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THE STUDY OF THE INERTIAL PROPERTIES OF THE
EXFOLIATED HARD INCLUSION IS IN THE CONDITIONS
OF SMOOTH CONTACT WITH A NON-STATIONARY WAVES

Moiiceenok O. I1. JocaigxkeHHs iHepIiaJIbHUX BJIACTUBOCTEN >KOPCTKOT'O Bia-
IIapOBAaHOrO BKJIIOYEHHS 3a YMOB INIAJKOIO KOHTAKTy 3a HECTaI[ilOHAapHOI XBU-
JgboBoOl Ail. Posp’asana 3amada npo BU3HAYEHHSI HAIPYXKEHOI'O CTaHY B OKOJII TOHKOI'O
JKOPCTKOTO BKJIFOUEHHSI Y BUIVISI CMyTH KiHIIEBOI IIUPHUHE y Ge3MeKHOMY Timi (MaTpwuiri)
TIPY IIPOXO/PKEHH] IIJIOCKUX HECTAI[iJOHAPHUX XBWJIb. BBaXKaeThCs, 1[0 MATPUIS 3HAXOIUTHCS
y craHi mrockol gedopmariil, a Ha 000X CTOPOHAX BKJIIOUEHHSI PEAJi30BAHO YMOBHU IJIAIKO-
ro KOHTakTy. MeTros po3B’si3aHHS OJISArA€ y 3aCTOCYBaHHI IHTErpajibHOIO II€PETBOPEHHS
Jlanmaca 3a wacom i y mogaHHi 300pakeHb HAIPYKEHb Ta MEPEMIIeHb Yepe3 PO3PUBHUMN
po3B’s130K piBHAHb Jlame 3a ymMoB 1iockol gedopwmarnii. B pesysnbprari mouaTkoBy 3amady
3BEJICHO JIO0 CHCTEMU CHHIYJISPHUX IHTErpaJIbHUX PIBHSIHBL BiJIHOCHO 300parkeHb HEBIIOMUX
cTpubKiB HAIIPY>KEHb Ta mepeMimienb. st obepuenns neperBopenns Jlamraca 3acTocoBano
YHCJIOBHI METOJ, IKHUil I'PYHTYETbCA Ha 3aMiHi inTerpana Mesiina pagom Pyp’e.
KurodoBi ciioBa: KOpCTKe BijilapoBaHe BKJIIOYEHHsI, HECTAI[IOHAPHA ILJIOCKA XBUJISL, PO3-
PUBHUN PO3B’S30K, YHCIOBEe 0O0epHEeHHsI neperBopenns Jlammaca, KIH.

Moiiceenok A. II. VcciemoBanne MHEPHUAJIbHBIX CBONCTB »KECTKOI'O OTCJIO-
MBIIIETOCs BKJIIOYUEHUSI IIPY YCJIOBUSIX IJIaJKOrO KOHTAKTAa IIPM HECTAIIMOHAPHOM
BOJIHOBOM Bo3zeiictBuu. Permena 3azada 00 onpeiesieHUN HAIPSXKEHHOTO COCTOSTHUS
BOJIN3U TOHKOT'O >KECTKOI'O BKJIIOYEHHS B BHUJIE ITOJIOCHI KOHEYHON IMUPUHBI B HEOIDAHMYIECH-
HOM yHPYTOM TeJie (MaTpHIlE) P MPOXOXKIEHUN IIOCKUX HeCTAlMoHApHBIX BosiH. Cumra-
eTcs, YTO MaTPHIA HAXOJUTCH B COCTOSHUU IIOCKOH redopmarnum, a HA 00€UX CTOPOHAX
BKJIIOYEHUSI PEAIN30BAHbI YCJIOBUS IVIQJIKOTO KOHTAKTa. MeTom peleHust COCTOUT B IpUMe-
HEHUU MHTETPAJILHOrO peobpasoBanns Jlamraca mo BpeMeHN ¥ MPEICTaBICHUN H300parke-
HUII HAIIPs2KEHU U ITepeMeleHuil Yepe3 pa3pbIBHOE pelieHue ypaBHeHuit Jlame st corygast
mwiockoit gedopmarmu. B pesysnbrare MCxoiHas 3ajada CBEJEHA K CUCTEME CUHIYJISIPHBIX
WHTErPAJIbHBIX yPABHEHUI OTHOCHTEIHLHO N300paykeHNt HEN3BECTHBIX CKAYKOB HAIIPSI?KEHUI
u nepementenunit. /s obparnenust npeobpaszosanus Jlanmaca mpuMeHeH UUCIEHHBI METO,
OCHOBaHHBIN Ha 3aMeHe uHTerpaja Meanuna psaom Pypbe.

