Mathematical Subject Classification: 11N25, 11S40
UDC 511

S. Varbanets
I. I. Mechnikov Odessa National University

PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Варбанець С. Лінійно-інверсний генератор псевдовипадкових чисел за

 модулем ступеня двійки. Розглянуто узагальнення інверсного конгруентного генератора псевдовипадкових чисел за модулем ступеня простого числа. Отримані оцінки експоненшійних сум на послідовності псевдовипадкових чисел.Ключові слова: інверсні конгруентні псевдовипадкові числа, експоненційна сума, дискрепансія.

Варбанец С. Линейно-инверсный генератор псевдослучайных чисел по модулю степени двойки. Рассмотрено обобшение инверсного конгруэнтного генератора псевдослучайных чисел по модулю степени простого числа. Даны оценки экспоненциальных сумм на последовательности псевдослучайных чисел.
Ключевые слова: инверсные конгруэнтные псевдослучайные числа, экспоненциальная сумма, дискрепансия.

Varbanets S. Linear-inversive prn's generator with power of two modulus. Generalization of the inversive congruential generator of pseudorandom numbers with prime-power modules is considered and the trigonometrical sums on sequence of pseudorandom numbers are estimated.
Key words: inversive congruential pseudorandom numbers, exponential sum, discrepancy.

Introduction. Nonlinear methods of generating uniform pseudorandom numbers in the interval $[0,1)$ have been introduced and studied during the last twenty five years. The development of this attractive fields of research is described in the works of Lehn, Eichenauer, Niederreiter, Emmerich etc. A particularly promising approach is the inversive congruential method. Four types of inversive congruential generators can be distinguished, depending on whether the modulus is a prime, an odd prime power, a power of two or a product of distinct prime numbers. In the case of primepower modulus the inversive congruential generator is defined in the following way:

Let p be a prime, $p \geq 3, m$ be a natural number. For given $a, b \in \mathbb{Z}$ we take an initial value y_{0}, and let y_{n}^{-1} denotes a multiplicative inverse for y_{n} in $\mathbb{Z}_{p_{m}}^{*}$ if $\left(y_{n}, p\right)=1$, and $y_{n}^{-1}=0$ if $m=1$ and $y_{n} \equiv 0(\bmod p)$. Then the recurrence relation

$$
\begin{equation*}
y_{n+1} \equiv a y_{n}^{-1}+b\left(\bmod p^{m}\right) \tag{1}
\end{equation*}
$$

generates a sequence y_{0}, y_{1}, \ldots which we call the inversive congruential sequence modulo p^{m}.
The case $p \geq 3, m=1$ studied in [2],[6]. For the case $p=2, m>3$ the relevant investigation presented in $[1,3,4]$.

In 1996 T. Kato, L.-M. Wu and N. Yanagihara[4] studied a non-linear congruential generator for the modulus $M=2^{m}$ defined by the congruence

$$
\begin{equation*}
y_{n+1} \equiv a \bar{y}_{n}+b+c y_{n} \quad(\bmod M), n=0,1, \ldots \tag{2}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
\left(y_{0}, 2\right)=(a, 2)=1, b \equiv c \equiv 2 \quad(\bmod 2) \tag{3}
\end{equation*}
$$

Note that the conditions (3) guarantee infinity of the process of generation. This authors obtained the condition whereby the recursion (2) generates the sequence $\left\{y_{n}\right\}$ with the maximal period $\tau=2^{m-1}$. They also give the estimate for the discrepancy of the sequence $\left\{x_{n}\right\}, x_{n}=\frac{y_{n}}{p^{m}}$.

In the present note we give the representation of elements y_{n} as polynomials of n and y_{0} and that permits to improve the results from [7].

The essential nature of our method consists in the construction of representations of y_{n} as the polynomial on initial value y_{0} and number n.

It is purpose of the present work to demonstrate that the sequence of PRN's $\left\{x_{n}\right\}=\left\{\frac{y_{n}}{2^{m}}\right\}, n=0,1, \ldots$, generated by the recursion (2), satisfies the requirements of equidistribution on $[0,1)$ and passes the serial test on unpredictability.

Notation. Variables of summation automatically range over all integers satisfying the condition indicated. For $m \in \mathbb{N}$ and $M=2^{m}$ the notation \mathbb{Z}_{M} (respectively, \mathbb{Z}_{M}^{*}) denotes the complete(respectively, reduced) system of residues modulo M. We write $\operatorname{gcd}(a, b)=(a, b)$ for notation a great common divisor of a and b. For $z \in \mathbb{Z}$, $(z, 2)=1$ let z^{-1} be the multiplicative inverse of a modulo M. We write $\nu_{2}(A)=\alpha$ if $2^{\alpha} \mid A, 2^{\alpha+1} \nmid A$. For real t, the abbreviation $e(t)=e^{2 \pi i t}$ is used.

