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Abstract Within the cosmic screening approach, we obtain
the exact formulas for the velocity-independent gravitational
potentials produced by matter in the form of discrete sources
distributed in the open and closed Universes. These formulas
demonstrate that spatial curvature of the Universe consider-
ably affect the form of the potentials and forces. While in the
open Universe the gravitational force undergoes exponential
suppression at cosmological distances, in the closed Universe
the force induced by an individual mass is equal to zero at
the antipodal point with respect to this mass. The derived
formulas are applicable for investigations of the motion of
astrophysical objects (e.g., galaxies) in the open and closed
Universes, and for simulations of the large scale structure
formation.

1 Introduction

Following the natural assumption that laws of physics should
be the same wherever in the Universe, we arrive at the con-
clusion that at sufficiently large scales our Universe should
be homogeneous and isotropic. This statement is known as
the cosmological principle [1]. It is well known that such a
homogeneous and isotropic space is the constant curvature
space with three possible cases for the spatial metric: con-
stant positive curvature (closed Universe), constant negative
curvature (open Universe) and zero curvature (flat Universe)
[2].

Within the appropriate extension of the standard ΛCDM
model, the most recent analysis of the CMB data results
in the spatial curvature parameter ΩK = −0.044+0.018

−0.015
[3]. Inclusion of the lensing and BAO in the analysis gives
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ΩK = 0.0007 ± 0.0019 [3]. Non-CMB data mildly favor a
closed spatial hypersurface [4]. If one uses inflation power
spectra in non-flat models, there is also some evidence for
a mildly closed Universe in these data [5–7]. Most of such
constraints are based on some cosmological models (e.g.,
ΛCDM), i.e. they are model-dependent. Keeping in mind
the importance of the curvature parameter (affecting, e.g.,
the global dynamics of the Universe, the lensing [8], the
shape of the gravitational potential (see below), etc.), it is
of great interest to determine ΩK in the model-independent
way. There is extensive literature on this subject (see, e.g.,
the latest articles [9,10] and numerous references therein).
According to these investigations, “the nonzero ΩK cannot
be ruled out by the current observations” [9]. Hence, it is
reasonable to study cosmological models with any sign of
ΩK (including the zero value).

It is quite expected that cosmological models with differ-
ent signs of spatial curvature will lead to different physical
effects. For example, the dynamics of astrophysical objects
may differ in spaces with different global topologies. To
study the motion of astrophysical objects in the Universe, we
should know the form of the gravitational potential created
by massive inhomogeneities (e.g., stars, galaxies and groups
of galaxies). It is well known that the gravitational potential is
defined by the first-order scalar perturbation of the g00 metric
component [11,12]. This perturbation satisfies the equation
which includes the curvature parameter (see, e.g., [13,14]).
This means that the gravitational potential must have differ-
ent forms for the closed, open and flat Universe cases. We
have already investigated this problem in the papers [13,15].
Here, we have revealed the gravitational potential screen-
ing effect due to the presence of both the spatial curvature
and an additional perfect fluid with the constant parameter
ω = −1/3 in the linear equation of state. However, the cos-
mic screening due to the matter (both dark and baryonic)
was not taken into account. In the case of the flat Universe,
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the cosmic screening was thoroughly studied in the papers
[16–20]. Here, the analytic expression for the gravitational
potential was obtained. It was shown that the potential under-
goes the Yukawa-type exponential screening at cosmological
distances. The cosmological background consisting of the
average mass density of dark and baryonic matter is respon-
sible for this screening. In the present paper we investigate
how the nonzero spatial curvature of the Universe affects
this result. We find analytic expressions for the gravitational
potentials for each type of curvature and demonstrate that the
form and properties of the potential considerably depend on
the curvature type choice.

The paper is structured as follows. In Sect. 2, we describe
the model and present the equation for the gravitational
potential within the cosmic screening approach. The general
solution of this equation is given in Sect. 3. In Sects. 4, 5 and
6, we analyze the potentials for the flat, open and closed Uni-
verse cases, respectively. The main results are briefly sum-
marized in concluding Sect. 7.

