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STARK EFFECT AND  RESONANCES IN THE IONIZATION CONTINUUM

FOR EXCITONS IN QUANTUM DOTS AND ATOMS IN AN ELECRIC FIELD  

The Stark effect for non- hydrogenic atom of the rubidium and excitons in 

semiconductor 

operator perturbation theory method (J.Phys.B26, L379 (1993)). The Stark resonance 

energies in the rubidium atom and te excitons in the Cu
2
0 semiconductor and in the 

 

1. Introduction
This work goes on our investigations of the 

multi-electron atomic systems and excitons in 

Stark effect) [1-17]. The remarkable Stark ef-
fect has a long history and until recently it was 
believed that the Stark effect is fully understood 
and fundamental problems remained.  However, 
an observation of the Stark effect in a constant 

alkali atoms led to the discovery of resonances 
extending into the ionization continuum by Glab 
et al and Freeman et al (c.f.[1]). Calculation of 
the characteristics of these resonances as well as 

-
mains very important problem of modern atomic 
physics. 

It should be noted that the same class of prob-
lems has been arisen in a physics of  semicon-
ductors (c.f.[14-17]). It is well known that the 
availability of excitons in semiconductors re-
sulted experimentally in the special form of the 
main absorption band edge and appearance of 
discrete levels structure (f.e. hydrogen-like spec-
trum in Cu

2
O). Beginning from known papers of 

(c.f.[14-17]), a calculation procedure of the Stark 
effect for exciton spectrum attracts a deep inter-
est permanently.  Very interesting physics occurs 
in a case of the excitons in quantum dots, wires 
etc, where the other geometry and energetics in 

comparison with the bulk semiconductor makes 

in the quantum dots have been studied in a num-
ber of papers and have been observed by photo-
luminescence experiments (c.f. [14-17]). Natu-
rally, the electronic states in quantum dots (wires) 

interacting force between the particles. Now the 

-

it 

on Stark shifts in case of such a system as sys-
tem GaAs-AlGaAs etc. In this paper we study 
the Stark effect for non-H atom of rubidium and 

within the operator perturbation theory method. 
The Stark resonance energies in rubidium and the 
Stark shift for the n=2 state of the Wannier-Mott 
excitons in the Cu

2
0 semiconductor and excitons 

in the parabolic quantum dot (GaAs) in the elec-

2. Stark effect for atomic systems: Operator 
perturbation theory

Regarding the operator perturbation theory 
approach, let us note that this method, originally 
proposed Ref. [2], is in details presented in [1] 
and used in many papers. So, here we are limited 
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only by the key aspects. According to [1,2], the 
essence of operator perturbation theory approach 
is the inclusion of the well known method of “dis-
torted waves approximation” in the frame of the 
formally exact perturbation theory [11]. The ze-
roth order Hamiltonian H

0
 of this PT possesses 

only stationary bound and scattering states. In or-

the orthogonal EF and EE without specifying the 
explicit form of the corresponding zeroth order 
potential. In the case of the optimal zeroth order 
spectrum , the PT smallness parameter is of the 
order  of  G/E, where  G and  E
and bound energy of the state level. It is true that 
G/E £ 1/n  even  in the vicinity of the "new contin-
uum" boundary (where n is the principal quantum 

-
tric potential model function choice on the values 
of the Stark resonances energies and bandwidths 

the resonances shifts and widths [1].  
According to [3], the Schrödinger equation for  

the electronic eigen-function taking into account 

F
used: a unit is h2 /Ze2 m and a unit of  mZ2 e4 /h2 for 
energy) looks like:

       [-(1 - N/Z) / r + F z - 0,5D - E ] y = 0       (1)
 
where  E is the electronic energy, Z — charge of 
nucleus, N —  the number of electrons in atomic 
core. Our approach allow to use more adequate 
forms for the core potential (c.f.[25-27]), includ-
ing the most consistent quantum electrodynam-
ics procedure for construction of the optimized 
one-quasi-electron representation and ab initio 
core potential , providing a needed spectroscopic 
accuracy. For multielectron atom one may intro-
duce the ion core charge z*. According to standard 
quantum defect theory (c.f.[3]), relation between 
quantum defect value m

l
, electron energy E and 

principal quantum number n is: m
l
=n-z*(-2E)-1/2. 

n, n
1
, n

2
,m (principal, parabolic, azimuthal: n=n

1
+ 

n
2
+m+1). Then the quantum defect in the para-

bolic co-ordinates d(n
1
n

2
m) is connected with the 

quantum defect value of the free (F=0) atom by 
the following relation [3]: 

d(n
1
n

2
m)=(1/n) l

n

ml

JM
lmmMJ

Cl
1

2
;,

))(12(  

J=(n-1)/2,  M=(n
1
-n

2
+m)/2;

Naturally, it is possible to use more complicated 
forms for the ion core potential (c.f.[1]). After 
separation of variables, equation (1) in parabolic 
co-ordinates could be transformed to the system 
of two equations for the  functions f and g: 

f´´ + 
| |m

t

1
 f´ +[0,5E + (

1 
- N/Z) / t- 0,25×  

×F(t) t ] f = 0                                                    (2)

g´´ +
| |m

t

1
g´+[0,5E+

2 
/t+ 0,25 F(t) t]g = 0      (3)

coupled through the constraint on the separation 
constants: 
                                    b

1
+b

2
=1.