Auxiliary results. We need the following two simple statements.
Let $f(x)$ be a periodic function with period τ. For any $N \in \mathbb{N}, 1 \leq N \leq \tau$, we denote

$$
S_{N}(f):=\sum_{x=1}^{N} e(f(x))
$$

Lemma 1. In above notations we have

$$
\begin{equation*}
\left|S_{N}(f)\right| \leq \max _{1 \leq n \leq \tau}\left|\sum_{x=1}^{\tau} e\left(f(x)+\frac{n x}{\tau}\right)\right| \cdot(1+\log \tau) \tag{4}
\end{equation*}
$$

This lemma is well-known.
Lemma 2 ([7]). Let p be a prime number and let $f(x), g(x)$ be polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=A_{1} x+A_{2} x^{2}+2\left(A_{3} x^{3}+\cdots\right), \\
& g(x)=B_{1} x++2\left(B_{2} x^{2}+\cdots\right),
\end{aligned}
$$

and let, moreover, $\nu_{2}\left(A_{2}\right)=\alpha>0, \nu_{2}\left(A_{j}\right) \geq \alpha, j=3,4, \ldots$ Then we have the following estimates

$$
\begin{gather*}
\left|\sum_{x \in \mathbb{Z}_{2^{m}}} e\left(\frac{f(x)}{2^{m}}\right)\right| \leq \begin{cases}2^{\frac{m+\alpha}{2}+1} & \text { if } \quad \nu_{2}\left(A_{1}\right) \geq \alpha, \\
0 & \text { else; }\end{cases} \tag{5}\\
\left|\sum_{x \in \mathbb{Z}_{2}^{*} m} e\left(\frac{f(x)+g\left(x^{-1}\right)}{2^{m}}\right)\right| \leq\left\{\begin{array}{lll}
2^{\frac{m}{2}+1} & \text { if } & B_{1} \text { is odd, } \\
2^{\frac{m+\alpha+4}{2}} & \text { if } & \nu_{2}\left(A_{1}\right) \geq \ell, \\
& \begin{array}{ll}
\nu_{2}\left(B_{j}\right) \geq \alpha, \ldots, \\
0 & \text { if } \\
\nu_{2}\left(A_{1}\right)<\alpha \leq \nu_{2}\left(B_{j}\right), \\
& j=1,2,3, \ldots,
\end{array}
\end{array}\right. \tag{6}
\end{gather*}
$$

Now we will obtain the representation of y_{n} in the form of rational function on y_{0}.
Let $n=2 k$. We put

$$
\begin{equation*}
y_{2 k}=\frac{\sum_{\ell \geq 0} A_{\ell}^{2 k} y_{0}^{\ell}}{\sum_{\ell \geq 0} B_{\ell}^{2 k} y_{0}^{\ell}}, \quad A_{\ell}^{2 k}, B_{\ell}^{2 k} \in \mathbb{Z} \tag{7}
\end{equation*}
$$

After simple calculations by recursion (2) we infer

$$
y_{2(k+1)}=\frac{\sum_{\ell \geq 0} A_{\ell}^{2(k+1)} y_{0}^{\ell}}{\sum_{\ell \geq 0} B_{\ell}^{2(k+1)} y_{0}^{\ell}},
$$

where

$$
\begin{aligned}
A_{\ell}^{2(k+1)} & =\sum_{s+t=\ell} \sum_{i=0}^{s} \sum_{j=0}^{t}\left(a A_{i} B_{s-i} A_{j} B_{t-j}+a b B_{i} A_{j} B_{s-i} B_{t-j}+\right. \\
& +b^{2} A_{i} A_{j} B_{s-i} B_{t-j}+b c A_{i} A_{j} A_{s-i} B_{t-j}+a^{2} c B_{i} B_{j} B_{s-i} B_{t-j}+ \\
& +a b c B_{i} A_{j} B_{s-i} B_{t-j}+a c^{2} B_{i} B_{s-i} A_{j} A_{t-j}+a b c A_{i} B_{j} B_{s-i} B_{t-j}+ \\
& +b^{2} c A_{i} A_{j} B_{s-i} A_{t-j}+b c^{2} A_{i} A_{j} B_{s-i} A_{t-j}+a c^{2} A_{i} B_{j} A_{s-i} B_{t-j}+ \\
& \left.+b c^{2} A_{i} A_{j} A_{s-i} B_{t-j}+c^{3} A_{i} A_{j} A_{s-i} A_{t-j}\right) ; \\
B_{\ell}^{2(k+1)}= & \sum_{\substack{s, t \geq 0 \\
s+t=\ell}} \sum_{i=0}^{s} \sum_{j=0}^{t}\left(a B_{i} A_{j} B_{s-i} B_{t-j}+A_{i} A_{j} B_{t-j}\left(b B_{s-i}+c A_{s-i}\right)\right)
\end{aligned}
$$

(Here, for the sake of comfort we write A_{j}, B_{j} instead $A_{i}^{(2 k)}, B_{j}^{(2 k)}$).
Let j_{n}^{\prime} (respectively, $j_{n}^{\prime \prime}$) be a exponent of y_{0}, for which $\left(A_{j_{n}^{\prime}}^{(2 k)}, 2\right)=1$ (respectively, $\left.\left(A_{j_{n}^{\prime \prime}}^{(2 k)}, 2\right)=1\right)$.
By induction we infer easy

$$
i_{2 k}^{\prime}=\frac{2^{2 k}+2}{3}, \quad j_{2 k}^{\prime \prime}=j_{2 k}^{\prime}-1
$$