2 Setting of the problem

We consider the homogeneous and isotropic Universe which
is described by Friedmann–Lemaı̂tre–Robertson–
Walker (FLRW) metric

ds2 = a2(η)
[
dη2 − γαβ dxαdxβ

]

= a2(η)
[
dη2 − dχ2 − Σ2(χ) dΩ2], (2.1)

where a(η) is the scale factor and η is the conformal time
connected with the synchronous time t as follows: dη =
cdt/a. Since the scale factor has the dimension of length, the
conformal time is dimensionless. The choice of the metric in
the form (2.1) turns out to be convenient when constructing
the perturbation theory within the cosmic screening scheme
[16]. The function Σ(χ) is defined as

Σ(χ) =

⎧
⎪⎨

⎪⎩

sinχ, χ ∈ [0, π ] for K = +1

χ, χ ∈ [0,+∞) for K = 0

sinhχ, χ ∈ [0,+∞) for K = −1

(2.2)

where K = −1, 0,+1 indicates open, flat and closed Uni-
verse cases, respectively.

The Friedmann equation for the background containing
nonrelativistic pressureless matter and the cosmological con-
stant is

3(H2 + K)

a2 = κε̄ + Λ, (2.3)

where the dimensionless parameter H ≡ (da/dη)/a =
(a/c)H , with H ≡ (da/dt)/a being the Hubble parame-
ter, Λ is the cosmological constant, ε̄ = ρ̄c2/a3 denotes the

energy density of pressureless matter with comoving mass
density ρ̄ = const, c is the speed of light and overline implies
the average value. Additionally, we define κ ≡ 8πGN/c4,
where GN is the gravitational constant.

The cosmological parameters are defined as

ΩM ≡ κρ̄c4

3H2
0 a

3
0

, ΩΛ ≡ Λc2

3H2
0

, ΩK ≡ − Kc2

a2
0 H

2
0

, (2.4)

where a0 and H0 denote the present values of the scale factor
and the Hubble parameter, respectively. For the illustrative
purposes we will use the values

ΩM = 0.315, ΩK=−1 = 0.0007, ΩK=+1 = −0.044,

H0 = 67.4 km s−1Mpc−1 (2.5)

in accord with the results of [3].
We consider matter (e.g., galaxies) in the form of discrete

point-like masses with comoving mass density

ρ =
∑

n

ρn = 1√
γ

∑

n

mn δ(r − rn), (2.6)

where γ is the determinant of γαβ . These discrete inhomo-
geneities perturb the background metric (2.1):

ds2 = a2[(1 + 2Φ)dη2 − (1 − 2Φ)γαβ dxαdxβ
]
, (2.7)

where we restrict ourselves to scalar perturbations. The
fluctuation of the energy density is given by the formula
[13,14,16]

δε = c2δρ

a3 + 3ρ̄c2Φ

a3 , (2.8)

where δρ ≡ ρ − ρ̄. It is well known that the first-order
scalar perturbation Φ(η, r) defines the gravitational potential
[11,12]. In our case, it is the potential created by all masses
in the point r = (

x1, x2, x3
)
.

Within the cosmic screening approach, the gravitational
potential satisfies the following equation1 [16]:

ΔΦ + 3

(
K − κρ̄c2

2a

)
Φ = κc2

2a
δρ, (2.9)

where the Laplace operator

Δ = 1√
γ

∂α

(√
γ γ αβ∂β

)
. (2.10)

1 It is worth noting that we work in the weak field limit where the
peculiar velocities are much less than the speed of light. In this case, as
was shown in [16], the peculiar velocities negligibly contribute to the
gravitational potential. For this reason we do not include the velocity-
dependent term into Eq. (2.9).
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As one can see, Eq. (2.9) is the Helmholtz-type equation (not
the Poisson one!). The nonzero spatial curvature (K �= 0)
and background matter density (ρ̄ �= 0) are responsible for
this effect. The flat Universe case K = 0 has been already
investigated in [16] where the effect of the Yukawa screen-
ing of the gravitational potential at cosmological scales has
been clearly demonstrated. Now we want to understand how
nonzero spatial curvature affects the shape of the gravita-
tional potential.

