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PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL

AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Varbanets S. Linear-inversive prn’s generator with power of two modu-

lus. Generalization of the inversive congruential generator of pseudorandom numbers with

prime-power modules is considered and the trigonometrical sums on sequence of pseudoran-

dom numbers are estimated.
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Nonlinear methods of generating uniform pseudorandom num-
bers in the interval [0, 1) have been introduced and studied during the last twenty five
years. The development of this attractive fields of research is described in the works
of Lehn, Eichenauer, Niederreiter, Emmerich etc. A particularly promising approach
is the inversive congruential method. Four types of inversive congruential generators
can be distinguished, depending on whether the modulus is a prime, an odd prime
power, a power of two or a product of distinct prime numbers. In the case of prime-
power modulus the inversive congruential generator is defined in the following way:

Let p be a prime, p ≥ 3, m be a natural number. For given a, b ∈ Z we
take an initial value y0, and let y−1

n
denotes a multiplicative inverse for yn in Z

∗

pm

if
(yn, p) = 1, and y−1

n
= 0 if m = 1 and yn ≡ 0(mod p). Then the recurrence relation

yn+1 ≡ ay−1
n

+ b(mod pm) (1)

generates a sequence y0, y1, . . . which we call the inversive congruential sequence mod-
ulo pm.
The case p ≥ 3, m = 1 studied in [2],[6]. For the case p = 2, m > 3 the relevant
investigation presented in [1, 3, 4].
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In 1996 T. Kato, L.-M. Wu and N. Yanagihara[4] studied a non-linear congruential
generator for the modulus M = 2m defined by the congruence

yn+1 ≡ ayn + b+ cyn (mod M), n = 0, 1, . . . (2)

with the conditions

(y0, 2) = (a, 2) = 1, b ≡ c ≡ 2 (mod 2). (3)

Note that the conditions (3) guarantee infinity of the process of generation. This
authors obtained the condition whereby the recursion (2) generates the sequence {yn}
with the maximal period τ = 2m−1. They also give the estimate for the discrepancy
of the sequence {xn}, xn = yn

pm
.

In the present note we give the representation of elements yn as polynomials of n
and y0 and that permits to improve the results from [7].

The essential nature of our method consists in the construction of representations
of yn as the polynomial on initial value y0 and number n.

It is purpose of the present work to demonstrate that the sequence of PRN’s
{xn} =

{

yn

2m

}

, n = 0, 1, . . ., generated by the recursion (2), satisfies the requirements
of equidistribution on [0, 1) and passes the serial test on unpredictability.

Variables of summation automatically range over all integers satisfy-
ing the condition indicated. For m ∈ N and M = 2m the notation ZM (respectively,
Z
∗
M ) denotes the complete(respectively, reduced) system of residues modulo M . We

write gcd(a, b) = (a, b) for notation a great common divisor of a and b. For z ∈ Z,
(z, 2) = 1 let z−1 be the multiplicative inverse of a modulo M . We write ν2(A) = α

if 2α|A, 2α+1 6 |A. For real t, the abbreviation e(t) = e2πit is used.

We need the following two simple statements.
Let f(x) be a periodic function with period τ . For any N ∈ N, 1 ≤ N ≤ τ , we

denote

SN (f) :=
N
∑

x=1

e(f(x)).

Lemma 1. In above notations we have

|SN (f)| ≤ max
1≤n≤τ

∣

∣

∣

∣

∣

τ
∑

x=1

e
(

f(x) +
nx

τ

)

∣

∣

∣

∣

∣

· (1 + log τ). (4)

This lemma is well-known.

