= КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ =

УДК 541.49:547.1-304.2:546.224-31

ОНИЕВЫЕ СОЛИ СЕРУСОДЕРЖАЩИХ ОКСИАНИОНОВ – ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ ОКСИДА СЕРЫ(IV) С ВОДНЫМИ РАСТВОРАМИ 1,2-ДИАМИНОВ И МОРФОЛИНА

© 2017 г. Р. Е. Хома^{*, **, *a*}, В. О. Гельмбольдт^{***}, А. А. Эннан^{*}, В. Н. Баумер^{****}, А. Н. Пузан^{****}, Т. В. Кокшарова^{**}, А. В. Мазепа^{*****}

*Физико-химический институт защиты окружающей среды и человека МОН и НАН Украины,

Украина, 65082 Одесса, ул. Преображенская, 3 **Одесский национальный университет имени И.И. Мечникова, Украина, 65082 Одесса, ул. Дворянская, 2 ***Одесский национальный медицинский университет, Украина, 65082 Одесса, пер. Валиховский, 2 ****НТК "Институт монокристаллов" НАН Украины, Украина, 61001 Харьков, пр-т Ленина, 60 ****Физико-химический институт им. А.В. Богатского НАН Украины, Украина, 65080 Одесса, Люстдорфская дорога, 86 ^aE-mail: rek@onu.edu.ua</sup> Поступила в редакцию 14.07.2016 г.

Выделены продукты взаимодействия в системах $SO_2-L-H_2O-O_2$ (L – этилендиамин, N,N,N',N'тетраметилэтилендиамин, пиперазин и морфолин), представляющие собой "ониевые" соли $[H_3NCH_2CH_2NH_3]SO_4$, $[(CH_3)_2NHCH_2CH_2NH(CH_3)_2]SO_4$, $[(CH_3)_2NHCH_2CH_2NH(CH_3)_2]S_2O_6 \cdot H_2O$, $[C_4H_8N_2H_4]SO_3 \cdot H_2O$, $[C_4H_8N_2H_4]SO_4 \cdot H_2O$, $[O(C_2H_4)_2NH_2]_2SO_4 \cdot H_2O$. Полученные соединения охарактеризованы методами PCA, РФА, ИК- и масс-спектроскопии.

Ключевые слова: этилендиамин, N,N,N',N'-тетраметилэтилендиамин, пиперазин, морфолин, "ониевые" сульфиты, дитионаты, сульфаты

DOI: 10.7868/S0044457X17060101

Этилендиамин (ЭДА), N,N,N',N'-тетраметилэтилендиамин (ТМЭДА), пиперазин (ПП) и его структурный аналог морфолин (МФ) проявляют свойства одно- или двухкислотных оснований, образуя соли с минеральными и органическими кислотами [1–8]. Интерес к указанной группе соединений связан с возможностями их практического использования.

В частности, соли этилендиаммония являются перспективными материалами для нелинейной оптики [3], обладают протонной и диэлектрической проводимостью [4]. Дикарбоксилаты этилендиаммония проявляют антимикробную и противогрибковую активность [8], ПП и его соли используются в медицине и ветеринарии как средства против гельминтов [1]. В настоящей публикации описаны метод синтеза, результаты изучения строения, спектральных характеристик и термической устойчивости продуктов взаимодействия SO₂ с водными растворами 1,2-диаминов и морфолина в присутствии кислорода воздуха.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сульфат этилендиаммония (I). В термостатируемую ячейку заливали раствор моногидрата ЭДА (0.10 моль) в 10 мл воды и в режиме барботирования пропускали через него газообразный SO₂ при 0°С со скоростью 50 мл/мин до pH < 1.0. Раствор с осадком подвергали изотермическому испарению при комнатной температуре на воздухе до полного удаления воды. Выделенный кристаллический продукт I белого цвета (15.61 г, выход по ЭДА 98.7%; $t_{пл} = 225-227$ °С) дополнительной очистке не подвергали.