3 General solution

To solve Eq. (2.9), it is convenient to introduce a new function

ϕ(η, r) = c2 a(η)Φ(η, r). (3.1)

Then Eq. (2.9) reads

Δϕ + 3

(
K − κρ̄c2

2a

)
ϕ = 4πGN (ρ − ρ̄). (3.2)

For K �= κρ̄c2/(2a) we can rewrite this equation as

Δφ − ν φ = 4πGNρ, (3.3)

where we introduced a new auxiliary function

φ = ϕ − 4πGN ρ̄

ν
= ϕ − 1

3
c2a

[
1 − 2K

3

|ΩK|
ΩM

a

a0

]−1

(3.4)

and a parameter

ν ≡ 3

(
κρ̄c2

2a
− K

)
�= 0. (3.5)

Equation (3.5) shows that the parameter ν is positive for the
open or flat Universe, but changes sign from plus to minus
with growth of the scale factor a for the closed Universe.

The mass densityρ is given by Eq. (2.6). Therefore, we can
consider the total function φ as a superposition of individual
functions φi , each corresponding to the i-th gravitating mass.
Then the function φi satisfies the following equation outside
the point-like source (located at the origin of coordinates):

Δφi − νφi = 0, (3.6)

which for the metric (2.1) can be written in the form

1

Σ2(χ)

∂

∂χ

(
Σ2(χ)

∂φi

∂χ

)
− νφi = 0. (3.7)

With the help of the definitions

U (η, χ) ≡ Σ(χ) φi (η, χ) (3.8)

and

μ ≡ 1

Σ(χ)

∂ 2Σ(χ)

∂χ2 + ν =

⎧
⎪⎨

⎪⎩

ν − 1 for K = +1

ν for K = 0

ν + 1 for K = −1

(3.9)

Equation (3.7) can be presented in the following form:

∂ 2U

∂χ2 − μU = 0. (3.10)

Then the general solution is

φi = A1 sin
(√|μ|χ) + A2 cos

(√|μ|χ)

Σ(χ)
, μ < 0;

φi = B1 χ + B2

Σ(χ)
, μ = 0;

φi = C1 e−√
μχ + C2 e

√
μχ

Σ(χ)
, μ > 0.

(3.11)

In addition, we introduce a new parameter

λ−1
phys ≡

√|μ|
a

=
√

9H2
0 ΩM

2c2

(
z + 1

)3
[

1 − 8K
9

|ΩK|
ΩM

1

z + 1

]
, (3.12)

where z = (a0/a) − 1 is the redshift. In what follows,
this parameter will define a characteristic length of cosmic
screening. It is worth noting that the introduced screening
length is a dynamical function since it depends on the scale
factor a.

Let us investigate three curvature types separately.

4 Flat Universe

For the flat case μ = ν > 0. Then the solution (3.11) is

φi = C1 e−√
μχ + C2 e

√
μχ

χ
. (4.1)

Applying Newtonian limit φi (χ → 0) → −GNmi/χ and
the boundary condition φi (χ → +∞) → 0, we get

φi = − GNmi

r
e−√

μr , 0 < r < +∞, (4.2)

where in the flat Universe χ ≡ r is the absolute value of
the three-dimensional comoving radius-vector. As usual, the
physical radius-vector is defined as rphys = ar.
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In (4.2) the origin of coordinates is located on the gravi-
tating mass. For a many-particle system the total function ϕ

takes the form

ϕ =
∑

i

φi + 4πGN ρ̄

ν

= 1

3
c2a − GN

∑

i

mi

|r − ri | e−√
μ|r−ri |. (4.3)

Therefore, for the total gravitational potential we get

Φ = 1

3
− GN

c2a

∑

i

mi

|r − ri | e−√
μ|r−ri | (4.4)

that exactly coincides with the result of [16] where it was
also shown that the average value of (4.4) is equal to zero:
Φ̄ = 0, as it should be for the first-order perturbations (see,
e.g., the corresponding discussion in [21]).

In the considered case, the screening length at the present
time a = a0 with the values (2.5) is estimated, in accord with
[16], as

λ
(0)
phys = a0√

μ0
=

(
9H2

0 ΩM

2c2

)−1/2

≈ 3736 Mpc. (4.5)

5 Open Universe

For the case K = −1 the parameter ν is positive, therefore
μ = ν + 1 > 0. Then from Eq. (3.11) we get

φi = C1 e−√
μχ + C2 e

√
μχ

sinhχ
. (5.1)

Applying Newtonian limit φi (χ → 0) → −GNmi/χ and
the boundary condition φi (χ → +∞) → 0, we obtain

φi = − GNmi

sinhχ
e−√

μχ , 0 < χ < +∞. (5.2)