Moreover,

$$
\begin{aligned}
& \nu_{2}\left(A_{\ell}^{(2 k)}\right) \geq\left|\frac{j_{2 k}^{\prime}-\ell}{2}\right| \cdot \nu_{2}(b), \\
& \nu_{2}\left(B_{\ell}^{(2 k)}\right) \geq\left|\frac{j_{2 k}^{\prime \prime}-\ell}{2}\right| \cdot \nu_{2}(b) .
\end{aligned}
$$

Thus, the numerator and the denominator of fraction in (7) for $k \geq 2 m_{0}+1, m_{0}=$ $\left[\frac{m}{\nu_{2}(b)}\right]$, over $\mathbb{Z}_{2^{m}}$ contain at the most $4 m_{0}+1$ summands, i.e.

$$
\begin{equation*}
y_{2 k} \frac{\left(\sum_{\ell=j_{n}^{\prime}-2 m_{0}}^{j_{n}^{\prime}+2 m_{0}} A_{\ell}^{(2 k)} y_{0}^{\ell}\right)}{\left(\sum_{\ell=j_{n}^{\prime \prime}-2 m_{0}}^{j_{n}^{\prime \prime}+2 m_{0}} B_{\ell}^{(2 k)} y^{\ell}\right)} . \tag{8}
\end{equation*}
$$

Divide on a^{k} the numerator and the denominator in (8). Then we obtain the following representation

$$
\begin{equation*}
y_{2 k}=\frac{\sum \bar{A}_{\ell} y^{\ell}}{\sum \bar{B}_{\ell} y^{\ell}}, \bar{A}_{\ell} \equiv a^{-k} A_{\ell}, \bar{B}_{\ell} \equiv a^{-k} B_{\ell}\left(\bmod 2^{m}\right) . \tag{9}
\end{equation*}
$$

Now the coefficients $\bar{A}_{\ell}, \bar{B}_{\ell}$ are polynomials on k with coefficients, which depend only on a, b_{0}, c_{0}, m, where $b=2^{\nu_{2}(b)} b_{0}, c=2^{\nu_{2}(b)} c_{0}$, and these coefficients have the indicated above properties of divisibility on power of 2 .

By the congruence for every $t \in \mathbb{Z}$

$$
\frac{1}{1-2 t} \equiv 1+2 t+2^{2} t^{2}+\cdots+2^{m-1} t^{m-1}(\bmod M)
$$

and taking into account that in denominator of $y_{2 k}$ it has only one power y_{0} (just $\left.y_{0}^{i_{2 k}^{\prime \prime}}\right)$ with coefficient $B_{j_{2 k}^{\prime \prime}},\left(B_{j_{2 k}^{\prime \prime}}, 2\right)=1$, we may write

$$
\begin{equation*}
y_{2 k} \equiv F\left(k, y_{0}, y_{0}^{-1}\right)\left(\bmod 2^{m}\right), \quad F(u, v, w) \in \mathbb{Z}[u, v, w] . \tag{10}
\end{equation*}
$$

The analogous representation holds for $y_{2 k+1}$

$$
\begin{equation*}
y_{2 k+1} \equiv G\left(k, y_{0}, y_{0}^{-1}\right)(\bmod M) . \tag{11}
\end{equation*}
$$

Let $\nu_{2}(b) \leq \nu_{2}(c)$. We make more precise the representations (10), (11). Using the principle of mathematical induction it is not difficult to check the correctness of the following relations for $k \geq 2 m+1$:

$$
\begin{align*}
y_{2 k} & =k b+k a c y_{0}^{-1}+\left(1-k(k-1) a^{-1} b^{2}\right) y_{0}+\left(-k a^{-1} b\right) y_{0}^{2}+ \tag{12}\\
& +\left(-k a^{-1} c+k^{2} a^{-2} b^{2}\right) y_{0}^{3}+2^{\alpha} F_{0}\left(k, y_{0}, y_{0}^{-1}\right), \\
y_{2 k+1} & =(k+1) b+\left(a-k(k+1) b^{2}\right) y_{0}^{-1}+(-k a b) y_{0}^{-2}+ \\
& +\left(-k a^{2} c+k^{2} a b^{2}\right) y_{0}^{-3}+(k+1) c y_{0}+2^{\alpha} G_{0}\left(k, y_{0}, y_{0}^{-1}\right), \tag{13}
\end{align*}
$$

where $\alpha:=\min \left(\nu_{2}\left(b^{3}\right), \nu_{2}(b c)\right)$;

$$
F_{0}(u, v, w), G_{0}(u, v, w) \in \mathbb{Z}[u, v, w], F_{0}(0, v, w)=G_{0}(0, v, w)=0 .
$$

Thus, we get the following result.

Lemma 3. Let $\left\{y_{n}\right\}$ is the sequence of PRN's generated by the recursion (2) with conditions $\left(y_{0}, 2\right)=(a, 2)=1,0<\nu_{2}(b)<\nu_{2}(c)$. There exist the polynomials $F_{0}(u, v, w), G_{0}(u, v, w)$ over $\mathbb{Z}, F_{0}(0, v, w)=G_{0}(0, v, w)=0$ such that the relations (12) and (13) are right for any $k \geq 2 m+1$.