Масс-спектр: $[SO_2]^+$ (m/z = 64, I = 42%); $[M_L]^+$ (m/z = 60, I = 5%); $[M_L-H]^+$ (m/z = 59, I = 5%); $[SO]^+$ (m/z = 48, I = 19%); $[CH_3CH=NH_2]^+$ (m/z = 44, I = 5%); m/z = 43, I = 10%; m/z = 42, I = 8%; $[CH_2=NH_2]^+$ (m/z = 30, I = 100%).

С Н N S М Найдено, %: 15.07; 6.23; 17.12; 20.64. Для С₂Н₁₀N₂O₄S вычислено, %: 15.19; 6.37; 17.71; 20.27; 158.18. Смесь дигидрата сульфата N,N,N',N'-тетраметилэтилендиаммония (IIa) и моногидрата дитионата N,N,N',N'-тетраметилэтилендиаммония (IIb). В результате выполнения аналогичной последовательности процедур в случае водного раствора с ТМЭДА (0.05 моль амина в 10 мл H_2O) получили желто-коричневую смесь кристаллических продуктов IIa и IIb (выделено 6.43 г).

	С	Н	Ν	S
Найдено, %:	25.74;	7.97;	9.88;	16.85.
Вычислено, %:	25.62;	7.88;	9.96;	16.91.

Смесь моногидрата сульфита пиперазиния (Ша), дитионата пиперазиния (Шb) и моногидрата сульфата пиперазиния (Шc). В результате выполнения аналогичной последовательности процедур в случае водного раствора с октагидратом ПП (0.05 моль амина в 10 мл H_2O) получили смесь кристаллических продуктов Ша, Шb и Шс белого цвета (выделено 10.66 г).

Масс-спектр: $[M_L]^+ (m/z = 86, I = 34\%)$; $[M_L-H]^+ (m/z = 85, I = 28\%)$; m/z = 80, I = 28%; $[SO_2]^+ (m/z = 64, I = 24\%)$; $[CH_2CH_2NH=CH_2]^+ (m/z = 57, I = 30\%)$; $[CH_2=CHNH=CH_2]^+ (m/z = 56, I = 31\%)$; $[SO]^+ (m/z = 48, I = 17\%)$; $[CH_2=NHCH_3]^+ (m/z = 44, I = 100\%)$; $[CH_2=NH_2]^+ (m/z = 30, I = 31\%)$.

	С	Н	Ν	S
Найдено, %:	24.98;	7.38;	14.43;	17.67.
Вычислено, %:	24.90;	7.24;	14.51;	17.75.

Моногидрат сульфата морфолиния (IV). В результате выполнения аналогичной последовательности процедур в случае водного раствора с МФ (0.10 моль амина в 10 мл H₂O) получили кристаллический продукт IV белого цвета (выделено 12.62 г, выход 87.0% по ПП; $t_{пл} = 20-22^{\circ}$ C).

Масс-спектр: $[M_L]^+$ (m/z = 87, I = 66%); $[M_L-H]^+$ (m/z = 86, I = 27%); $[SO_2]^+$ (m/z = 64, I = 27%); $[M_L-CH_2O]^+$ (m/z = 57, I = 100%); $[M_L-CH_2O-H]^+$ (m/z = 56, I = 35%); $[SO]^+$ (m/z = 48, I = 32%); $[CH_2=NH_2]^+$ (m/z = 30, I = 41%).