KiroueBble cjioBa: KeCTKOe OTCJIOMBIIEECST BKIIIOUYEHNE, HECTAIIMOHAPHAS IJIOCKAs BOJIHA,
Ppa3pbIBHOE pellleHne, YucjIieHHoe obpailienne npeobpasoBanus Jlammaca, KH.

Moysyeyenok A. P. The study of the inertial properties of the exfoliated hard
inclusion is in the conditions of smooth contact with a non-stationary waves. The
problem about determining the stress state near the thin rigid inclusion in a strip of finite
width in an infinite elastic body (matrix) when passing of plane nonstationary waves is
solved. It is considered that the matrix is in the conditions of plane strain and on both sides
of the inclusion conditions of the smooth contact are implemented. The method of solution
consists in applying the integral Laplace transform in time and presenting images of stresses
and displacements through the discontinuous solution of Lame’s equations for the case of

(©) Moysyeyenok A. P., 2013



94 Moysyeyenok A. P.

plane strain. As a result, the initial problem is reduced to a system of singular integral
equations with respect to unknown images jumps of stresses and displacements. To inverse
the Laplace transform the numerical method based on the replacement of the Mellin integral
by the Fourier series is applied.

Key words: hard exfoliated inclusion, non-stationary waves, the discontinuous solution,
numerical Laplace transfomation, SIF.

INTRODUCTION. Dynamic problems of the theory of elasticity for solids with thin
inclusions often are considered on the assumption that between the matrix and the
inclusion the conditions of full coupling are fulfilled. The solution of such 2D and
3D problems for the case of harmonic vibrations of solids with inclusions can be
found in [1], [2]. The concentration of stresses near the thin rigid inclusion which is
fully coupled with the matrix at the non-stationary loading was studied in [3]. The
dynamic problems, when between the matrix and the inclusion the smooth contact
conditions are realized, are not considered. In [4] the problem of the interaction of
plane harmonic waves with the rigid inclusion under conditions of smooth contact
is solved . In this paper we consider the similar problem of the interaction with
non-stationary waves.

MAIN RESULTS. Let us consider an infinite elastic body (matrix), which is in the
plane strain and containing the inclusion in the form of of the rigid plate width a
and thickness h << a. This inclusion in the plane Ozy occupies an area of |z| < a,
—% <y< % Let at the initial moment ¢ = 0 the non-stationary plane longitudinal
wave with a potential ¢ (x,y,t) or shear wave with a potential iy (x,y, z) interacts
with the inclusion. The displacements caused by these waves we will be denoted
as uo (z,y,t), vo (x,y,t). Then the displacements and stresses in the matrix can be
represented as the sum of two terms

0 1 0 1.
U= Uy + U,V = Vg + V1, 0y = 0y + 0y, Tyr = Ty + Ty (1)
where uq, v1, 0’;, Tylx — the displacements and stresses in the matrix caused by the

waves reflected from the inclusion. The displacements w1, v; satisfy the Lame equa-
tions for plane strain and zero initial conditions at t = 0.