Here the origin of coordinates is located on the gravitating
mass. For a many-particle system the total function ϕ takes
the form

ϕ = 1

3
c2a

[
1 + 2

3

ΩK
ΩM

a

a0

]−1

− GN

∑

i

mi

sinh li
e−√

μli ,

(5.3)

where li denotes the geodesic distance between the i-th mass
mi and the point of observation. Therefore, the total gravita-
tional potential is

Φ = 1

3

[
1 + 2

3

ΩK
ΩM

a

a0

]−1
− GN

c2a

∑

i

mi

sinhli
e−

√
μli . (5.4)

Similarly to the flat Universe case, here we also expect that
the average value of the potential (5.4) is equal to zero. To
prove it, we consider first the average value of the individual
contribution (5.2):

φ̄i = 1

V

∫

V
φi dV

= −GNmi
4π

V

∫ +∞

0

1

sinhχ
e−√

μχ sinh2χ dχ

= − 1

3
c2a

mi

V

1

ρ̄

[
1 + 2

3

ΩK
ΩM

a

a0

]−1

. (5.5)

Then for the average value of the total gravitational potential
we get

Φ̄ = 1

3

[
1 + 2

3

ΩK
ΩM

a

a0

]−1

+ 1

c2a

∑

i

φ̄i = 0, (5.6)

where we have taken into account that
(∑

i mi
)
/V = ρ̄.

For the open Universe, the screening length at the present
time a = a0 with the values (2.5) is

λ
(0)
phys =

(
9H2

0 ΩM

2c2

[
1 + 8

9

ΩK
ΩM

])−1/2

≈ 3732 Mpc.

(5.7)

6 Closed Universe

In the case of the closed Universe the parameter μ reads

μ = ν−1 = 3κρ̄c2

2a
−4 = 3κρ̄c2

2a

(
1− 8

9

|ΩK|
ΩM

a

a0

)
. (6.1)

Therefore, with increasing scale factor a from zero to infinity
this parameter changes its sign from positive to negative and
tends to −4 for a → +∞. Hence, for the negative values
of μ the only integer value of its square root is

√|μ| = 1
(for finite values of the scale factor), that takes place for
μ = −1 ⇔ ν = 0. Since |ΩK| 
 ΩM (see Eq. (2.5)), at
the present time a = a0 the parameter μ = μ0 is positive:
μ0 > 0. From Eq. (6.1) we can also find two special values
of the scale factor. The first one is

μ = 0 ⇒ aμ = 3κρ̄c2

8
. (6.2)

At this value of a the parameter μ changes its sign. The
second one is

μ = −1 ⇒ aν = κρ̄c2

2
(6.3)
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Fig. 1 Schematic illustration of the relation between the scale factor
and the parameter μ. The points aμ and aν represent the cases μ = 0
and ν = 0 (μ = −1), respectively; a0 stands for the present value of
the scale factor

and corresponds to the zero value of ν. Obviously, for ν = 0
the transformation (3.4) does not work. Schematic location
of the special values (6.2) and (6.3) of the scale factor is
depicted in Fig. 1.

Now we turn to the solution for the gravitational potential
starting from the case μ �= −1 ⇔ ν �= 0. Then from (3.11)
we get

φi = A1 sin(
√|μ|χ) + A2 cos(

√|μ|χ)

sinχ
,

(μ < 0) ∧ (μ �= −1);
φi = B1 χ + B2

sinχ
, μ = 0;

φi = C1 e−√
μχ + C2 e

√
μχ

sinχ
, μ > 0.

(6.4)

First, we consider the solution with negative μ. The condition
of regularity of this solution at χ = π requires

A1 sin(
√|μ|π) + A2 cos(

√|μ|π) = 0, (6.5)

which gives

A1 = −A2
cos(

√|μ|π)

sin(
√|μ|π)

, μ �= −1. (6.6)

Therefore,

φi = A2
sin

[√|μ|(π − χ)
]

sin
(√|μ|π)

sinχ
. (6.7)

Now, if we employ the Newtonian limit φi (χ → 0) →
φ

(N )
i = −GNmi/χ , we obtain

φi = −GNmi
sin

[√|μ|(π − χ)
]

sin
(√|μ|π)

sinχ
. (6.8)

Following the same procedure for the cases μ = 0 and
μ > 0, we get:

φi = −GNmi
sin

[√|μ|(π − χ)
]

sin
(√|μ|π)

sinχ
, (μ < 0) ∧ (μ �= −1);

φi = −GNmi
π − χ

π sinχ
, μ = 0;

φi = −GNmi
sinh

[√
μ(π − χ)

]

sinh
(√

μπ
)

sinχ
, μ > 0.

