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Forced Vibrations of the Infinite Shell
of the Square Cross Section

V.M. Vorobel and V.V. Reut

Abstract. The problem about steady-state forced vibrations of an infinite
shell of the square cross section is investigated. The dispersion curves are
given, the resonance frequencies are found. The stress distribution in a con-
struction is investigated. In case of low-frequency vibrations the engineering
formula for approximate calculation of the construction is offered. The graph
of dependence of a relative accuracy on frequency is given.
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The thin-walled constructions of the square cross section have a wide applica-
tion in construction, shipbuilding, bridge engineering and mechanical engineering.
The theory and the methods of static and dynamic analysis of the box-like shells
were studied in numerous works, which review is present in [1–4]. The simple har-
monic motions of semi-infinite box-like shell of the rectangular cross section are
surveyed in work [2], in which the homogeneous solutions were constructed. In the
work [3] the dispersion equation for propagation of normal waves in the infinite
box-like shell of the corner and the square cross section were obtained. Let’s mark,
that in the above-mentioned works, the resonance frequencies were not found also
numerical calculations were not carried out. The present work is dedicated to study
of these problems.

The plate-like construction consist of thin plates of thickness h and a width
2a (Fig. 1). The construction has square cross section. The identical transverse
loading q(x, y)e−iωt symmetric concerning a medial line of a plate (in the further
factor e−iωt we shall omit).

In a dimensionless form the boundary value problem that describe the com-
bined planar and flexural state of a construction’s plates will consist of the differ-
ential equation of vibrations of thin plates

DΔ2w (x, y)− ω2ε−2w (x, y) = q (x, y) (0 < x < 1, |y| <∞) (1)
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the Lame equations, which describes the plain stressed state of the plate{
G−1Δu (x, y) + 2 (1− μ)−1

∂θ (x, y)/∂x + ω2u (x, y) = 0
G−1Δv (x, y) + 2 (1− μ)−1

∂θ (x, y)/∂y + ω2v (x, y) = 0
(2)

(0 < x < 1, |y| <∞)

boundary conditions taking into account symmetry, concerning an axis y

∂w/∂x|x=0 = 0, Vx|x=0 = 0, u|x=0 = 0, τxy|x=0 = 0 (3)

boundary conditions, which describes the rigid joint of plates taking into account
of symmetry to edges of a construction [4]

∂w/∂x|x=1 = 0, τxy|x=1 = 0, w|x=1 = −ε2 u|x=1, Vx|x=1 = σx|x=1. (4)

The dimensional quantities (they further will be marked by a sinuous line)
are connected with dimensionless following relations x̃ = ãx, ỹ = ãy, h̃ = ãε,
D̃ = Ẽh̃3D, G̃ = ẼG, q̃ = Ẽq, w̃ = ãε−3w, ũ = ãε−1u, ṽ = ãε−1v, Ṽx̃ = ẼãVx,

σ̃x̃ = Ẽσx, τ̃x̃ỹ = Ẽτxy, ω̃ = ωT̃−1, T̃ = ã/c̃, c̃ =
√

Ẽ
/

ρ̃; ũ, ṽ, w̃ – the

displacements of points of plates in the directions of axes x̃, ỹ, z̃ accordingly;
Ṽx̃ = −D̃

[
∂3w̃
/
∂x̃3 + (2− μ) ∂3w̃

/
∂x̃∂ỹ2

]
, σ̃x̃ = F̃ (∂ũ/∂x̃ + μ∂ṽ/∂ỹ), τ̃x̃ỹ =

G̃ (∂ũ/∂ỹ + ∂ṽ/∂x̃) – generalized transverse force, normal and tangential stresses;
D̃ = Ẽh̃3

[
12
(
1− μ2

)]−1-flexural rigidity of a plate; h̃ – thickness of a plate; ρ̃ –
the plate density; Ẽ - Young’s modulus; μ – Poisson’s ratio; Δ = ∂2

/
∂x2 +∂2

/
∂y2

– the Laplace operator; G̃ = Ẽ
/

[2 (1 + μ)] – shear modulus; θ = ∂u/∂x + ∂v/∂y;

F̃ = Ẽ
/(

1− μ2
)
.

The solution of the problem (1)–(4) can be noted as the Fourier integral

f (x, y) =
1
2π

∫
Γ

fα (x) e−iαydα.
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Where the contour of an integration Γ is picked by a principle of a limiting
absorption [5, 6] and bypasses real poles of function fα (x). The select of a contour
of an integration enables to construct a unique solution of dynamic problems [5, 6].
The function fα (x) represents the Fourier transforms of all required magnitudes
of the problem:

uα (x) = ϕ′
α (x) − iαψα (x) = C3χ1sh (χ1x) + C4αsh (χ2x)/χ2

vα (x) = −iαϕα (x) − ψ′
α (x) = −i[C3αch (χ1x) + C4ch (χ2x)]

τxyα (x) = −G
[
2iαϕ′

α (x) +
(
2α2 − k2

2

)
ψα (x)

]
= −iG

[
2C3αχ1sh (χ1x) + C4

(
2α2 − k2

2

)
sh (χ2x)/χ2

]
σxα (x) = −F

[(
k2
1 − (1− μ)α2

)
ϕα (x) + iα (1− μ)ψ′

α (x)
]

= −F
[
C3

(
k2
1 − (1− μ) α2

)
ch (χ1x) + C4α (1− μ) ch (χ2x)

]
Mxα (x) = −D

[
w′′

α (x) − μα2wα (x)
]

= −D
{(

d2

dx2 − μα2
)

wq
α (x)

+C1

[
(1− μ)α2 + γ2

]
ch (λ1x) + C2

[
(1− μ)α2 − γ2

]
ch (λ2x)