	С	Н	Ν	S	Μ
Найдено, %:	29.76;	7.51;	9.53;	39.03.	
Для C ₈ H ₂₂ N ₂ O ₇ S	5				
вычислено, %:	33.10;	7.64;	9.65;	38.57;	290.34

Анализ содержания углерода, водорода и азота проводили с использованием элементного СНN-анализатора, серы – по Шенигеру [9]. Рентгеноструктурное исследование (**PCA**) соединений II–IV выполнено на дифрактометре Xcalibur-3 (Oxford Diffraction Ltd.) (Мо K_{α} -излучение, графитовый монохроматор, ССД-детектор Sapphire-3). Расшифровку и уточнение структуры выполняли с использованием комплекса программ SHELX-97 [10]. Атомы водорода найдены из разностного синтеза Фурье и уточнены по модели "наездника" для метильных и метиленовых групп. Атомы водорода, участвующие в водородных связях (ВС), уточнены в изотропном приближении. Рентгенофазовый анализ (РФА) выполнен на порошковом дифрактометре Siemens D500 (геометрия Брэгга–Брентано, Си*К*_а-излучение, Ni-фильтр). ИК-спектры регистрировали на спектрофотометре Spectrum BX II FT-IR System (Perkin-Elmer) (область 4000–350 см⁻¹, образцы готовили в виде таблеток с KBr), масс-спектры – на приборе МХ-1321 (прямой ввод образца в источник, энергия ионизирующих электронов 70 эВ).

Основные кристаллографические данные и результаты уточнения по структурам IIa—IV представлены в табл. 1. Координаты атомов, структурные факторы и все результаты уточнения депонированы в Кембриджском банке структурных данных (табл. 1). Геометрические характеристики ВС, наблюдаемых в структурах IIb—IV, приведены в табл. 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В масс-спектре соединения I наблюдается характерная для 1-*н*-алкиламинов дефрагментация [11] с образованием иона $[CH_2=NH_2]^+$, пик которого имеет максимальную интенсивность. Характеристики продуктов фрагментации ПП в масс-спектре смеси его "ониевых" солей IIIa, IIIb, IIIc и табулированном масс-спектре ПП [11] находятся в хорошем соответствии. Подобное прослеживается с МР.

Согласно данным РСА, соединение І представляет собой сульфат этилендиаммония, структурно охарактеризованный ранее [2]. В случае ТМЭДА реализуется продукт, представляющий собой смесь "ониевых" сульфата На и дигидрата дитионата IIb. Структура IIa также описана в литературе [12] и ниже не обсуждается. В структуре IIb (рис. 1) катион и анион находятся в центрах симметрии, молекула воды – в общем положении. Длины связей и валентные углы имеют обычные для подобных соединений значения. При упаковке в кристалле образуется двумерная система ВС (табл. 2), за счет которых в структуре формируются слои в плоскостях (001). Как показал расчет порошковой рентгенограммы продукта реакции по методу Ритвельда, соединения Па и Пb содержатся в порошке примерно в одинаковых количествах (IIa : IIb = 46 : 54).

При взаимодействии SO₂ с водным раствором ПП образуются три соединения: моногидрат