The boundary conditions of the external environment on the inclusion due to
its small thickness we formulate concerning its median plane. We shall assume that
on both sides of the inclusion the conditions of smooth contact with the matrix are
fulfilled. Then on the inclusion the stress o; and displacement u; have discontinuity,
which jumps we denote:

a,; (z,40,t) — a; (z,—0,t) = x1 (z,1), (2)

uy (x,40,t) — uy (x,—0,t) = x4 (x,t), x4 (£a,t) =0,—a < z < a. (3)

Also, from the conditions of the smooth contact, since the rigidity of inclusion should
be the following equations:

v (2,0,t) = o1 (t) + () 2 =00 (2,0,8) , 7y, (2,£0,8) = =7, (2,0,8), (4

where «; (t) — the unknown displacement along the axis Oy, and « (¢) — the unknown
angle of the rotation of the inclusion. They are found from the equations of motion
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for inclusion as a rigid body:

méy (t) = q(t) + R(t),J5 () =m(t) + M (¢),

R(t) = /“ x1 (z,t)dx, M (t) = / x1 (z,t) zdz. (5)

—a —a
In these equations m — mass, a J — the moment of inertia per unit length of inclusion;
R (t), M (t) — the force and the moment of the reaction on the inclusion from the part
of the matrix.
Obtaining the integral equations and solution of the problem. To solve
the formulated initial boundary value problem we apply the time-integral Laplace
transform. Then from (2) - (4) for images we obtain the equalities

S; (I, +0ap) - S; (:Ea 707p) = Xl (va) ) Ul (LE, +07p) - Ul (I, 70,p) = X4 (l'»p) ) (6)

Vi (I,O,p) =4 (p) + G(p) r—Vy (xvovp) 7Tle (l‘, :|:07p) = _Tyl/ (*T’ Ovp) . (7)

The equations of motion (5) after the Laplace transform take the form

mp* Ay (p) = Ry (p) , JP*G (p) = M (p) ,

R, (p) = /a Xy (z,p)dz, M (p) = /a X1 (z,p) xdx. (8)

—a —a

In the recent equalities Vi, Uk, S;j, TZI, k =0,1; Xy, X4, A, G —images of the
corresponding functions, p — parameter of the Laplace transform.

The Laplace image of displacements and stresses in the matrix can be represented
as the discontinuous solution of Lame equations for images with jumps (6). For this
purpose in the corresponding formulas from [1], where they are given for the harmonic
oscillations, we should set kp = icﬂ, k = 1,2. Here c1, co - velocities of longitudinal
and transverse waves in the matrix. Then, for the displacements and stresses which

are included in boundary conditions we obtain
1 “ 0? 0?
Vi=— X 2 K+ =Ky )d
YT oupd ), 1<(p1 591?2) 1 o0 2) "
1 [ 0? 0?
o % ((2a - o8) o2 (22 1) )

1 [ 0 0? 0 [ 02
1 _ L 0 (,07 9 s 0 [0 4
Toe = p3 /_a X (83& (231:2 pg) Kz 28:17 (8562 p1> Kl) dit

o« 19 [0 o (.9 .
o X4(4am(ax2‘p5)K2‘4ax(Qaﬁ*p?)Kl‘pgK?)d"- ©)
2 J—a

In these formulas

Kr=— dO[,Kj:—f 7(117:

i 400 eia(n—z)—'yj|y| 1 +oo eia(n—.r)—"/j|y|
e e L e T s

oo 20y
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1 2
—Z%Ko (pj (n—m) +y2>,

p? p .
Vi = a2+727pj:747.7:1a2'
G

Cj

The presentation from the discontinuous solution makes it possible to find the
stresses and displacements in the matrix with using the formulas (1), (9), if we known
the jumps of displacements and stresses. To determine these jumps from the condi-
tions on the inclusion (4) we obtain the integral equations. For this purpose the first
equation (7) we differentiate and add to the result the condition of the equivalence of
the original and differentiated equations.