}
wα (x) = wq

α (x) + C1ch (λ1x) + C2ch (λ2x)
ϕα (x) = C3ch (χ1x) , ψα (x) = iC4sh (χ2x)/χ2

λn =
√

α2 − (−1)n
γ2, χn =

√
α2 − k2

n (n = 1, 2)

wq
α (x) =

1
D

1∫
0

qα (ξ) Φα (x, ξ) dξ

Φα (x, ξ) = eα (|x− ξ|) + eα (x + ξ)

eα (x) =
(
4γ2
)−1 [

λ−1
1 sh (λ1x)− λ−1

2 sh (λ2x)
]

Cn = Δn/Δ, n = 1, 4, – is the solution of the system⎛⎜⎜⎜⎝
λ1sh (λ1) λ2sh (λ2) 0 0

0 0 2αχ1sh (χ1)
(
2α2 − k2

2

) sh(χ2)
χ2

ch (λ1) ch (λ2) ε2χ1sh (χ1) ε2α sh(χ2)
χ2

λ3
1sh(λ1)

12
λ3
2sh(λ2)

12

(
(1− μ)α2 − k2

1

)
ch (χ1) α (1− μ) ch (χ2)

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎝
C1

C2

C3

C4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−dwq

α (1)/dx
0

−wq
α (1)

− 1
12d3wq

α (1)
/
dx3

⎞⎟⎟⎠
Δ = ΔuΔV −ΔσΔw

Δσ = 2 (1− μ)

[
α2χ1sh (χ1) ch (χ2)−

(
α2 − 1

2
k2
2

)2

ch (χ1)χ−1
2 sh (χ2)

]

Δu = ε2k2
2χ1sh (χ1)χ−1

2 sh (χ2) , ΔV = − k1√
3
λ1λ2sh (λ1) sh (λ2)

Δw = λ1sh (λ1) ch (λ2)− λ2sh (λ2) ch (λ1) .
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In Fig. 2 the dispersion curves of the equation Δ = 0 concerning dimensionless
quantities α and ω are constructed with relative thickness of the shell ε = 0.1 and
Poisson’s ratio μ = 0.3. For negative α the graph should symmetrically be reflected
concerning an axis ω. In Fig. 3 the site of the graph Fig. 2 is figured in the enlarged
aspect. We can see that curves 1 and 2 are not intersected. With a decrease of
the parameter ε the dispersion curves are contracted to the origin of coordinates,
along both axes. The values ω at which slope angle of a tangent to a dispersion
curve is equal to 90 degrees are resonance frequencies [6].

Table 1

ε ω
0.01 0.017 0.091 0,225 0.419 0,670
0.1 0.168 0.852 1.444 1.463 1.948

In Table 1 the values of the first several resonance frequencies (in Figs. 2,
3 they are marked by dagger) with μ = 0.3. Let’s mark, that all frequencies
which given in the table, except for ω = 0.444 can be obtained from a solution of
a problem about vibrations square frame if Young’s modulus E to exchange on
E
/(

1− μ2
)
.

In Fig. 4 the graph of amplitude values dimensionless maximum bending
stresses σM = 6ã2M̃x̃ (x̃, ỹ)

/(
P̃ h̃2

)
,
(
M̃x̃ (x̃, ỹ) = −D̃

(
∂2w̃

/
∂x̃2 + μ∂2w̃

/
∂ỹ2
))

at μ = 0.3, ε = 0.1, y = 0, ω = 0.1 (thus actual frequency ω̃ ≈ 52/ã rad/sec) for
a case of a concentrated force q̃ (x̃, ỹ) = P̃ δ (x̃) δ (ỹ) is given. Thus the values of
plain stresses less then bending stresses, and greatest maximum bending stresses
arise under a concentrated force (logarithmic singularity) and on an edge.

Let’s mark, that in case of low-frequency vibrations the solution of a problem
(1)–(4) practically coincides with a solution of a problem about vibrations of the
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clamped plate

DΔ2w∗ (x, y)− ω2ε−2w∗ (x, y) = q (x, y) (0 < x < 1, |y| <∞) (5)

∂w∗/∂x|x=0 = 0, V ∗
x |x=0 = 0, ∂w∗/∂x|x=1 = 0, w∗|x=1 = 0. (6)

The plain stresses and displacements thus can be neglected. Moreover if the
solution of this problem is known at frequencies ω0, ω1 (in particular it is possible
to take ω0 = 0, i.e., static case) approximate solution of a problem (1)–(4) present
by the convenient formula for the engineering calculations

wω (x, y) = L0 (ω)w∗
0 (x, y) + L1 (ω)w∗

1 (x, y) + O
(
ω4ε−4

)
(7)

uω = vω = O
(
ε2wω

)
L0 (ω) =

(
ω2

1 − ω2
) (

ω2
1 − ω2

0

)−1
, L1 (ω) =

(
ω2 − ω2

0

) (
ω2

1 − ω2
0

)−1
.

It is necessary to have in view, that this formula is valid for the small fre-
quencies (ω/ε� 1, i.e., ω̃ � h̃c̃

/
ã2) smaller then first resonance frequency.

In Fig. 5 the graph of relative accuracies of maximum bending stresses on
dimensionless frequency ω in the point of the edge x = 1, y = 0 is constructed,
with ω0 = 0, ω1 = 0.1. The solid line shows an error of the formula (7), and
dashed error for a problem (5)–(6). From the graph we can see that with ω < 0.12
relative accuracy of the formula (7) less than 10%. The approximate solution of
a problem (5)–(6) about the fastened plate gives good outcomes up to the first
natural frequency.
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