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Abstract—The role of irreducible two-particle contributions to the refraction properties of liquids and solu-
tions has been studied. Two-particle contributions to the polarization vector of the system are calculated by
electrostatics methods, which can be explained by weak deformations and overlaps of the electron shells of
atoms and molecules. It is shown that, when the two-particle effects are taken into account, the constant of
molecular refraction for binary solutions becomes a weakly nonadditive function of the constant of refraction
of the components. It is shown by the example of aqueous solutions of ethanol and methanol that our values
of the refractive indices and constants of refraction of the solutions are in good agreement with the experi-
mental data.
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1. INTRODUCTION
It is generally assumed [1] that permittivity ,

refractive index , and molecular polarizability  are
interrelated in the visible range by the expressions

, (1)

where n is the density of the system. For a binary solu-
tion, the second of the above formulas is naturally gen-
eralized [1, 2]:

 (2)

where  is the molecular solution density

and  is the molar alcohol fraction in the

solution.
Formulas (1) and (2) describe adequately the prop-

erties of liquids and solutions on the whole [1, 2]. For
solutions, this is especially true when using the con-

stant of molecular refraction .

Then, Eqs. (2) can be written as

, (3)

where  is the constant of refraction of solution
with a concentration x within its additivity approxima-
tion and  and  are the constants of refraction of
water and alcohol, respectively. The linear depen-

dence of  on the molar fraction for aqueous solu-
tion of ethanol in Fig. 1 is deceptive all the same. This
can clearly be seen in Fig. 2 where the concentration
dependence of the refractive index of aqueous solution
of ethanol is shown. A deviation of the refractive indi-
ces calculated from formulas (1) and (2) from the
experimental values reaches 4–5%. The same situa-
tion was described in the Feynman Lectures on Phys-
ics for water solution of sugar [3]. It was shown in [5,
6] that the polarizability of molecules in liquids begins
to change only under very high pressures (~103 atm)
when their electron shells begin to overlap.

Note that the effects under consideration make
contributions no larger than 1–3% of the studied val-
ues: refractive index or constant of molecular refrac-
tion. Unfortunately, the error in determining the
molecular polarizability is on the same order of mag-
nitude. This circumstance is illustrated in Table. 1,
where the values of water molecular polarizability,
determined in the liquid and vapor phases from the
refractive indices or permittivity, are presented.

It follows from Table 1 that the polarizability was
determined in both phases only in [4, 7]. However, the
obtained results are opposite: the polarizability of a
water molecule in the gas phase is larger than that in
the liquid phase in [4] and vice versa in [8]. Below, we
will give preference to the suggestion that the molecu-
lar polarizability in the vapor phase is 1–3% lower
than that in the liquid phase. This choice is substanti-
ated by the fact that the polarizability in the vapor
phase obtained in [7, 8] based on more recent (in com-
parison with [4]) data is much smaller than the corre-
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sponding value in [4]. The same conclusion can be
drawn from [5, 6] where the dependence of the water
molecular polarizability on pressure was investigated.

In single-component liquids, the refractive index
values calculated from formulas (1) with the electron
polarizability corresponding to the vapor phase and
found experimentally are also not in good agreement.
For example, in the case of liquid water, the value

 must be used to obtain tabu-
lar refractive index  at 20°C instead of
polarizability  [10, 11] deter-
mined in the gas phase. As can be seen, the difference
between these parameters is about 1.5% of the  value.
The same situation occurs for one-atomic alcohols.

These facts indicate that the permittivity and
refractive index of liquids and solutions are formed by
the effective polarizability rather than the polarizabil-
ity of isolated atoms or molecules; the effective polar-
izability includes two-particle effects and also, per-
haps, higher-order effects.

In this context, we will calculate the contributions
to the effective polarizability, which are made by two-

( ) 24 31.47 10 cmef −α = ×
1.333rn =

24 31.45 10 cm−α = ×

α

particle interactions in (i) single-component low-
molecular liquids and (ii) their binary solutions. Since
the electron shells of neighboring atoms are over-
lapped only slightly, we can restrict ourselves to the
electrostatic approximation. It will be shown that the
thus-determined small additives, although being no
higher than several percent, completely eliminate the
aforementioned contradictions.