(6.9)

Let us now consider the exceptional case μ = −1 ⇔ ν =
0. Before that, it is worth noting that in the closed Universe,
unlike the flat and open Universe cases, we can determine the
individual contribution of each mass into the total average
comoving mass density:

ρ̄ =
∑

i

mi

V
≡

∑

i

ρ̄i , (6.10)

where V = 2π2 is the comoving space volume. Then we can
solve Eq. (3.2) for each combination (mi , ρ̄i ) separately. For
example, the function ϕi outside the i-th mass satisfies the
equation

Δϕi = −4πGN ρ̄i . (6.11)

The solution reads

ϕi = Ai − GNmi
cosχ

sinχ

(
1 − χ

π

)
, (6.12)

where Ai is the constant of integration and the second con-
stant has been determined by the demand for regularity of
the potential at χ = π . It can be easily seen that the poten-
tial (6.12) has the Newtonian limit for χ → 0. The constant
Ai can be found from the natural condition that the average
values of the first-order perturbations, i.e. the gravitational
potential in our case, should be equal to zero:

ϕ̄ =
∑

i

1

V

∫

V
ϕi dV =

∑

i

ϕ̄i , (6.13)

ϕ̄i = 4π

V

∫ π

0

[
Ai − GNmi

cosχ

sinχ

(
1 − χ

π

)]
sin2χ dχ

= 2π

V

[
Aiπ − GNmi

2

]
= 0. (6.14)

Thus, Ai = GNmi/(2π). Consequently, the solution (6.12)
becomes

ϕi = GNmi

2π
− GNmi

cosχ

sinχ

(
1 − χ

π

)
. (6.15)
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Therefore, taking into account Eq. (6.10), the complete set
of solutions, including the exceptional one (6.15), is

ϕi = −GNmi

{
sin

[√|μ|(π − χ)
]

sin
(√|μ|π)

sinχ
+ 2

π(|μ| − 1)

}
,

(μ < 0) ∧ (μ �= −1); (6.16a)

ϕi = −GNmi

{
cosχ

sinχ

(
1 − χ

π

)
− 1

2π

}
, μ = − 1;

(6.16b)

ϕi = −GNmi

{
1

sinχ

(
1 − χ

π

)
− 2

π

}
, μ = 0;

(6.16c)

ϕi = −GNmi

{
sinh

[√
μ(π − χ)

]

sinh
(√

μπ
)

sinχ
− 2

π(μ + 1)

}
,

μ > 0. (6.16d)

The average values of all these individual potentials are
equal to zero. We have already discussed this fact with respect
to (6.16b). The same can be proven for the other expressions.
For example, for (6.16a) we have

− ϕ̄i

GNmi
= − 1

GNmiV

∫

V
ϕi dV

= 4π

V

∫ π

0

{
sin

[
u(π − χ)

]

sin
(
uπ

)
sinχ

+ 2

π(u2 − 1)

}
sin2χ dχ

= 4π

V

{
1

sin
(
uπ

)
1

1 − u2 sin
(
uπ

) + 1

π(u2 − 1)
π

}
= 0,

(6.17)

where u ≡ √|μ|. Therefore, the average values of total
gravitational potentials are also equal to zero: Φ̄ = (c2a)−1
∑

i ϕ̄i = 0.
The first derivatives of the potentials (6.16) with respect

to χ define the gravitational force Fi ≡ −∂ϕi/∂χ (per unit
mass and up to the prefactor 1/a2) induced by the mass mi .
From (6.16a)–(6.16d) we get, respectively,

Fi = −GNmi

{ √|μ| cos
[√|μ|(π − χ)

]

sinχ sin
(√|μ|π)

+ cosχ sin
[√|μ|(π − χ)

]

sin2χ sin
(√|μ|π)

}

, (μ < 0) ∧ (μ �= −1);
(6.18a)

Fi = −GNmi

[
cosχ

π sinχ
+ 1

sin2χ

(
1 − χ

π

)]
, μ = −1;