F(t) =F. In ref. 
e  in  (3) and (4)  

was  substituted  by  model function  F(t) with pa-
rameter t ( t = 1.5 t

2
) . Here we use similar  func-

-
ditions (c.f.[11,12]) :  

F(t) = 
1

t
 F 

22

2
)(

t
t                                                                       

                                                                   (4)

Potential energy in equation (4) has the barrier. 
Two turning points for the classical motion along 
the h axis, t

1
 and t

2
 , at a given energy E  are the  

solutions  of  the   quadratic equation  (b = b
1, 

E = 
E

0 

do not depend on the parameter t . It is necessary 
to know two zeroth order EF of the H

0
: bound state 

function Y
Eb

 (e, n, j) and scattering state function 
Y

Es
 (e, h, j) with the same EE in order to calculate 

the width G  of  the concrete quasi-stationary state 
in the lowest PT order. Firstly, one would have to 

in the case of the penetrable barrier.  We solve the 
(2, 3) system here with the total  Hamiltonian H  
using the conditions [11]:   

                         (5)

m)=(1/n)   

 

| |m 1

| |m 1

 

f(t)  0 at t               

 

as follows: 

 

x( , E) / E = 0 

(5) 
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with

x(b, E) = lim
t

 [ g2 (t) + {g´(t) / k}2 ] t| m| + 1.

These two conditions quantify the bounding  en-
ergy E, with separation constant b

1
 . The further 

procedure for this two-dimensional eigenvalue 
problem results in solving of the system of the 
ordinary differential equations(2, 3) with probe 
pairs of E, b

1
. The bound state EE, eigenvalue b

1 

and EF for the zero order Hamiltonian H
0
 coin-

cide with those for the total Hamiltonian H at e 
Þ 0
quantum numbers: n, n

1
, l , m  (principal, parabol-

ic, azimuthal) that are connected with E, b
1
, m by 

the well known expressions. We preserve the n, n
1
 

,m -
tering states' functions must be orthogonal to the 

other. According to the OPT ideology [11,12], the 
following form of g

E¢s  
:is possible:

g
E
´

s
(t) = g

1
 (t) - z

2
´ g

2
(t)

(6)
with f

E¢s
 , and g

1
(t)  satisfying the differential equa-

tions (2) and (3). The function g
2

non-homogeneous differential equation, which 
differs from (3) only by the right hand term, dis-
appearing at t . 

3. Stark effect for exciton

The above analogous method can be formu-
lated for description of the Stark effect for the 
Wannier-Mott excitons in the bulk semiconduc-
tors [4]. Really, the Schrödinger equation for the 
Wannier-Mott exciton looks as follows: 

EeFreFr

remm

he

ehhhee

]

/2/2/[ 2*22*22

     (7)

where m*

e
( m*

h
 ) are the effective-mass for the 

electron (hole), e  is the background dielectric 

constant. Introducing the relative coordinates: 

hrerr  and the corresponding momenta p 

with reduced mass p= m*

e 
m*

h
/M (the momenta P 

with the total-mass M= m*

e
 + m*

h
 ,) and center-of-

mass coordinate 

)'/()( ****

hehhee mmrmrm ,

one could rewrite (7) as:

]8/[]

)/1/1(2//2/[
22

**222

KEFeFr

pKmmre eh   
(8)

This equation then could be solved by the 
method, described above. The other details can 
be found in Refs. [1,4]. 

A problem of the Stark effect for quantum dots 
-

niteness, below we study the Stark effect in the 
parabolic quantum dot.  Within the effective-mass 
approximation and neglecting the band-structure 
effects , the Hamiltonian of an exciton in a para-
bolic quantum dot with the same quantization en-

ergy  ( for the electron and hole), nd subjected 

heehhhh

heeee

eFreFrrermm

rmmH

/))(2/1(2/

/))(2/1(2/
222**

2222**22

                                                                      

                                                                         (9)

above, using the relative coordinate, the momenta 

with reduced mass and center-of-mass coordi-

nate and the momenta with the total-mass M, the 

Hamiltonian H (7) can be represented as :

eFzrer

pMMPH

/)2/1(

2/)2/1(2/
222

2222

.             (10)

Further let us note that the part which depends 

only on the center-of-mass coordinate in Eq.(10) 

is corresponding to the Hamiltonian of a well-

known 3D harmonic oscillator and the exciton 

properties is essentially determined by the rela-

tive Hamiltonian H
r
. 

-

-

tor centred in z
0
=eF/mW2  with the frequency W

r
  

inferior to W. Besides, as usually [17], in order to 

solve the Hamiltonian H
r
 , one should introduce 

an interaction potential which obeys to the known 

Hooke’s force with the parameter l by adding and 

substracting the potential:  

V(r)= ])2/1[( 22r .