2. REFRACTIVE INDEX 
OF WATER–ALCOHOL SOLUTIONS

In this section, we successively (i) consider the gen-
eral theory of refractive index in single-component
liquids and binary solutions and (ii) describe the
method of calculating the irreducible components of
binary polarizability.

a) A General Form of the Refractive Index
in Single-Component Liquids

Permittivity  of a homogeneous and isotropic sys-
tem is determined by the following general expression:

, (4)

where  is a component of polarization vector 
directed along strength  of a uniform external field.
This formula can be most easily derived for a sphere-
shaped system placed in a uniform electric field [13].
In this case, . The system polarization vector
can be written as

, (5)
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Fig. 1. Dependence of  on the alcohol

molar fraction x for the aqueous solution of ethanol:
(crosses) experimental data and (circles) calculation
from (3).
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Fig. 2. Concentration dependence of 
 for the aqueous solution of etha-

nol corresponding to the reference data [10–12].
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Table 1. Polarizabilities of water molecules in liquid (L) and
vapor (V) phases

Compound , Å3 , Å3

 [7] 1.4654
 [8] 1.444, 1.45, 1.58 1.431–1.456
 [9] 1.457
 [4] 1.471 1.542

( )ef Lα ( )Vα
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where  and  are, respectively, the polarizability
and dipole moment of the N-particle system; V is the
volume of this system; ; I is the isotropic
tensor; and  indicates averaging over the molecular
positions and orientations.

Within the two-particle approximation, the system
polarizability is determined by the expression

,

where the superscripts indicate the order of polariz-
ability (single-particle, irreducible two-particle, etc.).
Note that expansion of the system polarizability in
partial irreducible contributions was performed for the
first time by Prof. I.Z. Fisher in one of his lectures for
postgraduates (which, unfortunately, has not been
published).

The average values of single-particle contributions
are identical and well known:

, (6)

where  is the symbol of calculating the spur of
matrix.

The behavior of two-particle contributions has
hardly been discussed in the literature. Here, we will
dwell on only the structure of average values of two-
particle contributions for a uniform and isotropic sys-
tem. It is assumed that the spatial orientations of mol-
ecules are described by an isotropic distribution and
the positions of the molecular centers of mass are
determined by a binary distribution function .
Then,

 (7)

and expression (1) for the system permittivity can be
written as

, (8)

where  is the molecular density of the system. We will
show below that , where Z is the num-
ber of nearest neighbors and  is the averaged
binary polarizability at point  corresponding to the
position of the maximum of binary distribution func-
tion (approximately ). Therefore,

. (9)

Note that it is correct to use the concept of the
number of nearest neighbors only for the condensed
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phase. For the gas phase, it should be assumed that
.

Thus, a difference from the classical Lorenz–
Lorentz formula is the addition of contribution related
to the irreducible two-particle polarizability at point

 to the single-particle polarizability.

b) A General Form of the Refractive Index
in Two-Component Liquids

For a microhomogeneous mixture of molecules of
two types, there is an expression similar to the follow-
ing one:

 (10)

or

where x is the molar fraction of the second compo-
nent. At arbitrary concentrations, the refractive index
can be rewritten as follows:

 (11)

where , , and  are the averaged two-particle
polarizabilities of water molecules, alcohol molecules,
and a complex of water and alcohol molecules at the
points of their direct contact. It is assumed that the
average number of nearest neighbors depends on the
concentration and formulas in the form (9) are satis-
fied for one-component systems:

 (12)

The concentration dependence of the molecular
solution density is given by the expression

, (13)

0Z =

1/3n−ζ ≈

2
(1) (1)

1 1 2 22

2 (2) (2) 2 (2)
1 11 1 2 12 2 22

1 4
32

1 2 ...
2

r

r

n n n
n

n n n n

⎡− π= α + α⎢+ ⎣

⎤+ α + α + α +
⎥⎦

2
(1)
12

(1) 2 (2)
2 11

(2) 2 (2)
12 22

1 4 ( ) (1 )
32
1 ( )((1 )
2

2(1 ) ) ... ,

r

r

n n x x
n

x n x x

x x x

⎡− π= − α⎢+ ⎣

+ α + − α

⎤+ − α + α + ⎥
⎦

2 2 2

2 2 2

(2) (2) (2)

1 ( ) 1 ( ) 1( ) ( )(1 )
2 ( ) 2 ( ) 2

2 (1 ) ( ) ( )( 2 ) ...,
3

r r r

w ar r r

w wa a

n n w n an x n xx x
n nn n w n a

x x n x Z x

− − −= − +
+ + +
π− − α − α + α +

(2)
wα (2)

aα (2)
waα

2
(1) (2)

2
( ) 1 4 1 ... ,

3 2( ) 2
, .

r
k k k k

r

n k n Z
n k

k w a

− π ⎡ ⎤= α + α +
⎢ ⎥⎣ ⎦+
=

( )( )
( )w a w

xn x
m x m m

ρ=
+ −



618

OPTICS AND SPECTROSCOPY  Vol. 120  No. 4  2016

GOTSUL’SKII et al.

where  is the mass solution density. Using the
constant of molecular refraction, formula (11) can be
rewritten in the form

 (14)

where , , and

 are the constants of refraction for

the solution, water, and alcohol, respectively, and

 . (15)

One difference between (14) and standard for-
mula (3) for the constant of solution refraction is the
addition of the term proportional to .

c) Longitudinal and Transverse Polarizabilities 
of Two Identical Spherical Molecules

The form of the tensor of two-particle polarizabil-
ity is especially simple for noble gases. We will first
consider two characteristic cases: a pair of spherical
molecules is arranged (i) along the field and (ii) per-
pendicular to field.