Vl/ (.%',O,p) = G(p) - ‘/0/ (.%',O,p) 3V1 (I‘,O,p) = Al (p) - G(p)a - ‘/0 (_aaoap)7 (10)

After the substitution of (9) in the second condition (7) and in the conditions of
(10) we obtain the system of integral equations with the additional condition con-
cerning the images of unknown jumps. This system after the isolation of the singular
components of kernels has the form

5 | ) (—(1(;5)%1( <z—<>>> dz +

¢)
*/ P (2, Q)(

—g(q)—fl(C),

*/ ‘bl(ZQ)<

+f/ Dy (2,q) ( c §)+F22(Q(Z—C))>d75:f2(ﬁ)7

4z~ 0)) ds =

(0= 0)) s+

% _1<I>1(,z,q)<1—;f In(z + )+R1(q(z+1))>dz+

+%/_1<I>2 (2,9) (In(z4+1)+ Ra(q(z+ 1)) dz =

=di(q) —9(q9) — f3(q),
1
/_1 D, (2,q)dz = 0. (11)

The functions Fi1, Fia, Fo1, Fos, R1, Rs are limited and continuous for —1 < z,{ < 1.
When obtaining the system (11) the following notation were introduced :

Ca2q C2
n=azz=alp=-E= | Zp =~
1
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e Lt S ().

9@ =26 (%) X (02, 2) = P (2.0) X, (02, 20) = D (20). (12)

71O = =2 (ac.0,27),
(0 = 219, (a¢.0,2%) £ (@) = 310 (—a,0,27).

The recent equation (11) follows from (12) and X4 (+a,p) = 0. To the system
(11) we also need to add two more equations to determine the images of unknown
amplitude of the motion of the inclusion d; (¢) and the angle of the rotation g (g).
We obtain these equations from (8) going to the notation (12):

— 1

4eq?

P1

3p (! _
i (g) = B (20 g @) = oy [ im0 (1)

p1, po — the density of matrix and inclusions. The approximate solution of the (11),
(13) we shall find in the form [5]

Y;(z,q) .
q>j (Z7Q) = ﬁv] = ]-»2
The functions ¥; (z,¢) we approximate by interpolating polynomials
- T (2m) o .
Zma Z \I’mj T, ) ( )a\pmj - \I}j (zm) ] = 1727 (14)
m=1

mT(2m—1
where T, (z) — Chebyshev polynomials of the 2nd kind, z,, = cos % =1,.

— roots of these polynomials. To find the unknown values of the images ¥,,;, j = 1 2
in the interpolation points of (11) we get a system of linear algebraic equations. For
this we substitute there

¢= Cka—COS(k ) k=1,..,n—1,

the integrals with Cauchy kernel substitute the special quadrature formula, and the
integrals with regular kernels - Gauss-Chebyshev quadrature formulas [5].For the in-
tegral with a logarithmic singularity we use the formula [6]

1 n
/ Q;(z,q)In(z+1)dz = E VB, By =
-1

m=1

]7r(2n 1)

:—an—ZZ( 1)) ——2 g, =

3=

As a result we get the system of 2n +2 linear algebraic equations
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1 O 1+¢2 3T PZm
o Z am V1 (2m,q) <2§Zm—C)k) + Fi1 (g (2m — G)) — g;)ng ) +

n 2
+2i Z am¥s (2m, q) < ¢ + Fi2 (g (2m — Ck))> = f1(C),

ﬂ—mzl Zm_Ck
23 o) (o + Pt a6 +
o o) m*1\“m; 2o — C 21 m

+% Z am\IJQ (Zm7Q) (2(16) + F22 (q (Zm - Ck))> - f2 (Ck) ’

m—1 Zm — Ck:

1 < 1+¢2 D 3 Pzm
o m\I’ my - Bm, R m 1 —_
”mE::la' e q)< ( 2 ) R (g(em 1)) 26q2+ 8eq? -

n

+% Z am¥2 (2m, q) (—€*Bm + R (¢ (zm + 1)) = f3(q),

m=1

Zam\llg Zm,q) =0,

1 (q Z am\Ijl va‘]) g (q Z am\Ill Zmaq) Zm- (15)

m=1

165q

The most interest to the fracture mechanics represent the stress state in the matrix
near the inclusion. We should use the asymptotic formulas for the stresses near the
ends of the inclusion [7], [8]. These formulas for the rigid inclusion which is in the
smooth contact with the matrix after notation which was introduced in (12) have the
form

oy —sinfq + sin 5
Oz = u\/akli (1) | —7sinf; —sinfs | +
Tay var 3 cos By + cos O
(2K + 3) sin B + sin by 9
“‘/akgt (r) | — (25 —5)sinf; +sind; | +0(1),0, =2 (16)