Surely then  the Hamiltonian H is splitted into 

two terms with the one term being exactly solv-

able while the other can be treated as a perturba-

tion. Such a scheme is corresponding to method 

by Jaziri-Bastard-Bennaceur [17]. Our approach 

is in he direct numerical solving the problem. Let 

us remind that the introduced potential is simi-

lar to the interaction potential between electron-

electron used by Johnson-Payne and it can hardly 

eh

´
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be considered as the correct potential for the all 

electron-hole separation. Nevertheless, here one 

could  adjust the interaction parameter l so in or-

which is the Coulomb interaction, and for the 

dominant range of separation r [17]. The attrac-

tion potential V(r) will have negative value with 

positive l

to the exact interaction for electron-hole separa-

tion r<(2)1/2R
0 
(here  R

0 
is the quantum dot radius 

/ . As usually, the total energy 

corresponding to exciton ground state is obtained 

as :

)2/()()2/3()2/3( 222 FeE rT

where 1r

shifts can be expressed as: DE = E
T
(F=O)-E

T
(F), 

where E(F=0)is the corresponding energy in the 

-

E
B
= E

e
+E

h
-E

T
, where E

e
,E

h
 are the energies cor-

responding to the one-particle Hamiltonian.

4. Results and conclusions

The calculation results for Stark resonances 
energies in the rubidium atom for the electric 

e=2.189 kV/cm are presented in Ta-
ble 1. For comparison we have also presented the 
experimental data [13], the results of calculation 
within the 1/n-expansion method by Popov etal 
[12].   For the most long-living Stark resonances 
with quantum numbers n

2 
= 0

 
, m = 0, a width of 

between them. These states are mostly effectively 
populated by p-polarized light under transitions 
from states with (n

1
-n

2
) = max, m = 0. As a re-

sult, the sharp isolated resonances (their positions 
under E>0 are determined by energies of quasi-
stationary states with n

2
=0

 
, m=0) are appeared 

under photo ionization from these states in a case 
of p-polarization

In ref. [4] there are listed the preliminary es-
timates of the Stark shifts of the n=2 state of ex-
citons in the Cu

2
0 semiconductor (yellow series) 

indicated on the physically reasonable agreement 

(TH) [14]. 

Table 1. The energies (cm-1)of the Stark reso-
nances for the Rb atom (  = 3,59 kV/cm): 
A-experimental data ; B- Popov et al; C- OPT ap-
proach.

n
1
n

2
m

d A B C

23,0,0
22,0,0
21,1,0
20,2,0
21,0,0
20,1,0
20,0,0
18,1,0
16,2,0
18,0,0

0,656
0,681
0,517
0,400
0,708
0,531
0,737
0,561
0,428
0,802

133,1
157,0
161,1
163,9
185,2
186,3
217,2
248,4

-
-

132,8
157,1
159,5
163,2
184,2
185,4
214,6
247,2
    -
    -  

132,9
157,2
160,6
163,7
184,8
185,8
214,9
247,3

-
    

133,0
157,1
160,9
163,9
185,1
186,2
216,9
248,2
285,5
289,3

state excitons in the Cu
2
0 semiconductor (yel-

cm results in – 0,308 meV in a good agreement 
with experimental data of Gross et al.[28]. Under 

potential on a small enough distance (the orbits 
diameter) will become  comparable with the bond 
energy of particle on this orbit. According to our 
data and data by Gross et al., the corresponding 

3 V/cm. we have tried to 
discover the chaotic behavior of the exciton dy-

-
ization boundary  exciton does not demonstrate 
behaviour of quantum chaotic system, which is 
similar to hydrogen or on-H atom dynamics in a 

a photoionization spectra  (alkali atoms) [5,14]. 
Further we list some data on the Stark shifts exci-
tons in a GaAs semiconductor quantum dot (table 
2).  

Table 2. The Stark shifts (meV) for exciton in the 
GaAS quantum dot: A- Jaziri-Bastard-Bennaceur 
method; B- OPT approach

F (kV/cm) R (A) A B

50 50 3.9 4.0

50 80 14 14.1

50 120 45 45.2

100 50 13 13.1

100 80 56 56.6

100 120 158 159.8
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Comparison of the presented preliminary data 

shows that the different results are in the physi-

cally reasonable agreement. The corresponding 

accuracy is of the order of 1%, however, is should 

be noted [17] that though the method [17] is much 

simpler in comparison with the direct variation-

al approach, but it cannot enviseaged for any 

size. The important feature of the operator pertur-

bation theory formalism is that it can be applied 
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Abstract     

The Stark effect for non-H atom of rubidium and exciton in semiconductor in an external uniform 

in rubidium and excitons in the Cu
2

are listed.   
Key words: atom, exciton, Stark effect  

L. Lovett

 
-

2

GaAs

L. Lovett

Cu
2

GaAs 