Let two spherical particles with the same polariz-
ability  be introduced into external dc field . The
positions of the particles are set by radius vectors  and

, and their dipole moments are determined by the
equations

, (16)

where  is the strength of field exerted on the second
particle from the first one (and vice versa for ).
Since fields  and  are mainly formed by dipoles 
and , respectively, their explicit expressions can be
written as

 (17)

where  is a unit vector.
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vector , it follows from (16) and (17) that vectors 
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By definition, irreducible component  of two-
particle polarizability corresponding to the longitudi-
nal arrangement of particles along the field ( ) is
set by the equation

. (19)

Having combined it with Eq. (18), we find that

. (20)

If unit vector e is oriented perpendicular to , the
dipole moments are determined by the equations

It should be noted that, at this arrangement of par-
ticles, their dipole moments  and  are also oriented
parallel to  because the strengths of fields formed by
the dipoles in their equatorial planes are oriented par-
allel to their dipole moments. Having found  and ,
we confirm that the transverse component of the irre-
ducible two-particle polarizability determined simi-
larly to (20) is equal to

. (21)

As a result, we obtain the following spur of two-
particle polarizability:

, (22)

where  is the single-particle polarizability. The appli-
cability of formula (22) is violated if its denominator
turns to zero. This occurs at . One
can easily make sure that  for water and
alcohols of methanol homologous series (  is the
solid-sphere diameter of water or alcohol molecules).
Therefore, the correction terms in denominator of
(22) can be neglected, providing satisfactory accuracy
even at the point of direct contact of two molecules.

Hence, the expression for  (i.e., for the

two-particle polarizability averaged over angles)
obtained using the methods of classical electrostatics
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tem existence.

lα

0||e E

1 2 0(2 )l+ = α + αd d E

2

3
12

3
12

4 1
21

l
r

r

αα = α−

0E

1 2 03
12

2 1 03
12

,

.

r

r

α+ = α

α+ = α

d d E

d d E

1d 2d
0E

1d 2d

2

3
12

3
12

2 1

1
t

r
r

αα = − α+

3

2 12 6 2
12

3 6
12 12

1 1Sp ( ) 4
3 21

r
r

r r

α≈
α α− −

α

α

1/3
12 (2 )*r r⇒ = α

/ 0.75*r σ ≤
σ

2 12
1Sp ( )
3

rα



OPTICS AND SPECTROSCOPY  Vol. 120  No. 4  2016

THE ROLE OF TWO-PARTICLE EFFECTS IN THE BEHAVIOR 619

In the case of water, at a distance of the direct con-
tact between two molecules approximately equal to
their solid-sphere diameter  Å, we obtain

. (23)

A similar estimate can be obtained for alcohols.
It can easily be seen that, according to (19),

;

therefore,

and the combination  can be written as

,

where

is the number of molecules in the first coordination
sphere (i.e., the number of nearest neighbors). Hence,
within the two-particle approximation, we obtain

.

d) Longitudinal and Transverse Polarizabilities
of Two Different Spherical Molecules

In this case, the character of calculations remains
the same as in the previous section. In particular, it
follows from equations in the form (17) and (18) that
the dipole moment of one of two particles, at an arbi-
trary mutual orientation of the external-field strength
and the axis passing through the particle centers, sat-
isfies the equation

Having determined the  and, similarly, 
values from this equation and then following the
above-described algorithm, we find for the longitudi-
nal and transverse components of two-particle polar-
izability that
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It can be assumed with satisfactory accuracy that
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In a similar way, one can represent the contribution
made by f luctuations of the dipole moments of water
and alcohol molecules. However, in the visible range
this contribution can be neglected ensuring an accept-
able accuracy. Therefore, the refractive indices of pure
water and alcohols are described by formulas in the
form (12).

3. MANIFESTATION OF TWO-PARTICLE 
CONTRIBUTIONS IN THE CONSTANT

OF REFRACTION
The role of two-particle contributions in the for-

mation of the effective polarizability of atoms or mol-
ecules is much less important than is that of single-
particle contributions, although it is not negligible.
For example, in the case of water, for reproduction of
the experimental values of the refractive index, it

should be assumed that  Å3, which

at  yields the estimate  consistent

with (23) at  Å3.
The single-particle and two-particle contributions

to the effective polarizability of water, methanol, and
ethanol molecules are compared in Table. 2.
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calculated ( ) and experimental ( ) values for
water, ethanol, and methanol almost coincide. Note
that the number of nearest neighbors of molecules in
liquid methanol should be close to that in water
because of proximity of the sizes of their molecules,
whereas for ethanol this value should be larger by a
factor of 2–3 (see an additional argumentation in
[15]).