Lemma 2 ([7]). Let p be a prime number and let f(x), g(x) be polynomials over

Z

f(x) = A1x+A2x
2 + 2(A3x

3 + · · · ),

g(x) = B1x++2(B2x
2 + · · · ),

and let, moreover, ν2(A2) = α > 0, ν2(Aj) ≥ α, j = 3, 4, . . ..
Then we have the following estimates
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∣

∣

∣

∣

∣

∣

∑

x∈Z2m

e

(

f(x)

2m

)

∣

∣

∣

∣

∣

∣

≤

{

2
m+α

2
+1 if ν2(A1) ≥ α,

0 else;
(5)

∣

∣

∣

∣

∣

∣

∑

x∈Z∗

2m

e

(

f(x) + g(x−1)

2m

)

∣

∣

∣

∣

∣

∣

≤























2
m

2
+1 if B1 is odd,

2
m+α+4

2 if ν2(A1) ≥ ℓ,

ν2(Bj) ≥ α, . . . ,

0 if ν2(A1) < α ≤ ν2(Bj),
j = 1, 2, 3, . . . ,

(6)

Now we will obtain the representation of yn in the form of rational function on
y0.
Let n = 2k. We put

y2k =

∑

ℓ≥0

A2k
ℓ yℓ0

∑

ℓ≥0

B2k
ℓ yℓ0

, A2k
ℓ , B2k

ℓ ∈ Z. (7)

After simple calculations by recursion (2) we infer

y2(k+1) =

∑

ℓ≥0

A
2(k+1)
ℓ yℓ0

∑

ℓ≥0

B
2(k+1)
ℓ yℓ0

,

where

A
2(k+1)
ℓ =

∑

s+t=ℓ

s
∑

i=0

t
∑

j=0

(aAiBs−iAjBt−j + abBiAjBs−iBt−j+

+ b2AiAjBs−iBt−j + bcAiAjAs−iBt−j + a2cBiBjBs−iBt−j+

+ abcBiAjBs−iBt−j + ac2BiBs−iAjAt−j + abcAiBjBs−iBt−j+

+ b2cAiAjBs−iAt−j + bc2AiAjBs−iAt−j + ac2AiBjAs−iBt−j+

+ bc2AiAjAs−iBt−j + c3AiAjAs−iAt−j ) ;

B
2(k+1)
ℓ =

∑

s,t≥0
s+t=ℓ

s
∑

i=0

t
∑

j=0

(aBiAjBs−iBt−j +AiAjBt−j(bBs−i + cAs−i))

(Here, for the sake of comfort we write Aj , Bj instead A
(2k)
i , B

(2k)
j ).

Let j′n (respectively, j′′n) be a exponent of y0, for which
(

A
(2k)
j′
n

, 2
)

= 1 (respec-

tively,
(

A
(2k)
j′′
n

, 2
)

= 1).

By induction we infer easy

i′2k =
22k + 2

3
, j′′2k = j′2k − 1.
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Moreover,

ν2

(

A
(2k)
ℓ

)

≥

∣

∣

∣

∣

j′2k − ℓ

2

∣

∣

∣

∣

· ν2(b),

ν2

(

B
(2k)
ℓ

)

≥

∣

∣

∣

∣

j′′2k − ℓ

2

∣

∣

∣

∣

· ν2(b).

Thus, the numerator and the denominator of fraction in (7) for k ≥ 2m0 + 1, m0 =
[

m
ν2(b)

]

, over Z2m contain at the most 4m0 + 1 summands, i.e.

y2k

(

j′
n
+2m0
∑

ℓ=j′
n
−2m0

A
(2k)
ℓ yℓ0

)

(

j′′
n
+2m0
∑

ℓ=j′′
n
−2m0

B
(2k)
ℓ yℓ

) . (8)

Divide on ak the numerator and the denominator in (8). Then we obtain the following
representation

y2k =

∑

Aℓy
ℓ

∑

Bℓyℓ
, Aℓ ≡ a−kAℓ, Bℓ ≡ a−kBℓ(mod 2m). (9)

Now the coefficients Aℓ, Bℓ are polynomials on k with coefficients, which depend
only on a, b0, c0, m, where b = 2ν2(b)b0, c = 2ν2(b)c0, and these coefficients have the
indicated above properties of divisibility on power of 2.