Corollary 1. Let $m \geq 3$. Then the sequence $\left\{y_{n}\right\}$ defined by recursion (2) is purely periodic, where $b=2^{\nu} b_{0},\left(b_{0}, 2\right)=1, c=2^{\mu} c_{0},\left(c_{0}, 2\right)=1, \mu>\nu>0$; $\nu_{2}\left(a-y_{0}^{2}\right)=\nu_{0} \geq 1$. And its period τ is equal
(i) $\quad 2^{m-2 \nu+1} \quad$ if $m \geq 2 \nu, \nu_{0}>\nu$;
(ii) $2^{m-2 \nu-\beta_{0}+1}$ if $m>2 \nu, \nu_{0}=\nu, \beta_{0}=\nu_{2}\left(\frac{y_{0}^{2}-a}{2^{\nu_{0}}}+b_{0}\right)$;
(iii) $2^{m-\nu-\nu_{0}+1}$ if $m \geq \nu+n u_{0}, \nu_{0}<\nu$.

Proof. The first part of corollary follows as in [7].
To prove the second part, we have

$$
\begin{gather*}
y_{2 k} \equiv y_{0}\left(\bmod 2^{m}\right) \Longleftrightarrow \\
k b\left(1-a^{-1} y_{0}^{2}\right)-k(k-1) a^{-1} b^{2} y_{0}+ \tag{14}\\
+k a^{-1} c y_{0}^{-1}\left(a^{2}-y_{0}^{4}\right)+2^{\alpha} F_{0}(k) \equiv 0\left(\bmod 2^{m}\right) .
\end{gather*}
$$

It follows that k must be a least positive integer for which the congruence $k \equiv$ $0\left(\bmod 2^{\ell}\right)$ holds, where

$$
\ell=\left\{\begin{array}{lll}
\nu_{2}(b)+\nu_{2}\left(a-y_{0}^{2}\right) & \text { if } & \nu_{2}\left(a-y_{0}^{2}\right)<\nu_{2}(b) \leq \frac{1}{2} m ; \\
2 \nu_{2}(b) & \text { if } & \nu_{2}(b) \leq \frac{1}{2} m, \nu_{2}\left(a-y_{0}^{2}\right)>\nu_{2}(b) .
\end{array}\right.
$$

Remark 1. From (i), (ii) of Corollary 2 we obtain that for $\nu_{0} \geq \nu$ the maximal period $\tau=2^{m-2 \nu+1}$ achieves, if and only if, $\nu_{0}>\nu$ and $m \geq 2 \nu$. In the work [4] this assertion was obtained only for $\nu=1$.

Exponential sums on sequence of PRN's. In this section we determine the estimates of certain exponential sums over the linear-inversive congruential sequence $\left\{y_{n}\right\}$ which was defined in (2).

For $h_{1}, h_{2} \in \mathbb{Z}$ we denote

$$
\begin{equation*}
\sigma_{k, \ell}\left(h_{1}, h_{2} ; M\right):=\sum_{y_{0} \in \mathbb{Z}_{M}^{*}} e\left(\frac{h_{1} y_{k}+h_{2} y_{\ell}}{M}\right),\left(h_{1}, h_{2} \in \mathbb{Z}\right) . \tag{15}
\end{equation*}
$$

Here we consider y_{k}, y_{ℓ} as a functions at y_{0} generated by (2) (see, formula (13)).
Theorem 1. Let $\left(h_{1}, h_{2}, 2\right)=1, \nu_{2}\left(h_{1}+h_{2}\right)=\beta, \nu_{2}\left(h_{1} k+h_{2} \ell\right)=\gamma$. The following estimates

$$
\left|\sigma_{k, \ell}\left(h_{1}, h_{2} ; M\right)\right| \leq\left\{\begin{array}{lll}
2^{\frac{m+2}{2}} & \text { if } \quad k \equiv \ell(\bmod 2) ; \\
0 & \text { if } k \equiv \ell(\bmod 2) \\
& \text { and } \beta<\gamma+\nu, m-\beta-\nu>0 ; \\
2^{m-1} & \text { if } k \equiv \ell(\bmod 2) \\
2^{\frac{m+\nu+\gamma+2}{2}} & \text { and } \beta \geq \gamma+\nu, m-\nu-\gamma \leq 0 ; & \text { if } k \equiv \ell(\bmod 2) \\
& \text { and } \beta \geq \gamma+\nu, m-\nu-\gamma>0 .
\end{array}\right.
$$

hold.

Proof. We consider two cases:
(I) If k and ℓ be non-negative integers of different parity, we obtain the statement of theorem by (12), (13) and Lemma 2.
(II) Let k and ℓ be integers of identical parity. Then for $k:=2 k$, $\ell:=2 \ell$, we have modulo M :

$$
\begin{gathered}
h_{1} y_{2 k}+h_{2} y_{2 \ell}= \\
=B_{0}+B_{1} y_{0}+B_{2} y_{0}^{2}+B_{3} y_{0}^{3}+B_{-1} y_{0}^{-1}+2^{\alpha} K\left(y_{0}, y_{0}^{-1}\right):=F_{2}\left(y_{0}, y_{0}^{-1}\right),
\end{gathered}
$$