(6.18b)

Fi = −GNmi

[
1

π sinχ
+ cosχ

sin2χ

(
1 − χ

π

)]
, μ = 0;

(6.18c)

−3 −2 −1 0 1 2 3
μ

0

0.2

0.4

0.6

0.8

1

−ϕ
i
/[

G
N

m
i]

χ = π/3
μ < 0
μ > 0
μ = −1
μ = 0

Fig. 2 Plot of Eq. (6.16) with fixed χ = π/3

Fi = −GNmi

{ √
μ cosh

[√
μ(π − χ)

]

sinχ sinh
(√

μπ
)

+ cosχ sinh
[√

μ(π − χ)
]

sin2χ sinh
(√

μπ
)

}

, μ > 0. (6.18d)

It is not difficult to verify that the solutions (6.16a)–(6.16d)
are smoothly connected with each other: these functions as
well as their first derivatives (6.18a)–(6.18d) are matched at
μ = −1 and μ = 0 for any value of χ ∈ (0, π ]. We demon-
strate this graphically in Fig. 2 where we put for definiteness
χ = π/3.

Taking into account that μ ∈ (−4,+∞) and the limiting
value −4 does not correspond to any finite value of the scale
factor a, it is not difficult to verify that the first derivatives
(6.18) are equal to zero only at the antipodal point χ = π .
Moreover, the second derivatives of the functions (6.16) are
negative at χ = π . Therefore, the potentials (6.16) represent
monotonically increasing functions from −∞ (for χ → 0)
to the following positive maximal values (at χ = π ):

ϕi (χ → π) = −GNmi

{ √|μ|
sin

(√|μ|π) + 2

π(|μ| − 1)

}
,

(μ < 0) ∧ (μ �= −1); (6.19a)

ϕi (χ → π) = 3GNmi

2π
, μ = −1; (6.19b)

ϕi (χ → π) = GNmi

π
, μ = 0; (6.19c)

ϕi (χ → π) = −GNmi

{ √
μ

sinh
(√

μπ
) − 2

π(μ + 1)

}
,

μ > 0. (6.19d)

Obviously, the limiting values (6.19) are matched at μ = −1
and μ = 0.

Since the first derivatives of the potentials (6.16) are equal
to zero at χ = π , the gravitational force induced by the
i-th mass mi is equal to zero at the antipodal point with
respect to this mass. This is an interesting feature of the closed
Universe.
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To conclude this section, we compare the behavior of
the potential ϕi and the corresponding force Fi with the
Newtonian expressions at the present time a = a0. At this
moment the parameter μ = μ0 and the screening length
λ
(0)
phys = a0/

√
μ0 are:

μ0 = 9

2

ΩM

|ΩK| − 4 ≈ 28.22, (6.20)

λ
(0)
phys =

(
9H2

0 ΩM

2c2

[
1 − 8

9

|ΩK|
ΩM

])−1/2

≈ 3992 Mpc, (6.21)

where we have used the values of the cosmological parame-
ters given in (2.5).

In the case of positive μ, the expressions for the gravita-
tional potential and force are given by the formulas (6.16d)
and (6.18d), respectively. At the moment a = a0 the potential
(6.16d) can be written in the form

ϕ
(0)
i = −GNmi

⎧
⎨

⎩

sinh
(√

μ0π − r̃phys

)

sinh
(√

μ0π
)

sin
(
r̃phys

/√
μ0

)

− 2

π
(
μ0 + 1

)

}

, (6.22)

where ϕ
(0)
i ≡ ϕi

∣∣
∣
a=a0

and we have introduced the dimen-

sionless physical distance

r̃phys ≡ r (0)
phys

λ
(0)
phys

= a0χ

λ
(0)
phys

= χ
√

μ0 ∈ [
0,

√
μ0π

]
. (6.23)

The Newtonian potential can be presented in the form

ϕ
(N )

i = −GNmi

χ
= −GNmia0

r (0)
phys

= −GNmi
√

μ0

r̃phys
. (6.24)

The dimensionless form of these potentials is:

ϕ̃
(0)
i ≡ 1√

μ0

ϕ
(0)
i

GNmi
, (6.25)

ϕ̃
(N )

i ≡ 1√
μ0

ϕ
(N )

i

GNmi
= − 1

r̃phys
. (6.26)