By the congruence for every t ∈ Z

1

1− 2t
≡ 1 + 2t+ 22t2 + · · ·+ 2m−1tm−1(mod M)

and taking into account that in denominator of y2k it has only one power y0 (just

y
i′′
2k

0 ) with coefficient Bj′′
2k
, (Bj′′

2k
, 2) = 1, we may write

y2k ≡ F (k, y0, y
−1
0 )(mod 2m), F (u, v, w) ∈ Z[u, v, w]. (10)

The analogous representation holds for y2k+1

y2k+1 ≡ G(k, y0, y
−1
0 )(mod M). (11)

Let ν2(b) ≤ ν2(c). We make more precise the representations (10), (11). Using
the principle of mathematical induction it is not difficult to check the correctness of
the following relations for k ≥ 2m+ 1:

y2k = kb+ kacy−1
0 + (1− k(k − 1)a−1b2)y0 + (−ka−1b)y20+

+ (−ka−1c+ k2a−2b2)y30 + 2αF0(k, y0, y
−1
0 ),

(12)

y2k+1 = (k + 1)b+ (a− k(k + 1)b2)y−1
0 + (−kab)y−2

0 +

+ (−ka2c+ k2ab2)y−3
0 + (k + 1)cy0 + 2αG0(k, y0, y

−1
0 ),

(13)

where α := min (ν2(b
3), ν2(bc));

F0(u, v, w), G0(u, v, w) ∈ Z[u, v, w], F0(0, v, w) = G0(0, v, w) = 0.
Thus, we get the following result.
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Lemma 3. Let {yn} is the sequence of PRN’s generated by the recursion (2)
with conditions (y0, 2) = (a, 2) = 1, 0 < ν2(b) < ν2(c). There exist the polynomials
F0(u, v, w), G0(u, v, w) over Z, F0(0, v, w) = G0(0, v, w) = 0 such that the relations
(12) and (13) are right for any k ≥ 2m+ 1.

Corollary 1. Let m ≥ 3. Then the sequence {yn} defined by recursion (2) is
purely periodic, where b = 2νb0, (b0, 2) = 1, c = 2µc0, (c0, 2) = 1, µ > ν > 0;
ν2(a− y20) = ν0 ≥ 1. And its period τ is equal

(i) 2m−2ν+1 if m ≥ 2ν, ν0 > ν;

(ii) 2m−2ν−β0+1 if m > 2ν, ν0 = ν, β0 = ν2

(

y2
0−a

2ν0
+ b0

)

;

(iii) 2m−ν−ν0+1 if m ≥ ν + nu0, ν0 < ν.

Proof. The first part of corollary follows as in [7].
To prove the second part, we have

y2k ≡ y0(mod 2m)⇐⇒
kb(1− a−1y20)− k(k − 1)a−1b2y0+

+ka−1cy−1

0 (a2 − y40) + 2αF0(k) ≡ 0(mod 2m).
(14)

It follows that k must be a least positive integer for which the congruence k ≡
0(mod 2ℓ) holds, where

ℓ =

{

ν2(b) + ν2(a− y20) if ν2(a− y20) < ν2(b) ≤
1

2
m;

2ν2(b) if ν2(b) ≤
1

2
m, ν2(a− y20) > ν2(b).

Remark 1. From (i), (ii) of Corollary 2 we obtain that for ν0 ≥ ν the maximal
period τ = 2m−2ν+1 achieves, if and only if, ν0 > ν and m ≥ 2ν. In the work [4] this
assertion was obtained only for ν = 1.

In this section we determine the
estimates of certain exponential sums over the linear-inversive congruential sequence
{yn} which was defined in (2).

For h1, h2 ∈ Z we denote

σk,ℓ(h1, h2;M) :=
∑

y0∈Z
∗

M

e

(

h1yk + h2yℓ

M

)

, (h1, h2 ∈ Z). (15)

Here we consider yk, yℓ as a functions at y0 generated by (2) (see, formula (13)).

Theorem 1. Let (h1, h2, 2) = 1, ν2(h1 + h2) = β, ν2(h1k + h2ℓ) = γ. The
following estimates

|σk,ℓ(h1, h2;M)| ≤







































2
m+2

2 if k 6≡ ℓ(mod 2);
0 if k ≡ ℓ(mod 2)

and β < γ + ν, m− β − ν > 0;
2m−1 if k ≡ ℓ(mod 2)

and β ≥ γ + ν, m− ν − γ ≤ 0;

2
m+ν+γ+2

2 if k ≡ ℓ(mod 2)
and β ≥ γ + ν, m− ν − γ > 0.
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hold.