where $B_{1}=h_{1}+h_{2}+2^{2 \nu} B_{1}^{\prime}$,

$$
B_{2}=-a b\left(h_{1} k+h_{2} \ell\right)+2^{\alpha} B_{2}^{\prime},
$$

$$
B_{3}=-a^{-2} b^{2}\left(h_{1} k^{2}+h_{2} \ell^{2}\right)-a^{-1} c\left(h_{1} k+h_{2} \ell\right)+2^{\alpha} B_{3}^{\prime},
$$

$$
B_{-1}=a c\left(h_{1} k+h_{2} \ell\right)+2^{\alpha} B_{-1}^{\prime},
$$

moreover, $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{-1}^{\prime}$ and coefficients of $K\left(y_{0}, y_{0}^{-1}\right)$ contain multipliers of form $h_{1} k^{j}+h_{2} \ell^{j}, j \geq 0$.

Let $\nu_{2}\left(h_{1}+h_{2}\right)=\beta \geq \nu, \nu_{2}\left(h_{1} k+h_{2} \ell\right)=\gamma \geq 0, \delta=\min (\beta, \gamma)$.
The application of Lemma 1 gives

$$
\left|\sigma_{2 k, 2 \ell}\left(h_{1}, h_{2} ; M\right)\right| \leq \begin{cases}0 & \text { if } \beta<\gamma+\nu, m-\beta-\nu>0 \\ 2^{\frac{m+\nu+\gamma+2}{2}} & \text { if } \beta \geq \gamma+\nu, m-\nu-\gamma>0, \\ 2^{m-2} & \text { if } \beta \geq \gamma+\nu, m-\nu-\gamma \leq 0,\end{cases}
$$

where $\varphi\left(2^{m-1}\right)$ is the totient Euler function.
For $k \equiv \ell \equiv 1(\bmod 2)$ we have the analogous result.
This finishes the proof of Theorem 1.

Remark 2. The case $\nu_{2}\left(\left(h_{1}, h_{2}, M\right)\right)>1$ reduces easily to the case $\nu_{2}\left(\left(h_{1}, h_{2}, 2\right)\right)=$ 0 .

Let h be integer, $(h, M)=2^{s}, 0 \leq s<m$, and let τ be a least period length of the sequence of PRN's $\left\{y_{n}\right\}, n=0,1, \ldots$, defined in (2). For $1 \leq N \leq \tau$ we denote

$$
\begin{equation*}
S_{N}\left(h, y_{0}\right)=\sum_{n=0}^{N-1} e\left(\frac{h y_{n}}{M}\right) . \tag{16}
\end{equation*}
$$

The sum $S_{N}\left(h, y_{0}\right)$ calls the exponential sum on the sequence of PRN's $\left\{y_{n}\right\}$.
We shall obtain the bound for $S_{N}\left(h, y_{0}\right)$.
By the relation (12)-(13) we get for $k \geq 2 m+1$:

$$
\begin{gather*}
y_{2 k}=A_{0}+A_{1} k+A_{2} k^{2}+A_{3} k^{3}:=F(k), \tag{17}\\
y_{2 k+1}=B_{0}+B_{1} k+B_{2} k^{2}+B_{3} k^{3}:=G(k), \tag{18}
\end{gather*}
$$

where

$$
\begin{align*}
& A_{0}=A_{0}\left(y_{0}\right) \equiv y_{0}\left(\bmod 2^{\alpha}\right) \\
& A_{1}=A_{1}\left(y_{0}\right) \equiv b\left(1-a^{-1} y_{0}^{2}\right)+a^{-1} b^{2} y_{0}+a c y_{0}^{-1}\left(1-a^{-2} y^{4}\right)\left(\bmod 2^{\alpha}\right) \\
& A_{2}=A_{2}\left(y_{0}\right) \equiv-a^{-1} b^{2} y_{0}+a^{-2} b^{2} y_{0}^{3}\left(\bmod 2^{\alpha}\right)=-a^{-1} b^{2} y_{0}\left(1-a^{-1} y_{0}^{2}\right) \\
& B_{0}=B_{0}\left(y_{0}\right) \equiv b+a y_{0}^{-1}+c y_{0}\left(\bmod 2^{\alpha}\right) \tag{19}\\
& B_{1}=B_{1}\left(y_{0}\right) \equiv b\left(1-a y_{0}^{-2}\right)-b^{2} y_{0}^{-1}-y_{0} c\left(1-a^{2} y_{0}^{-4}\right)\left(\bmod 2^{\alpha}\right) \\
& B_{2}=B_{2}\left(y_{0}\right) \equiv-b^{2} y_{0}^{-1}+a b^{2} y_{0}^{-3}\left(\bmod 2^{\alpha}\right)=-b^{2} y_{0}^{-1}\left(1-a y_{0}^{-2}\right) \\
& A_{3}=A_{3}\left(y_{0}, k\right) \equiv B_{3}\left(y_{0}, k\right) \equiv B_{3} \equiv 0\left(\bmod 2^{\alpha}\right), \\
& \alpha=\min (3 \nu, \nu+\mu) .
\end{align*}
$$

After all this preliminary work, it is straightforward to prove two main result of this section:

Theorem 2. Let the linear-inversive congruential sequence generated by the recursion (2) has the period τ, and let $\nu_{2}(b)=\nu, \nu_{2}(c)=\mu, \nu<\mu, \alpha=\min (3 \nu, \nu+\mu)$, $\nu_{2}\left(a-y_{0}^{2}\right)=\nu_{0}, 2 \nu \leq m$. Then the following bounds

$$
\left|S_{\tau}\left(h, y_{0}\right)\right| \leq\left\{\begin{array}{lll}
O(m) & \text { if } & p=2, \nu_{0}<\nu, \nu_{2}(h)<m-2 \nu \\
4 \cdot 2^{\frac{m+\nu_{2}(h)}{2}} & \text { if } & \nu_{0} \geq \nu, \nu_{2}(h)<m-2 \nu \\
\tau & \text { else }, &
\end{array}\right.
$$

hold.
Proof. From the formulas (17)-(18) we have

$$
\begin{align*}
\left|S_{\tau}\left(h, y_{0}\right)\right| & =\left|\sum_{n=0}^{\tau-1} e\left(\frac{h y_{n}}{M}\right)\right|=\left|\sum_{n=0}^{2^{\ell}-1} e\left(\frac{h y_{n}}{M}\right)\right| \leq \\
& \leq\left|\sum_{\substack{k_{1}=0 \\
k=2 k_{1}}}^{2^{\ell}-1} e\left(\frac{h y_{2 k_{1}}}{M}\right)\right|+\left|\sum_{\substack{k_{1}=0 \\
k=2 k_{1}+1}}^{2^{\ell}-1} e\left(\frac{h y_{2 k_{1}+1}}{M}\right)\right|= \tag{20}\\
& =\left|\sum_{k=0}^{2^{\ell}-1} e\left(\frac{h F(k)}{M}\right)\right|+\left|\sum_{k=0}^{2^{\ell}-1} e\left(\frac{h G(k)}{M}\right)\right|+O(m) .
\end{align*}
$$

In the last part of the formula (20) we into account that the representation y_{n} as a polynomial on k holds only for $k \geq 2 m+1$.

By (18), the Corollaries 1 and Lemma 2 (from (5)) we easy obtain

$$
\left|S_{\tau}\left(h, y_{0}\right)\right| \leq\left\{\begin{array}{lll}
O(m) & \text { if } & p=2, \nu_{0}<\nu, \nu_{2}(h)<m-2 \nu, \\
2^{\frac{m+\nu_{2}(h)+4}{2}} & \text { if } & \nu_{0} \geq \nu, \nu_{2}(h)<m-2 \nu, \\
\tau & \text { else. }
\end{array}\right.
$$

The constants implied by the O-symbol are absolute.
Corollary 2. Let $1 \leq N<\tau$. Then in the notations of Theorem 2 we have

$$
\left|S_{N}\left(h, y_{0}\right)\right| \leq \begin{cases}N & \text { if } \quad \nu+\nu_{2}(h) \geq m \\ 2^{\frac{m+\nu(h)+4}{2}} \log \tau & \text { if } \quad \nu+\nu_{2}(h)<m .\end{cases}
$$

This statement follows from Theorem 2 and Lemma 1.
Let $N \leq 2^{m-1}$.
We will study $S_{N}\left(h, y_{0}\right)$ at the average over $y_{0} \in \mathbb{Z}_{M}^{*}$.
Theorem 3. Let a, b, c be parameters of the linear-inversive congruential generator (2) and let $(a, 2)=1,0<\nu=\nu_{2}(b)<\nu_{2}(c), 1 \leq N \leq 2^{m-1}, \nu_{2}(h)=2^{s}, s<m$. Then the average value of the $S_{N}\left(h, y_{0}\right)$ over $y_{0} \in \mathbb{Z}_{M}^{*}$ satisfies

$$
\bar{S}_{N}(h)=\frac{1}{2^{m-1}} \sum_{y_{0} \in \mathbb{Z}_{M}^{*}}\left|S_{N}\left(h, y_{0}\right)\right| \leq N^{\frac{1}{2}} 2^{-\frac{m}{4}} 2 \sqrt{10} \cdot 2^{\frac{\nu+s}{4}},
$$

where $s=\nu_{2}((h, M)), h=h_{0} 2^{s}$.
Proof. First we will consider the case $s=0$, i.e. $(h, 2)=1$. By the CauchySchwarz inequality we get for $\sigma_{k, \ell}=\sigma_{k, \ell}(h,-h ; M)$

$$
\begin{aligned}
& \left|\bar{S}_{N}(h)\right|^{2} \leq \frac{1}{2^{m-1}} \sum_{y_{0} \in \mathbb{Z}_{M}^{*}}\left|S_{N}\left(h, y_{0}\right)\right|^{2}=\frac{1}{2^{m-1}} \sum_{k, \ell=0}^{N-1} \sum_{y_{0} \in \mathbb{Z}_{M}^{*}} e\left(\frac{h\left(y_{k}-y_{\ell}\right)}{M}\right) \leq \\
& \leq \frac{1}{2^{m-1}} \sum_{k, \ell=0}\left|\sigma_{k, \ell}\right|=\frac{1}{2^{m-1}} \sum_{r=0}^{\infty} \sum_{\substack{k, \ell=0 \\
\hline, l}}^{N-1}\left|\sigma_{k, \ell}\right|=\frac{1}{2^{m-1}} \sum_{\gamma=0}^{m-1} \sum_{\substack{k, \ell=0 \\
\nu_{2}(k-\ell)=\gamma}}^{N-1}\left|\sigma_{k, \ell}\right|+ \\
& +\frac{1}{2^{m-1}} \sum_{\substack{k=0 \\
k=\ell}}^{N-1}\left|\sigma_{k, k}\right|=N+\frac{1}{2^{m-1}} \sum_{\gamma=0}^{m-1} \sum_{\substack{k, \ell=0 \\
\nu_{2}(k-\ell)=\gamma}}^{N-1}\left|\sigma_{k, \ell}\right| .
\end{aligned}
$$