V2r

In the formulas (16) r, 8 are coordinates in the polar coordinate system, the centers
of which coincide with the ends of the inclusion x = +a, 7 = 2t - dimensionless time.
From (16) it is clear that the stress state in the matrix near the inclusion determined
by the coefficients ki and k. These coefficients, following [7], [8], we will call the
dimensionless stress intensity factors (SIF) for inclusion. These factors equal

o (£1,7) 1 (£1,7)
K (r) = q:8(1—1/)’k2i 16(1—v)

(2 — 1) cos By — cosOs

(r)==% (17)
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The approximate values of the images (SIF) using (14), (17) can be expressed through
the solution of (15). There are following formulas

K@) = Fgn el K ) = T oo,
U; (£1) = HF% > U (-1 (Ctg’%mfl 1 Ym = W

The numerical results. The numerical implementation of the proposed solu-
tion carried out for the case of the interaction with the inclusion of longitudinal or
transverse waves with the front parallel to the inclusion. Here by the symmetry for
the longitudinal waves we have k;L (1) = —k; (1) = kj (7), and for transverse waves
we have k;r (1) =k; (1) =k; (1), =12

The originals of the dimensionless (SIF) k:JjE (1) were restored numerically using a
method based on the replacement of the Mellin integral by the Fourier series [9], as
well as the modification of this method proposed in [10].

Suppose that the inclusion interacts with the flat longitudinal waves. During the
numerical analysis, it was found that in this case |ka| >> |k1| and therefore only
depending on the time graphics ks (7), are shown in Fig.1(a) and Fig.1(b) The curve
in Fig.1(a) shows the graph of ks (7) under the action on the inclusion of a impact
wave with the potential

o = (ert —y)* H (et — ),
H (t) — Heaviside function.

There is a rapid growth of (SIF) ks (7), and then it decreases to a value of 0. On

Fig.1(b) it is shown the similar graph for the case when the incident wave is harmonic

with potential.
o = A cos (w (t— y)) H (it —y).
w C1

It was assumed that wg = % = 3. It can be seen that the 7 > 2 we have access

to the steady state. ‘

The calculation of (SIF) has also been performed for the interaction with the
inclusion of transverse shear waves. The results of these calculations are shown in
Fig.2(a) and Fig.2(b). As in this case, |k1| >> |kz|, then only studied the behavior
of k1 (7). On Fig.2(a) the variation of this coefficient under the action of the impact
wave on the inclusion with the potential

o = (cat —y)* H (cat — ).

is shown. Under this action k; (7) < 0, and the absolute value of (SIF) increases to
a maximum and then decreases to a constant value. The dependence of the k; (1) of
time under the influence of transverse shear harmonic wave with the potential

o = 2 cos (w (t— y))H(CQty),WO = _3
w Co C2

is shown in Fig.2(b). It can be seen that at 7 > 2 (SIF) changes harmonically,
and during the transition time the absolute values of (SIF) may slightly exceed the
maximum values at the steady state.
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Fig. 1. The dependence of the dimensionless SIF on time during the
action of the plane transverse impact wave on the inclusion (a) and of the
plane transverse impact harmonic wave on the inclusion (b).
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Fig. 2. The dependence of the dimensionless SIF on time during the
action of the plane longitudinal impact wave on the inclusion (a) and of the
plane longitudinal harmonic impact wave on the inclusion (b).

CONCLUSION. In the state of plane strain the conditions of smooth contact signif-
icantly affect to the nature of the stress state near the the rigid inclusion [3] and the
dependence of the (SIF) from time. It is established that at the impact wave action
values of (SIF) are taking extreme values at the beginning of wave action. Under the
sudden harmonic action, the value of (SIF) in the transition period is not significantly
greater than the value of (SIF) in the steady state. Last fact allows when studying
the stress state near the such inclusion, with harmonic action, to solve the stationary
problem immediately.
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