Proof. We consider two cases:
(I) If k and ℓ be non-negative integers of different parity, we obtain the statement of
theorem by (12), (13) and Lemma 2.

(II) Let k and ℓ be integers of identical parity. Then for k := 2k, ℓ := 2ℓ, we
have modulo M :

h1y2k + h2y2ℓ =
= B0 +B1y0 +B2y

2
0 +B3y

3
0 +B−1y

−1

0 + 2αK(y0, y
−1

0 ) := F2(y0, y
−1

0 ),

where B1 = h1 + h2 + 22νB′1,
B2 = −ab(h1k + h2ℓ) + 2αB′2,
B3 = −a−2b2(h1k

2 + h2ℓ
2)− a−1c(h1k + h2ℓ) + 2αB′3,

B−1 = ac(h1k + h2ℓ) + 2αB′
−1,

moreover, B′1, B
′

2, B
′

3, B
′

−1 and coefficients of K(y0, y
−1

0 ) contain multipliers of form
h1k

j + h2ℓ
j , j ≥ 0.

Let ν2(h1 + h2) = β ≥ ν, ν2(h1k + h2ℓ) = γ ≥ 0, δ = min (β, γ).
The application of Lemma 1 gives

|σ2k,2ℓ(h1, h2;M)| ≤







0 if β < γ + ν, m− β − ν > 0,

2
m+ν+γ+2

2 if β ≥ γ + ν, m− ν − γ > 0,
2m−2 if β ≥ γ + ν, m− ν − γ ≤ 0,

where ϕ(2m−1) is the totient Euler function.
For k ≡ ℓ ≡ 1(mod 2) we have the analogous result.
This finishes the proof of Theorem 1.

Remark 2. The case ν2((h1, h2,M)) > 1 reduces easily to the case ν2((h1, h2, 2)) =
0.

Let h be integer, (h,M) = 2s, 0 ≤ s < m, and let τ be a least period length of
the sequence of PRN’s {yn}, n = 0, 1, . . ., defined in (2). For 1 ≤ N ≤ τ we denote

SN (h, y0) =
N−1
∑

n=0

e

(

hyn

M

)

. (16)

The sum SN (h, y0) calls the exponential sum on the sequence of PRN’s {yn}.
We shall obtain the bound for SN (h, y0).
By the relation (12)-(13) we get for k ≥ 2m+ 1:

y2k = A0 +A1k +A2k
2 +A3k

3 := F (k), (17)

y2k+1 = B0 +B1k +B2k
2 +B3k

3 := G(k), (18)
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where
A0 = A0(y0) ≡ y0(mod 2α)

A1 = A1(y0) ≡ b(1− a−1y20) + a−1b2y0 + acy−1

0 (1− a−2y4)(mod 2α)

A2 = A2(y0) ≡ −a
−1b2y0 + a−2b2y30(mod 2α) = −a−1b2y0(1− a−1y20)

B0 = B0(y0) ≡ b+ ay−1

0 + cy0(mod 2α)

B1 = B1(y0) ≡ b(1− ay−2

0 )− b2y−1

0 − y0c(1− a2y−4

0 )(mod 2α)

B2 = B2(y0) ≡ −b
2y−1

0 + ab2y−3

0 (mod 2α) = −b2y−1

0 (1− ay−2

0 )

A3 = A3(y0, k) ≡ B3(y0, k) ≡ B3 ≡ 0(mod 2α),

α = min (3ν, ν + µ).

(19)

After all this preliminary work, it is straightforward to prove two main result of this
section:

Theorem 2. Let the linear-inversive congruential sequence generated by the re-
cursion (2) has the period τ , and let ν2(b) = ν, ν2(c) = µ, ν < µ, α = min (3ν, ν + µ),
ν2(a− y20) = ν0, 2ν ≤ m. Then the following bounds

|Sτ (h, y0)| ≤







O(m) if p = 2, ν0 < ν, ν2(h) < m− 2ν;

4 · 2
m+ν2(h)

2 if ν0 ≥ ν, ν2(h) < m− 2ν;
τ else,

hold.

