
struction is investigated. In case of low-frequency vibrations the engineering
formula for approximate calculation of the construction is offered. The graph
of dependence of a relative accuracy on frequency is given.

Mathematics Subject Classification (2000). Primary 74H45; Secondary 74K10.

Keywords. Box-like shell, plate, vibrations, dispersion curve, resonance.

The thin-walled constructions of the square cross section have a wide applica-
tion in construction, shipbuilding, bridge engineering and mechanical engineering.
The theory and the methods of static and dynamic analysis of the box-like shells
were studied in numerous works, which review is present in [1-4]. The simple har-
monic motions of semi-infinite box-like shell of the rectangular cross section are
surveyed in work [2], in which the homogeneous solutions were constructed. In the
work [3] the dispersion equation for propagation of normal waves in the infinite
box-like shell of the corner and the square cross section were obtained. Let’s mark,
that in the above-mentioned works, the resonance frequencies were not found also
numerical calculations were not carried out. The present work is dedicated to study
of these problems.

The plate-like construction consist of thin plates of thickness h and a width
2a (Fig. 1). The construction has square cross section. The identical transverse
loading q(z,y)e ! symmetric concerning a medial line of a plate (in the further
factor e~* we shall omit).

In a dimensionless form the boundary value problem that describe the com-
bined planar and flexural state of a construction’s plates will consist of the differ-
ential equation of vibrations of thin plates

DA?w (z,y) — w?e 2w (z,y) = q(z,y) (0<z<1,|yl < o0) (1)
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the Lame equations, which describes the plain stressed state of the plate
G LA (z,y) +2(1— )" 00 (2,y) /0 + wu (z,y) = 0 @)
G A (2,y) +2 (1= 1) 96 (,y)/dy + v (x,y) = 0
0<z<1,]yl <o)

boundary conditions taking into account symmetry, concerning an axis y
ow/ox|,_o =0, Vil,_o=0, wul,_q=0, Tuyl,_,=0 (3)

boundary conditions, which describes the rigid joint of plates taking into account
of symmetry to edges of a construction [4]

ow/0x|,_y =0, Toyl,_, =0, w|,_,= _52u|$:1’ Viloey = 02l (4)

The dimensional quantities (they further will be marked by a sinuous line)
are connected with dimensionless following relations = = az, y = ay, h = ae,
D =ER*D, G = EG, j=Eq, © = ac 3w, @ = ae 1uv—a€ Y, Vi = EaV,,
6z = Eog, 7y = Bryy, @ = I\, T = af¢, ¢ = \/E/ﬁ; &, ©, % — the
displacements of points of plateb in the directions of axes , y, Z accordingly;
Vi = —DI[0*w/0%% + (2 — p) 0w /0703?], Gz (8u/8x+u8v/8y) Tog =
G (01/8y + 80/07F) — generalized transverse force, normal and tangential stresses;
D = Er*[12 (1 - p?)] ~!flexural rigidity of a plate; i — thickness of a plate; j —
the plate density; E - Young’s modulus; 1 — Poisson’s ratio; A = 82/8x2 —1—82/81/2
— the Laplace operator; G = E/[Z (14 p)] — shear modulus; § = du/dx + Ov/dy;
F=E / (1-

The solutlon of the problem (1)—(4) can be noted as the Fourier integral

/ fa(z _mydoz.
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Where the contour of an integration I' is picked by a principle of a limiting
absorption [5, 6] and bypasses real poles of function f, (z). The select of a contour
of an integration enables to construct a unique solution of dynamic problems [5, 6].
The function f, () represents the Fourier transforms of all required magnitudes
of the problem:

U (2) = @, (2) = iaths (2) = Caxish (x1z) + Caash (x22) /x2
Vo () = —iapa (z) — ¥, (z) = —i[Csach (x12) + Cach (x27)]
Taya (2) = =G |20y, (z) + (202 — k3) Yo (2)]
= —iG[QCgaxlsh (x1z) + Cy (2a2 — k%) sh (ng)/xg}
0za (x) = =F[(ki = (1 = p) 0®) pa (z) +ia (1 - p) vy, (2)]
= —F|[C5 (ki — (1 — p) a®) ch (x12) + Cacr (1 — ) ch (x27)]
My (2) = =D[wl (z) - potuw, (2)] = —D{(;; — pa?) wg, (2)
+C1[(1 = p)a® + % ch (Mz) + Co[(1 — p) o — v }ch (A22)}

we () = wl (z) + Crch (Mz) + Cach (A2x)
Pa (¥) = C3ch (x17), o (¥) = iCash (x22)/x2

An = \/@2—(—1)"72, Xn=Va:—k2 (n=1,2)

1 1
wl (@)= | [ 00 (©®a (@) de
D!