	I aUIIIILA I. INPRUTATION PAULIA	с данныс, учирия I	JCH II CHOBCKOI O JKCI	юримента и характе	сристики уточнения	CIPYKIYP IIU, IIIA, I	110, 1110 // 1 /
жу	Характеристика	IIa	IIb	IIIa	IIIb	IIIc	IV
PHA	Брутто-формула	$C_6H_{22}N_2O_6S$	$C_6H_{22}N_2O_8S_2$	$C_4H_{14}N_2O_4S$	$C_4H_{12}N_2O_6S_2$	$C_4H_{14}N_2O_5S$	$C_8H_{22}N_2O_7S$
٩Л	Kog CCDC	CCDC 1481226	CCDC 1481220	CCDC 1481221	CCDC 1481222	CCDC 1481223	CCDC 1481224
HEC	M_r	250.32	314.38	186.23	248.28	202.23	290.34
ЭРГ	Сингония	Моноклинная	Триклинная	Моноклинная	Триклинная	Моноклинная	Ромбическая
AH	T, K	293(2)	293(2)	293(2)	293(2)	293(2)	110(2)
ИЧ	Пр. гр.	$P2_1/n$	$P\overline{I}$	$P2_{1}/c$	\overline{PI}	$P2_1/n$	$P2_{1}2_{1}2_{1}$
ECH	a, Å	8.4127(7)	7.1407(2)	11.8095(5)	6.6132(6)	6.3701(4)	6.4381(3)
κοΪ	$b, { m \AA}$	9.4782(12)	7.2243(3)	6.4251(2)	6.7771(6)	11.6392(6)	13.2098(6)
ΊX	$c, m \AA$	15.2659(14)	8.2808(2)	10.7396(5)	10.1445(11)	11.6572(6)	14.9798(7)
ИМ	α, град	90	105.939(3)	90	94.866(8)	90	90
ИИ	β, град	93.046(9)	109.674(3)	92.616(4)	94.907(8)	101.034(5)	06
[ү, град	06	105.041(3)	90	95.789(8)	06	06
том	$V, Å^3$	1215.5(2)	356.36(2)	814.04(6)	448.68(7)	848.32(8)	1273.97(10)
1 62	Z	4	1	4	2	4	4
	p, r/cm ³	1.368	1.465	1.520	1.838	1.583	1.514
№ 6	$\mu(\mathrm{Mo}K_{lpha}), \mathrm{MM}^{-1}$	0.279	0.406	0.371	0.603	0.372	0.284
	Интервал Ө, град	3.24 - 26.00	3.18-29.98	3.61 - 30.00	5.72 - 26.00	3.40 - 32.24	3.08 - 25.99
2017	Размеры кристалла, мм	$0.20\times0.06\times0.05$	$0.20\times0.05\times0.04$	$0.25 \times 0.15 \times 0.10$	$0.5 \times 0.3 \times 0.2$	$0.22 \times 0.14 \times 0.03$	$0.20\times0.15\times0.05$
7	F_{000}	544	168	400	260	432	624
	$T_{ m min}/T_{ m max}$	0.946/0.986	0.923/0.984	0.913/0.964	0.753/0.889	0.923/0.989	0.945/0.986
	Число отражений: измеренных	4321	3373	7510	2467	4526	8258
	HE3ABИCИMЫX C $I_{hkl} > 2\sigma(I)$	2174	2026	2335	1599	2628	2440
	$R_{ m int}$	0.0315	0.0343	0.0310	0.0254	0.0249	0.0387
	Полнота охвата, %	91.2	97.7	98.6	95.3	98.1	97.6
	Число уточняемых параметров	160	97	158	123	129	231
	$R_{ m F}/wR^2$ по наблюдаемым	0.0482/0.1138	0.0363/0.0737	0.0320/0.0860	0.0520/0.1395	0.0371/0.0747	0.0294/0.0584
	отражениям						
	$R_{ m F}/wR^2$ по независимым	0.0710/0.1240	0.0479/0.0784	0.0397/0.0905	0.0638/0.1521	0.0581/0.0808	0.0355/0.0605
	отражениям						
	S	0.967	0.992	0.986	0.987	0.968	0.931
	$\Delta \rho_{min} / \Delta \rho_{max}, \Im / \mathring{A}^3$	-0.289/0.491	-0.352/0.238	-0.424/0.415	-0.415/0.485	-0.264/0.270	-0.240/0.163

TTVD III IIIa IIIb IIIc и IV Ę DRITTE 5 b DELIG H 0/3 Ē плист Таблина 1. Кристаллографические ОНИЕВЫЕ СОЛИ СЕРУСОДЕРЖАЩИХ ОКСИАНИОНОВ