Proof. From the formulas (17)-(18) we have

|Sτ (h, y0)| =

∣

∣

∣

∣

∣

τ−1
∑

n=0

e

(

hyn

M

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2
ℓ
−1

∑

n=0

e

(

hyn

M

)

∣

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∣

∣

∣

2
ℓ
−1

∑

k1=0
k=2k1

e

(

hy2k1

M

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

2
ℓ
−1

∑

k1=0
k=2k1+1

e

(

hy2k1+1

M

)

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

2
ℓ
−1

∑

k=0

e

(

hF (k)

M

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

2
ℓ
−1

∑

k=0

e

(

hG(k)

M

)

∣

∣

∣

∣

∣

∣

+O(m).

(20)

In the last part of the formula (20) we into account that the representation yn as
a polynomial on k holds only for k ≥ 2m+ 1.

By (18), the Corollaries 1 and Lemma 2 (from (5)) we easy obtain

|Sτ (h, y0)| ≤







O(m) if p = 2, ν0 < ν, ν2(h) < m− 2ν,

2
m+ν2(h)+4

2 if ν0 ≥ ν, ν2(h) < m− 2ν,
τ else.

The constants implied by the O-symbol are absolute.

Corollary 2. Let 1 ≤ N < τ . Then in the notations of Theorem 2 we have

|SN (h, y0)| ≤

{

N if ν + ν2(h) ≥ m,

2
m+ν(h)+4

2 log τ if ν + ν2(h) < m.
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This statement follows from Theorem 2 and Lemma 1.
Let N ≤ 2m−1.

We will study SN (h, y0) at the average over y0 ∈ Z
∗
M .

Theorem 3. Let a, b, c be parameters of the linear-inversive congruential gener-
ator (2) and let (a, 2) = 1, 0 < ν = ν2(b) < ν2(c), 1 ≤ N ≤ 2m−1, ν2(h) = 2s, s < m.
Then the average value of the SN (h, y0) over y0 ∈ Z

∗
M satisfies

SN (h) =
1

2m−1

∑

y0∈Z
∗

M

|SN (h, y0)| ≤ N
1
2 2−

m

4 2
√
10 · 2 ν+s

4 ,

where s = ν2((h,M)), h = h02
s.

Proof. First we will consider the case s = 0, i.e. (h, 2) = 1. By the Cauchy-
Schwarz inequality we get for σk,ℓ = σk,ℓ(h,−h;M)

|SN (h)|2 ≤ 1
2m−1

∑

y0∈Z
∗

M

|SN (h, y0)|2 = 1
2m−1

N−1
∑

k,ℓ=0

∑

y0∈Z
∗

M

e
(

h(yk−yℓ)
M

)

≤

≤ 1
2m−1

∑

k,ℓ=0

|σk,ℓ| = 1
2m−1

∞
∑

r=0

N−1
∑

k,ℓ=0
ν2(k−ℓ)=r

|σk,ℓ| = 1
2m−1

m−1
∑

γ=0

N−1
∑

k,ℓ=0
ν2(k−ℓ)=γ

|σk,ℓ|+

+ 1
2m−1

N−1
∑

k=0
k=ℓ

|σk,k| = N + 1
2m−1

m−1
∑

γ=0

N−1
∑

k,ℓ=0
ν2(k−ℓ)=γ

|σk,ℓ|.

Using Theorem 1 we, after simple calculations, obtain

|SN (h)|2 ≤ N +
1

2m−1

m−1
∑

γ=0















N−1
∑

k,ℓ=0
k 6≡ℓ(mod 2)
ν2(k−ℓ)=γ

|σk,ℓ|+
N−1
∑

k,ℓ=0
k≡ℓ(mod 2)
ν2(k−ℓ)=γ

|σk,ℓ|















≤

≤ N
1
2 2−

m

4

(

2 +
√
10 · 2 ν

4

)

.

(21)

Now an argument similar to the one used to prove (21) leads to general bound

|SN (h)| ≤ N
1
2 2−

m−s

4

(

2 +
√
10 · 2 ν

4

)

. (22)

The estimates of exponential sums obtained in this section we will use for study
of properties of the sequence PRN’s {yn}.