Similarly, we can introduce the dimensionless analog of the
gravitational force (6.18d),

F̃ (0)
i ≡ 1

μ0

F (0)
i

GNmi

= − sin
(
r̃phys

/√
μ0

)
cosh

[√
μ0π − r̃phys

]

√
μ0 sin2

(
r̃phys

/√
μ0

)
sinh

(√
μ0π

)

−cos
(
r̃phys

/√
μ0

)
sinh

[√
μ0π − r̃phys

]

μ0 sin2
(
r̃phys

/√
μ0

)
sinh

(√
μ0π

) , (6.27)

and the dimensionless expression for Newtonian force,

0 4 8 12
√

μ0 π

r̃phys

0

1

2

3

4

5

−ϕ̃
i

×10−1

ϕ̃(0)
i

ϕ̃(N)
i

4 8 12

0

X

0 4 8 12
√

μ0 π

r̃phys

0

1

2

3

4

5

−F̃
i

×10−2

F̃ (0)
i

F̃ (N)
i

15 16
−1

0

1 ×10−6

Fig. 3 Graphical representations of the gravitational potentials (top)
defined by Eqs. (6.25), (6.26) and forces (bottom) defined by Eqs. (6.27),
(6.28)

F̃ (N )

i ≡ 1

μ0

F (N )

i

GNmi
= − 1

r̃2
phys

. (6.28)

The dimensionless potentials (6.25), (6.26) and forces (6.27),
(6.28) are depicted in Fig. 3. The top picture shows a faster
rush to the x-axis of the potential in the closed Universe
compared to the Newtonian potential. Moreover, in contrast
to the latter, the potential ϕ̃(0)

i changes its sign crossing the x-
axis. This is a necessary condition for the zero average value
of the potential (6.22). In addition, X = [

sinh
(√

μ0π
)]−1 −

2
[√

μ0
(
μ0 + 1

)
π

]−1 ≈ −4 × 10−3 is the limiting value of

−ϕ̃
(0)
i for χ → π (see Eq. (6.19d)). The force plots (bottom

picture) demonstrate a faster drop in the absolute values of
the force compared to the Newtonian expression. At the finite
distance χ = π (i.e. at the antipodal point) the gravitational
force is equal to zero.

7 Conclusion

In this paper we have considered the effect of spatial cur-
vature on the form of the gravitational potential produced
by discrete massive sources in the open and closed Uni-
verse cases. Within the cosmic screening approach this poten-
tial satisfies the Helmholtz-type equation where the Laplace
operator is defined by the metric of the constant curvature
spaces. We have not included the peculiar velocities of dis-
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crete masses since they negligibly contribute to the potential
[16]. We have solved this equation exactly for the open and
closed Universe cases. The flat Universe was considered ear-
lier in the paper [16] where it was shown that the gravitational
potential undergoes the Yukawa-type exponential screening
at cosmological scales. In the present paper we have shown
that the spatial curvature of the Universe considerably affect
the shape of the gravitational potential. Although in the open
Universe we also observe the exponential screening, there is
a prefactor 1/ sinh l (with l denoting the geodesic distance
between the mass and the point of observation) instead of 1/r
as in the flat space. In the closed Universe the situation is even
more complicated and interesting. First of all, the form of the
potential depends on the sign of the time-dependent param-
eter μ (6.1). This parameter changes its sign from positive
to negative with the growth of the scale factor a. Conse-
quently, the potential changes its form with the growth of a
(see Eqs. (6.16a)–(6.16d)). Second, we do not observe here
the exponential damping of the potential. Instead, the poten-
tial produced by an individual mass grows with distance from
−∞ and reaches its positive maximal value at the antipodal
point. At the same time, the gravitational force is equal to
zero at this point (see Fig. (3)).

We have also demonstrated that, similarly to the flat space
[16], in the open and closed Universe cases the average val-
ues of the total gravitational potentials are equal to zero, as it
should be for the first-order perturbations. Formulas for the
potentials and forces derived in the present paper can be used
for investigations of motion of astrophysical objects (e.g.,
galaxies) in the open and closed Universes, and for simula-
tions of the large scale structure formation. These formulas
form the basis for the subsequent analysis of the second-
order perturbations in the closed and open Universes (see,
e.g., [22,23] for the flat case).
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