753

		Расстояние, Å		Угол DHA,	Преобразование		
KOHIAKI D-HA	d(D–H)	<i>d</i> (HA)	<i>d</i> (DA)	град	атома А		
IIb							
N(1)-H(1)O(4)	0.819(14)	1.983(14)	2.7614(14)	158.5(12)			
N(1)-H(1)O(3)	0.819(14)	2.654(12)	3.1033(12)	116.1(11)	x + 1, y, z		
O(4)-H(4A)O(2)	0.850(18)	1.927(18)	2.7645(13)	168.4(13)			
O(4)-H(4B)O(1)	0.804(15)	2.050(15)	2.8520(12)	174.9(17)	-x+2, -y+2, -z+1		
IIIa							
O(4)-H(4A)O(3)	0.86(2)	2.00(2)	2.8513(16)	178(2)	x, y - 1, z		
O(4)-H(4B)O(2)	0.78(2)	2.05(2)	2.8174(16)	167(2)			
N(1)-H(1A)O(1)	0.881(15)	1.870(16)	2.7309(13)	165.0(14)			
N(1)-H(1B)O(1)	0.859(17)	1.852(17)	2.7096(13)	175.7(15)	-x + 1, y + 1/2, -z + 3/2		
N(2)-H(2A)O(3)	0.870(16)	1.844(17)	2.7037(14)	169.1(16)	-x + 1, -y, -z + 1		
N(2)-H(2B)O(2)	0.929(18)	1.805(18)	2.6831(13)	156.6(16)	-x + 1, y + 1/2, -z + 3/2		
IIIb							
N(1)-H(1A)O(4)	0.75	2.00	2.748(3)	171.3	x + 1, y, z		
N(1)-H(1B)O(6)	0.75	2.08	2.811(3)	167.0	x + 1, y - 1, z		
N(2)-H(2A)O(3)	0.74	2.07	2.796(3)	165.7			
N(2)-H(2B)O(1)	0.74	2.04	2.758(3)	164.6	x, y - 1, z		
			IIIc				
O(5)-H(5A)O(4)	0.81(2)	2.09(2)	2.878(2)	165(2)	x + 1, y, z		
O(5)-H(5B)O(2)	0.77(2)	2.04(2)	2.8140(19)	176(2)			
N(1)-H(1A)O(1)	0.92(2)	1.84(2)	2.7576(16)	170.5(18)	x + 1/2, -y + 1/2, z + 1/2		
N(1)-H(1B)O(3)	0.88(2)	1.92(2)	2.7810(18)	169.5(19)	-x + 1, y + 1/2, -z + 3/2		
N(2)-H(2A)O(1)	0.897(19)	1.899(19)	2.7711(15)	163.5(19)	-x + 1, y + 1/2, -z + 3/2		
N(2)-H(2B)O(3)	0.89(2)	1.86(2)	2.7387(16)	170.7(18)			
IV							
O(7)-H(7B)O(5)#1	0.76(2)	1.95(2)	2.7155(17)	175(2)	x - 1, y, z		
O(7) - H(7A) O(6)	0.836(19)	1.94(2)	2.7664(17)	168.7(19)			
N(1)-H(1A)O(3)	0.882(18)	1.960(18)	2.8199(19)	164.6(17)			
N(1)-H(1B)O(6)#2	0.896(19)	1.973(19)	2.844(2)	163.8(18)	-x + 2, y + 1/2, -z + 3/2		
N(1)-H(1B)O(5)#2	0.896(19)	2.652(19)	3.1863(19)	119.2(14)	-x + 2, y + 1/2, -z + 3/2		
N(2)-H(2B)O(4)#2	0.881(19)	1.829(19)	2.7102(19)	178.0(18)	-x + 2, y + 1/2, -z + 3/2		
N(2)-H(2A)O(7)#3	0.89(2)	1.87(2)	2.758(2)	173.9(17)	x + 1/2, -y + 1/2, -z + 1		

Таблица 2. Геометрические характеристики водородных связей в структурах IIb, IIIa, IIIb, IIIc и IV