Using Theorem 1 we, after simple calculations, obtain

$$
\begin{aligned}
& \left|\bar{S}_{N}(h)\right|^{2} \leq N+\frac{1}{2^{m-1}} \sum_{\gamma=0}^{m-1}\left(\sum_{\substack{k, \ell=0 \\
k \neq \ell(\text { mod } 2) \\
\nu_{2}(k-\ell)=\gamma}}^{N-1}\left|\sigma_{k, \ell}\right|+\sum_{\substack{k, \ell=0 \\
k=\ell \text { mod } 2) \\
\nu_{2}(k-\ell)=\gamma}}^{N-1}\left|\sigma_{k, \ell}\right|\right) \leq \\
& \leq N^{\frac{1}{2}} 2^{-\frac{m}{4}}\left(2+\sqrt{10} \cdot 2^{\frac{\nu}{4}}\right) .
\end{aligned}
$$

Now an argument similar to the one used to prove (21) leads to general bound

$$
\begin{equation*}
\left|S_{N}(h)\right| \leq N^{\frac{1}{2}} 2^{-\frac{m-s}{4}}\left(2+\sqrt{10} \cdot 2^{\frac{\nu}{4}}\right) . \tag{22}
\end{equation*}
$$

The estimates of exponential sums obtained in this section we will use for study of properties of the sequence PRN's $\left\{y_{n}\right\}$.

Discrepancy. Equidistribution and statistical independence properties of pseudorandom numbers can be analyzed based on the discrepancy of certain point sets in $[0,1)^{s}$.

For N arbitrary points $\mathfrak{t}_{0}, \mathfrak{t}_{1}, \ldots, \mathfrak{t}_{N-1} \in[0,1)^{s}$, the discrepancy is defined by

$$
D_{N}^{(s)}\left(\mathfrak{t}_{0}, \mathfrak{t}_{1}, \ldots, \mathfrak{t}_{N-1}\right):=\sup _{I}\left|\frac{A_{N}(I)}{N}-|I|\right|,
$$

where the supremum is extended over all subintervals I of $[0,1)^{s}, A_{N}(I)$ is the number of points among $\mathfrak{t}_{0}, \mathfrak{t}_{1}, \ldots, \mathfrak{t}_{N-1}$ falling into I, and $|I|$ denotes the s-dimensional volume I.

Let $\left\{y_{n}\right\}$ be the sequence of PRN's generated by (2) and let $x_{n}=\frac{y_{n}}{M}, n=0,1, \ldots$.. From our sequence $\left\{x_{n}\right\}$ we derive the sequence $\left\{X_{n}^{(s)}\right\}$ of points in $[0,1)^{s}$ putting $X_{n}^{(s)}:=\left(x_{n}, x_{n+1}, \ldots, x_{n+s-1}\right)$.

We will say the sequence $\left\{x_{n}\right\}$ passes d-dimensional serial test on independence if for every $s \leq d$ the sequence $\left\{X_{n}^{(s)}\right\}$ has uniform distribution.

Theorem 4. The discrepancy $D_{N}^{(s)}, s=1,2,3,4$, of points constructed by linearinversive congruential generator (2) with parameters a, b, c, which satisfy the condition

$$
0<\nu_{2}(b)=\nu, 2 \nu<\mu=\nu_{2}(c), \nu_{2}\left(a-y_{0}^{2}\right)=\nu_{0} \geq 1, m \geq 2 \nu, \nu_{0}>\nu
$$

the following bound

$$
\begin{equation*}
D_{\tau}^{(s)} \leq \frac{s}{2^{m-\nu+1}}+2^{-\frac{m-2 \nu}{2}} \log ^{s} M . \tag{23}
\end{equation*}
$$

holds.
Proof. Consider only the case $s=3$ (This case is the most complex). In order to apply Turan-Erdös-Koksma inequality in the Niederreiter's form[6] we must have an estimate for sum

$$
\sum_{n=0}^{\tau-1} e\left(\frac{h_{1} y_{n}+h_{2} y_{n+1}+h_{3} y_{n+2}}{M}\right)
$$