Equidistribution and statistical independence properties of pseu-
dorandom numbers can be analyzed based on the discrepancy of certain point sets in
[0, 1)s.

For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)s, the discrepancy is defined by

D
(s)
N (t0, t1, . . . , tN−1) := sup

I

∣

∣

∣

∣

AN (I)

N
− |I|

∣

∣

∣

∣

,

where the supremum is extended over all subintervals I of [0, 1)s, AN (I) is the num-
ber of points among t0, t1, . . . , tN−1 falling into I, and |I| denotes the s-dimensional
volume I.
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Let {yn} be the sequence of PRN’s generated by (2) and let xn = yn

M
, n = 0, 1, . . ..

From our sequence {xn} we derive the sequence {X
(s)
n } of points in [0, 1)s putting

X
(s)
n := (xn, xn+1, . . . , xn+s−1).
We will say the sequence {xn} passes d-dimensional serial test on independence

if for every s ≤ d the sequence {X
(s)
n } has uniform distribution.

Theorem 4. The discrepancy D
(s)
N , s = 1, 2, 3, 4, of points constructed by linear-

inversive congruential generator (2) with parameters a, b, c, which satisfy the condi-
tion

0 < ν2(b) = ν, 2ν < µ = ν2(c), ν2(a− y20) = ν0 ≥ 1, m ≥ 2ν, ν0 > ν,

the following bound

D(s)
τ ≤

s

2m−ν+1
+ 2−

m−2ν

2 logs M. (23)

holds.

Proof. Consider only the case s = 3 (This case is the most complex). In order
to apply Turan-Erdös-Koksma inequality in the Niederreiter’s form[6] we must have
an estimate for sum

τ−1
∑

n=0

e

(

h1yn + h2yn+1 + h3yn+2

M

)

.

Without loss of generality, we can suppose that (h1, h2, h3, 2) = 1. From (17)-(19)
we can write

h1y2k + h2y2k+1 + h3y2k+2 =
= (h1y0 + h2(ay

−1
0 + b+ cy0) + h3y0)+

+k
[

h1((1− a−1y20)b+ ay−1
0 c(1− a−2y40) + y0b

2)+
+h2(−((1− a−1y20)b+ by−1

0 + a2cy−1
0 ))+

+h3(b(1− a−1y20) + bay−1
0 (1− a−1y20)+

+y0b
2 + 2a−1y0b

2(1− a−1y20))
]

+
+k2b2(h1a

2 − h2y0(a
−1 − a−2y20) + h2a

2) + 2αL(h1, h2, h3, k) =
= C0 + C1k + C2k

2 + 2αL(h1, h2, h3, k),

(24)

say.
Since the congruences

C1 ≡ 0(mod 22ν+1)

C2 ≡ 0(mod 22ν+1)

cannot be held simultaneously (taking into account that 1 − a−1y20 6≡ 0 (mod 2ν0))
we obtain (by Lemma 2)

|
∑

1
| ≤

{

2
m+ν

2
+1 if A1(h1, h2, h3) ≡ 0(mod 22ν),

0 else.
(25)

Similarly, we have

|
∑

2
| ≤

{

2
m+ν

2
+1 if B1(h1, h2, h3) ≡ 0(mod 22ν),

0 else,
(26)

where B1(h1, h2, h3) defined by the representation

h1y2k+1 + h2y2k+2 + h3y2k+3 = B0 +B1k +B2k
2 + 2αM(h1, h2, h3, k).

Now, Lemma 4 and simple calculations give

D(3)
τ ≤

3

2m−ν+1
+ 2−

m−2ν

2 log3 M.
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The assertions of theorem 4 stay held if write N instead τ for N ≤ τ .

The Theorem 4 shows that the sequence of PRN’s {xn} passe the s-dimensional
test on unpredictability (for s ≤ 4) if this sequence generated by the linear-inversive
generator (2) under indicated conditions on the parameters a, b, c, y0.

Since every nonlinear congruential generator passes also the s-
dimensional lattice test for all s ≤ 4 we conclude that the sequence of PRN’s {xn}
generated by (2) may be use in applications.
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