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NEWTON’S METHOD FOR THE EIGENVALUE PROBLEM OF A
SYMMETRIC MATRIX

Newton’s method for calculating the eigenvalue and the corresponding eigenvector of a sym-
metric real matrix is considered. The nonlinear system of equations solved by Newton’s
method consists of an equation that determines the eigenvalue and eigenvector of the matrix
and the normalization condition for the eigenvector. The method allows someone to simulta-
neously calculate the eigenvalue and the corresponding eigenvector. Initial approximations
for the eigenvalue and the corresponding eigenvector can be found by the power method or
by the reverse iteration with shift. A simple proof of the convergence of Newton’s method
in a neighborhood of a simple eigenvalue is proposed. It is shown that the method has a
quadratic convergence rate. In terms of computational costs per iteration, Newton’s method
is comparable to the reverse iteration method with the Rayleigh ratio. Unlike reverse itera-
tion, Newton’s method allows to compute the eigenpair with better accuracy.
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1. INTRODUCTION

If a sufficiently good approximation to the solution of the equation F'(x) = 0
is known, then the Newton method is an effective method for increasing the ac-
curacy of approximation. Many statements about the convergence of Newton’s
method come from the well-known results of L.V. Kantorovich, who transferred
Newton’s method to nonlinear operator equations in Banach spaces|[1].

The application of Newton’s method to spectral problems of matrices has
a long history. Without pretending to be complete, we can note some stages.
J. H. Wilkinson |[2] investigated the application of Newton’s method to find
the roots of the characteristic equation det(A — A\I) = 0. In the monograph
by D.K. Faddeev. and V.N. Faddeeva [3] Newton’s method is applicable to
refine an individual eigenvalue and its own eigenvector, the first component of
which is not vanishingly small in comparison with the others, so that without

loss of generality it can be considered equal to unity. A nonlinear equation
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is obtained for the eigenvalue. Newton’s method is applied to this equation.
In V. N. Kublanovskaya’s article [4], an algorithm for finding the complex
conjugate eigenvalues and eigenvectors of a real matrix in real arithmetic is
constructed. To calculate the real and imaginary parts of the eigenvalue the
roots of nonlinear equations are found by Newton’s method. In all of the
above cases, Newton’s method was applied to scalar nonlinear equations to
refine the required eigenvalue. L. Kollatz [5] described a different approach.
The eigenvalue problem Ax = ABx (A, B — given matrices of dimension n x n)

is reduced to finding the roots of a nonlinear system from the n + 1 equation:

{ Az — A\Bz =0, O

z, —1=0.

To prove the convergence of Newton’s method for system (1), it is proposed
to use the theorem on the convergence of Newton’s method for a nonlinear
operator equation in a Banach space. However, in practice, it is difficult to
prove the fulfillment of the conditions of this theorem. In the same place the
proof of the convergence of Newton’s method is given only for a numerical
example with matrices of size 3 x 3. Moreover, the proof uses the estimates
obtained on the basis of the values found in the process of calculations. The
authors have not found any other proofs of the convergence of Newton’s method
for systems of the form (1). We have proposed a simple proof of the convergence
of Newton’s method for a system of the form (1), which is based on the known
theorem on the convergence of Newton’s method for a system of nonlinear

equations [6].
2. NEWTON’S METHOD FOR THE EIGENVALUE PROBLEM
The Newton method is introduced for the equation
F(z) =0, (2)
where F' : R* — R" is a smooth mapping. Let z* € R™ be the current ap-

proximation to the desired solution Z of equation (2). Then the approximation

2F*1 is found from the linear approximation of equation (2) near 2*,

F(a*) + F'(a*)(z —a*) = 0,
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and Newton’s method is written as
Mt =gk — (F' (@) TLR (), k=0,1,.... (3)
In [6] the following theorem is proved.

Theorem 1. Let the map F : R™ — R™ be differentiable in some neighborhood
of the point * € R"™, and its derivative is continuous at this point. Let T be a
solution to equation (2), and det F'(z) # 0. Then for any initial approrima-
tion 2° € R™ sufficiently close to T, Newton’s method (3) defines a sequence
converging to T. The rate of convergence is superlinear, and if the derivative
F is continuous in the Lipschitz sense in a neighborhood of the point T, then

it is quadratic.

The eigenvalues and the corresponding eigenvectors of the symmetric ma-

trix A € R"™™ are the roots of the nonlinear system:

Ar — A x =0,
{ (1 —aTz) =0. )

The last equation of the system is the normalization condition of the eigenvec-

tor. We write system (4) in the form (2), setting

f([3])-

The derivative of the mapping F' is easy to calculate:

(:):

Let’s define the following iterative process:

o B o G (E) B (B B

Theorem 2. Let \ be a simple eigenvalue, T be the corresponding eigenvector

(5)

Ax — Mz
%(1 —zT'x) '

—xT 0

A— M —x]

of a real symmetric matriz A. Then for any initial approzimations [x°, \0]T
sufficiently close to [T, \]T, Newton’s method (7) defines a sequence converging

to [, \]T with quadratic speed.
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Proof. Let us show that for the mapping F' of the iterative process (7)
all conditions of Theorem 2 are satisfied. Indeed, according to (5) and (6), the
mapping F' is continuously differentiable, and its derivative is continuous in

the Lipschitz sense in the neighborhood of [#, A\]”. Let us prove that

detF’( i]) £0.