Do (2,8) = ea(|z = &) + ea (@ +§)
eq (T) = (472)71 AT sk (M1z) — A5 'sh (Aow)]

Cn=A,/A, n=14, —is the solution of the system
Ash (A1) Aash(A2) 0 0
0 0 2ax1sh (x1) (2% — k3) 5h>(<X2)
ch ()\1) ch (}\2) €2X15h (Xl) €2a5h)(<>2<2)
3S 3S

NI R (1= p)a? = k) eh (1) a (1 - p)ch(x2)

Ch —dw? (1)/dx
« Cy _ 0

Cs | —w§ (1)
Cy — Ld3wg (1) /da?

A=AAy — A A,

Ay =2(1—p) [a®xish(x1)ch(x2) — (a2 - ;k§> ch (x1) x3 "sh (Xz)]

k
Ay =2k2xish (x1) x5 'sh (x2), Ay = —jg AAash (A1) sh(X2)
Aw = /\18h (/\1) ch (/\2) — )\QSh (/\2) ch (/\1) .
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In Fig. 2 the dispersion curves of the equation A = 0 concerning dimensionless
quantities a and w are constructed with relative thickness of the shell € = 0.1 and
Poisson’s ratio p = 0.3. For negative « the graph should symmetrically be reflected
concerning an axis w. In Fig. 3 the site of the graph Fig. 2 is figured in the enlarged
aspect. We can see that curves 1 and 2 are not intersected. With a decrease of
the parameter € the dispersion curves are contracted to the origin of coordinates,
along both axes. The values w at which slope angle of a tangent to a dispersion
curve is equal to 90 degrees are resonance frequencies [6].

TABLE 1

€ w
0.01 0.017 0.091 0,225 0.419 0,670
0.1 0.168 0.852 1.444 1.463 1.948

In Table 1 the values of the first several resonance frequencies (in Figs. 2,
3 they are marked by dagger) with u = 0.3. Let’s mark, that all frequencies
which given in the table, except for w = 0.444 can be obtained from a solution of
a problem about vibrations square frame if Young’s modulus E to exchange on
E/(L-12).

In Fig. 4 the graph of amplitude values dimensionless maximum bending
stresses oM = 6a2M; (i,g)/(ﬁiﬂ), (]\;L; (Z,9) = -D (82@/8;%2 + u62w/5g}2))
at 4 =0.3,e =0.1, y =0, w = 0.1 (thus actual frequency & ~ 52/a rad/sec) for
a case of a concentrated force §(Z,7) = P& (Z)6 () is given. Thus the values of
plain stresses less then bending stresses, and greatest maximum bending stresses
arise under a concentrated force (logarithmic singularity) and on an edge.

Let’s mark, that in case of low-frequency vibrations the solution of a problem
(1)—(4) practically coincides with a solution of a problem about vibrations of the
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clamped plate
DA*w* (z,y) — w?e2w* (z,9) = q(z,9) (0<z <1,y < o0) (5)
ow*/ozx|,_, =0, Vi|,_,=0 0ow"/ox|,_, =0, w*|,_,=0. (6)
The plain stresses and displacements thus can be neglected. Moreover if the
solution of this problem is known at frequencies wp,w; (in particular it is possible

to take wp = 0, i.e., static case) approximate solution of a problem (1)—(4) present
by the convenient formula for the engineering calculations

w, (2,y) = Lo (w) w§ (z,y) + L1 (w) wi (z,y) + O (w'e™?) (7)
Uy =V, = O (EQwW)
Lo (w) = (w} — w?) (wf — w%)_l . Ly (w) = (0 —uw]) (Wi - wg)_l .

It is necessary to have in view, that this formula is valid for the small fre-
quencies (w/e < 1, i.e., & < hé / @?) smaller then first resonance frequency.

In Fig. 5 the graph of relative accuracies of maximum bending stresses on
dimensionless frequency w in the point of the edge z = 1, y = 0 is constructed,
with wg = 0, w; = 0.1. The solid line shows an error of the formula (7), and
dashed error for a problem (5)—(6). From the graph we can see that with w < 0.12
relative accuracy of the formula (7) less than 10%. The approximate solution of

a problem (5)—(6) about the fastened plate gives good outcomes up to the first
natural frequency.
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