Without loss of generality, we can suppose that $\left(h_{1}, h_{2}, h_{3}, 2\right)=1$. From (17)-(19) we can write

$$
\begin{gather*}
h_{1} y_{2 k}+h_{2} y_{2 k+1}+h_{3} y_{2 k+2}= \\
=\left(h_{1} y_{0}+h_{2}\left(a y_{0}^{-1}+b+c y_{0}\right)+h_{3} y_{0}\right)+ \\
+k\left[h_{1}\left(\left(1-a^{-1} y_{0}^{2}\right) b+a y_{0}^{-1} c\left(1-a^{-2} y_{0}^{4}\right)+y_{0} b^{2}\right)+\right. \\
+h_{2}\left(-\left(\left(1-a^{-1} y_{0}^{2}\right) b+b y_{0}^{-1}+a^{2} c y_{0}^{-1}\right)\right)+ \\
+h_{3}\left(b\left(1-a^{-1} y_{0}^{2}\right)+b a y_{0}^{-1}\left(1-a^{-1} y_{0}^{2}\right)+\right. \tag{24}\\
\left.\left.+y_{0} b^{2}+2 a^{-1} y_{0} b^{2}\left(1-a^{-1} y_{0}^{2}\right)\right)\right]+ \\
+k^{2} b^{2}\left(h_{1} a^{2}-h_{2} y_{0}\left(a^{-1}-a^{-2} y_{0}^{2}\right)+h_{2} a^{2}\right)+2^{\alpha} L\left(h_{1}, h_{2}, h_{3}, k\right)= \\
=C_{0}+C_{1} k+C_{2} k^{2}+2^{\alpha} L\left(h_{1}, h_{2}, h_{3}, k\right),
\end{gather*}
$$

say.
Since the congruences

$$
\begin{aligned}
& C_{1} \equiv 0\left(\bmod 2^{2 \nu+1}\right) \\
& C_{2} \equiv 0\left(\bmod 2^{2 \nu+1}\right)
\end{aligned}
$$

cannot be held simultaneously (taking into account that $\left.1-a^{-1} y_{0}^{2} \not \equiv 0\left(\bmod 2^{\nu_{0}}\right)\right)$ we obtain (by Lemma 2)

$$
\left|\sum_{1}\right| \leq\left\{\begin{array}{ll}
2^{\frac{m+\nu}{2}+1} & \text { if } \tag{25}\\
0 & \text { else }
\end{array} \quad A_{1}\left(h_{1}, h_{2}, h_{3}\right) \equiv 0\left(\bmod 2^{2 \nu}\right)\right.
$$

Similarly, we have

$$
\left|\sum_{2}\right| \leq\left\{\begin{array}{ll}
2^{\frac{m+\nu}{2}+1} & \text { if } \tag{26}\\
0 & \text { else },
\end{array} \quad B_{1}\left(h_{1}, h_{2}, h_{3}\right) \equiv 0\left(\bmod 2^{2 \nu}\right),\right.
$$

where $B_{1}\left(h_{1}, h_{2}, h_{3}\right)$ defined by the representation

$$
h_{1} y_{2 k+1}+h_{2} y_{2 k+2}+h_{3} y_{2 k+3}=B_{0}+B_{1} k+B_{2} k^{2}+2^{\alpha} M\left(h_{1}, h_{2}, h_{3}, k\right) .
$$

Now, Lemma 4 and simple calculations give

$$
D_{\tau}^{(3)} \leq \frac{3}{2^{m-\nu+1}}+2^{-\frac{m-2 \nu}{2}} \log ^{3} M
$$

The assertions of theorem 4 stay held if write N instead τ for $N \leq \tau$.
The Theorem 4 shows that the sequence of PRN's $\left\{x_{n}\right\}$ passe the s-dimensional test on unpredictability (for $s \leq 4$) if this sequence generated by the linear-inversive generator (2) under indicated conditions on the parameters a, b, c, y_{0}.

Conclusion. Since every nonlinear congruential generator passes also the s dimensional lattice test for all $s \leq 4$ we conclude that the sequence of PRN's $\left\{x_{n}\right\}$ generated by (2) may be use in applications.

1. Eichenauer-Herrmann J. Inversive Congruential Pseudorandom Number Generator with Power of Two Modulus / Eichenauer-Herrmann J., Grothe H. // ACM Transactions of Modeling and Computer Simulation. - 1992. - 2(1). - P. 1-11.
2. Eichenauer J. A non-linear congruential pseudorandom number generator / Eichenauer J., Lehn J. // Statist. Hefte. - 1986. - 27. - P. 315-326.
3. Eichenauer J. A nonlinear congruential pseudorandom number generator with power of two modulus / Eichenauer J., Lehn J., Topuzoğlu A. // Math. Comp. - 1988. - 51. - P. 757-759.
4. Kato T. On a nonlinear congruential pseudorandom number generator / Kato T., Wu L.-M., Yanagihara N. // Math. of Comp. - 1996. - 65(213). - P. 227-233.
5. Niederreiter H. Recent trends in random number and random vector generation / Niederreiter H. // Ann. Oper. Res. - 1991. - 31. - P. 323-345.
6. Niederreiter H. Random Number Generation and Quasi-Monte Carlo Methods / Niederreiter H. - SIAM, Philadelphia, Pa., 1992.
7. Varbanets P. On a nonlinear congruential pseudorandom number generator / Varbanets P., Varbanets S. // Analytic and Probabilistic Methods in Number Theory, Proc. Fifth. International Conference in Honour of J. Kubilius, Palanga, Lithuania, 04-10 Semtember 2011. - 2012. - 17. - P. 265-282.