It suffices to show that the system

R

has only a trivial solution. Multiplying the first equation of system (8) on the

left by 7 and taking into account the last equation, we obtain
el Az — Xalz = 0.
If we assume that x # 0, then

2L Ax
T

=

and = o (a # 0), because X is a simple eigenvalue. But then from the last

equation of system (8) az!Z = 0. It is impossible. Hence, 2 = 0. Taking this

into account, the first equation of system (8) takes the form
-z = 0.

Hence, A = 0. O
Let \°, 20 be some approximations to the required eigenpair X, Z of a sym-
metric matrix A. Then, the k-th step of Newton’s method (7) is conveniently

written as follows:

1. find the solution [y, u*]T of the system
A— NI gk yk B
_(xk)T 0 ,uk -

{ ohHl — gk yk7

(9)

Axk — Nk ‘
§(1 - @hTah) |

2. define

AkJrl — )\k _ Mk-
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Let us note some features of Newton’s method (7). The right-hand side of
Eq. (9) contains the residual r* = (A — A*)2* which is the best computational
measure of the accuracy of (A\¥, 2¥) as an eigenpair of the matrix A [7]. There-
fore, it is convenient to define the condition for the completion of the iterative
process as follows:

)] < e, (10)

where ¢ is the required computational accuracy.

In terms of computational costs, Newton’s method (7) is comparable to the
reverse iteration with the Rayleigh ratio, the k-th step of which has the form
7]

1. pk = (aF)T Az¥,

9. (A _ pkz)yk:-i-l — $kz’

3. gkl = yk+1/|‘yk+1||2'
Indeed, at each iteration, the main computational costs of the methods are
associated with solving the system, the matrix of which changes with the use
of the shift \* or p*. Newton’s method may be preferable to reverse iteration
with the Rayleigh ratio in the following case. If the eigenvalue is computed by
reverse iteration with high precision, then the matrix A — p¥I becomes degen-
erate in machine arithmetic and the calculations should be interrupted. It may
happen that the corresponding eigenvector has not yet been calculated with a
given precision. As proved above, the matrix of system (9) is nondegenerate,
even if \¥ coincides with the desired eigenvalue. Therefore, calculations by
Newton’s method can be continued to achieve the required accuracy of the

eigenvector even if the eigenvalue has already been calculated exactly.

3. NUMERICAL EXPERIMENTS

The finite-difference approximation of the spectral problem for the Laplace
operator in the unit rectangle with homogeneous Dirichlet conditions is an
eigenvalue problem for the symmetric matrix A. All eigenvalues of the matrix
A are different. The minimum eigenvalue and its corresponding eigenvector

are defined as follows [8]:
8 . ,7h
=gy

on(wi,y;i) = 2sin(rx;) sin(ry;), x; =ih, y; = jh, i,j =1,...,N — 1.
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Here the integer N defines the parameter h = 1/N of the uniform mesh on the
unit rectangle.

Calculations have been performed by the MATLAB package. The minimum
eigenvalue and the corresponding eigenvector of the matrix A of size 10° x 10°
(N = 101) have been calculated by the Newton method and inverse iteration
with the Rayleigh ratio. To determine the initial approximations \° and z°,
one step of reverse iteration had been performed for the initial vector y° =
..., 1]T. The calculation results are presented in tables 1 and 2. Let’s note
the following. In three steps of reverse iteration with the Rayleigh relation, the
matrix A — p"T becomes degenerate in machine arithmetic and the calculations
are terminated. In Newton’s method, the condition number of the matrix of
system (9) does not increase when approaching the eigenvalue and calculations

can be continued to achieve better accuracy.

Table 13: Reverse iteration with the Rayleigh ratio.

kP2 | A =" | llen = 2"[l2 | cond(A = p*1)
1 12.2 -0.901 2.00 9.04e+04
2| 0.0895 | -9.64e-05 1.33e-09 8.46e+-08
3 | 1.06e-07 | -1.42¢-14 * 6.08e+-16

Table 14: Newton’s method.

k k
B oAkl | A= AF | llon — 2F]]2 | cond ( ‘i(;?)TI _;” )
1] 142 | 00874 | 00125 6.83¢-+05
2 0.900 5.04e-04 7.801e-05 8.47e+04
3 | 0.00108 | 3.88e-08 3.05e-09 8.16e+-04
4 | 3.93e-08 | -3.55e-14 1.84e-15 8.16e+04
5 | 4.25e-12 | -7.11e-15 1.77e-15 8.16e+04

4. CONCLUSION

Newton’s method for calculating the eigenvalue and the corresponding

eigenvector of a symmetric real matrix is presented in this study. The proof of
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the quadratic rate convergence of Newton’s method in a neighborhood of a sim-
ple eigenvalue is given. In terms of computational costs per iteration, Newton’s
method is comparable to the reverse iteration method with the Rayleigh ratio.
The most attractive feature of this method is that it allows to compute the
eigenpair with good accuracy. Proving of the applicability of the method for
multiple eigenvalues and for asymmetric matrices is the prospects for further

research in this direction.