Formula (14) can also be used for determining the
concentration dependence of the number of nearest
neighbors:

. (28)

The corresponding character of the dependence is
shown in Fig. 3.

The following main properties of the average coor-
dination number of molecules in the aqueous solution
of ethanol should be noted:

(i)  is close to 4 at , which is in agree-
ment with the well-known properties of water;

(ii) in the vicinity of the solution singular point
( = 0.077 [14, 15]), the curve  ceases to mono-
tonically increase; then there is a short portion of
growth again; and then a smooth monotonic decay is
observed;
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(iii) at , the average coordination number
tends to 10, which should be considered as its average
value in pure ethanol;

(iv) the presence of a fine structure of the curve
 in the molar-fraction range  can be

interpreted as a result of the formation of two phases
with similar properties, which continuously undergo
phase transitions: drops of one phase arise and regress
in the other.

Note that our  values are in satisfactory agree-
ment with those found in [15] according to qualitative
considerations.

Let us supplement the obtained results with the
concentration dependence of the refractive index of
aqueous solution of ethanol found from (14). Using
the polarizability and  values listed in Table 2, we
find that the experimental dependence of the refrac-
tive index is almost exactly reproduced (Fig. 4). One
can make sure that the formulas proposed by us
describe the refractive indices of methanol and sugars
with almost the same accuracy.

To conclude, we should note that consideration of
the irreducible two-particle components of molecular
polarizability is fundamentally necessary for the suffi-
ciently accurate reproduction of the refractive index of
(a) single-component liquids and (b) binary solutions.
The simple electrostatic approach to estimating the
two-particle polarizability is fairly satisfactory. From
the physical point of view, this is a result of a rather
weak overlap of the electron shells of neighboring mol-
ecules. Within our approach, it is also possible to esti-
mate the average number of nearest neighbors in sin-
gle-component liquids and solutions. In the case of
water and diluted aqueous solutions of alcohols (x !
0.1), formula (28) yields , which corresponds
to the experimental data [18, 19]. This satisfactory
agreement between the calculated and experimental
data is likely to remain for arbitrary binary solutions
with close-to-spherical molecules.

Let us briefly consider the applicability of the pro-
posed approach to describing the constant of molecu-
lar refraction or the refractive index by the example of
another representative of one-atomic alcohols: meth-
anol. In this case, the  value calculated in the same
way as for ethanol is smaller than that for ethanol by an
order of magnitude. This is due to the fact that the
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Table 2. Single- and two-particle contributions to the effective molecular polarizability (  Å3)

Compound

Water 1.45 0.014 4 0.011
Methanol 3.2 0.029 0.0204 0.0020 4–6 0.02–0.032
Ethanol 4.9 0.05 0.0279 0.0082 8–10 0.04–0.06
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Fig. 3. Dependence of coordination number  on the
molar fraction in the aqueous solution of ethanol deter-
mined according to (28).
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sizes of water and methanol molecules are close.
Therefore, it is urgent to increase the accuracy of
determining . Here, we restrict ourselves to the deter-
mination of only the average number of nearest neigh-
bors . We will choose  so as to make

. One can easily make sure that the
appropriate value is . The corresponding
behavior of  for the aqueous solution of methanol
is shown in Fig. 5.

Note that consideration of the irreducible compo-
nents of two-particle polarizability is important for

ζ

( )Z x (2)Δ
( 0) 4Z x → →

(2) 0.02Δ =
( )Z x

not only analysis of permittivity and the refractive
index, but also the description of high-frequency
asymptotics of the spectra of molecular light scattering
in gases and liquids [20–22].
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Translated by A. Sin’kov

Fig. 4. Dependence of the refractive index of the aqueous
solution of ethanol on the molar fraction of alcohol:
(1) experimental data [10, 12], (2, 3) calculation from for-

mula (14) with (2) the  values listed in Table 2 and

(3) , and (4) calculation of the refractive index
from the simplified additive formula nr(x) =

 used in [16, 17].

1.37
nr

1.0
x

0.80.60.40.20

1.36
1

2
3

1.35

1.34

1.33

4

(2)Δ
(2) 0Δ =

( ) ( )(1 )r rn a x n w x+ −

Fig. 5. Dependence of coordination number  on the
molar fraction in the aqueous solution of methanol deter-
mined according to (28).
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