Bepbiuvkuii B. B., I'yx A. T.
METO/T HBIOTOHA /JIJ1s1 3AJIAYI HA BJIACHI 3HAYEHHS CUMETPUYHOI MATPUIII

Pesrome

PosrianyTo meton HpioToHa 00unCcIeHHsT BJIACHOTO 3HAYEHHS Ta BiAIIOBIIHOTO BJIACHOTO Be-
KTOpa JiificHol cuMmeTpuvHol maTpuili. Hesiniitna cucrema piBHsIHB, SIKa PO3B’sI3YETHCS METO-
oM HbIOTOHA, CKIIaIa€ThCsT 3 PIBHSIHHSI, 1[0 BU3HAYAE BJIACHE 3HAYEHHS 1 BJIACHUIN BEKTOD
MATPHIl, Ta YMOBU HOPMYBaHHs BJIACHOTO BeKTOpa. MeTos 703BOJIsi€ OTHOYACHO O0UUCITIO-
BATH BJIaCHE 3HAYEHHs 1 BiamoBimuwii BjacHuii BeKTOp. [loyaTKoBI HAOIMXKEHHS I BJla-
CHOT'O 3HAYEHHS 1 BiAMIOBITHOTO BJIACHOIO BEKTOPA MOXKHA 3HAUTHU CTENEHEBUM METOIOM abo
METOJIOM 3BOPOTHOI iTepariii 31 3cyBoM. 3alpONOHOBAHO MPOCTUIN JOKa3 3012KHOCTI MeToLy
HeroTona B OKoJHIIl MPOCTOro BJaCHOTO 3HadeHHs. [[okaszaHo, 10 METO/ Mae KBaJIpaTUIHY
MIBUAKICTH 3012KHOCTI. 3a 00YNCTIOBAJBHIMA BATPATaMU Ha OJHY iTeparito Mmetox HeoToHa
MOKHA TIOPIBHATH 3 METO/IOM 3BOPOTHOI iTepariii 3 Bigunomenusm Pesnes. Ha Bimviny Bing 3Bo-
porHol irepariii, merosr HpioToHa 103BOJISIE OOYUCTUTH BJIACHY APy 3 OLJIBIITOI TOYHICTIO.

Karowosi caosa: Memod Hvromona, esache 3HaAUEHHA, CUMEMPUYHA MAGMPUUA, 360POMHA

1Mmepayia.

Bepbuyruti B. B., I'yx A. I.
MEeToa HbIOTOHA JIJis1 BAJJAYU HA COBCTBEHHBIE 3HAYEHUSI CUMMETPUYHO MATPU-
bl

Pesrome

Paccmorpen meron Heiorona BeramcieHnst COGCTBEHHOIO 3HAYEHUsI M COOTBETCTBYIOIIErO COO-
CTBEHHOTO BEKTOpa, CUMMETPUYHOI BeleCTBEHHON MaTpunbl. HenHeliHast cucreMa ypaBHe-
HOil, perraemasi MeTonoM HbroToHa, cOCTONT M3 ypaBHEHHUsI ONPEIEISIONIEr0 COOCTBEHHOE
3HaYeHNe U COOCTBEHHBIN BEKTOP MATPHUIIBI U YCJIOBUS HOPMUPOBKHM COOCTBEHHOTO BEKTODA.
Meto/ 1103BOJISIET OJJHOBPEMEHHO BBIYHUCJIATH COOCTBEHHOE 3HAYEHHE U COOTBETCTBYIOIIMIA
cobcrBeHHbI BekTOp. Hawanbuble mpubimkeHust Jjisi COOCTBEHHOTO 3HAYEHUsI U COOTBET-
CTBYIOIIETO COOCTBEHHOI'O BEKTOPA MOXKHO HANUTH CTEIMEHHBIM METOJOM WJIM OOPATHOM UTe-
parmeit co casuroMm. Ilpesoxkeno npocToe 10Ka3aTEIHCTBO CXOAUMOCTH METOA B OKPECTHO-
CTH TIPOCTOro cobCTBEeHHOTO 3HaueHus1. [lokazano, 9To MeTo 001a/1aeT KBAAPATHIHON CKO-
POCTBIO CXOAMMOCTHU. [0 BBIUMCIINTENIBHBIM 3aTpaTaM Ha OjHy urTeparnuio Meror Hbiorona
CPaBHEM C MeTOZ0M o0paTHOoil urepannu ¢ oruomenueM Pesesi. B orsimane or obpaTHoit nre-

paluu, METO/ HrioroHa mo3BoJisteT BBIYHUCIISTH CO6CTB€HHyIO Iapy ¢ 0OJIBIIIEeH TOYHOCTHIO.
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Karouesvie crosa: Memod Hwvromona, cobecmeentoe snaueHue, CUMMEMPUYHAA MAMPUYG,

00PAMHAA UMEPAYUUA.
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