сульфита IIIa, дитионат IIIb и моногидрат сульфата IIIс. В структуре IIIа (рис. 2) оба катиона находятся в центрах симметрии. Длины связей и валентные углы обычные. Система ВС, образующаяся в кристалле (табл. 2), является трехмерной. В структуре IIIb обе базисные молекулы (рис. 3) находятся в общем положении. Дитионат-ионы в кристалле располагаются в координатных плоскостях (100), слои катионов – между ними. При этом в структуре образуется разветвленная трехмерная система ВС (табл. 2). В структуре IIIс два катиона находятся в центрах симметрии (рис. 4). В кристалле наблюдаются слои катионов в плоскостях (001), анионы и молекулы воды расположены в пустотах между слоями. Система ВС в структуре IIIс трехмерная. Для нахождения соотношения соединений в продукте реакции был проведен расчет порошковой дифрактограммы последнего по методу Ритвельда с использованием найденных нами моделей структуры IIIa, IIIb и IIIc (рис. 5). Полученный состав, мас. %: IIIa – 74.8, IIIb – 8.8, IIIc – 16.4. Из рис. 5 видно, что в продукте реакции не содержится других веществ, кроме найденных.

При взаимодействии SO_2 с водным раствором МФ образуется только одно соединение — моногидрат сульфата морфолиния(IV), структура которого показана на рис. 6. Как и в IIIс, в структуре IV анионы и молекулы воды располагаются в пустотах между слоями катионов, образуя трехмерную систему водородных связей.

Данные ИК-спектроскопии (табл. 3) свидетельствуют о том, что продукт реакции с ПП содержит сульфит-ион, тогда как в состав остальных полученных продуктов входят сульфат-ионы. Для продуктов с ТМЭДА и ПП в ИК-спектрах присутствуют также полосы дитионат-анионов.

Рис. 1. Схема нумерации атомов и эллипсоиды тепловых колебаний (уровень вероятности 50%) для структуры IIb. Симметрически эквивалентные атомы отмечены буквой А.

Рис. 2. Схема нумерации атомов и эллипсоиды тепловых колебаний (уровень вероятности 50%) для структуры IIIа. Симметрически эквивалентные атомы отмечены буквой А.

Отнесение полос в ИК-спектрах сделано с учетом литературных данных [5–7, 13–15].

Известно [15], что свободный пирамидальный

ион SO₃²⁻ относится к точечной группе $C_{3\nu}$ и имеет четыре основных колебательных частоты: $v_1(A_1) - 967$, $v_2(A_1) - 620$, $v_3(E) - 933$, $v_4(E) - 469$ см⁻¹.

В ИК-спектре смеси соединений IIIa, IIIb и IIIc валентные колебания v(SO) иона SO_3^{2-} (v₁ и v₃ соответственно) представлены интенсивными полосами при 952 и 905 см⁻¹. В этой области присутствуют также менее интенсивные полосы при 1029, 1008 и 992 см⁻¹. Две полосы – полосу средней интенсивности при 492 см⁻¹ и плечо при

572 см⁻¹ — можно рассматривать как результат расщепления дважды вырожденного внеплоскостного деформационного колебания $v_4(E)$ иона $S_2O_6^{2-}$. Симметричное деформационное колеба-

ние $\delta_s(SO_3^{2-})$ (v₂) иона SO_3^{2-} проявляется в виде полосы средней интенсивности при 620 см⁻¹.

Полосы поглощения с максимумами при 3384 и 3247 см⁻¹ относятся соответственно к асимметричным и симметричным валентным колебаниям v(N-H), тогда как более низкочастотную сильную полосу при 3020 см⁻¹ можно предположительно отнести к колебаниям с преимущественным вкладом $v(N^+H)$. Полоса при 1462 см⁻¹ может быть отнесена к смешанным валентно-деформационным колеба-

Рис. 3. Схема нумерации атомов и эллипсоиды тепловых колебаний (уровень вероятности 50%) для структуры IIIb.

Рис. 4. Схема нумерации атомов и эллипсоиды тепловых колебаний (уровень вероятности 50%) для структуры IIIс. Симметрически эквивалентные атомы отмечены буквой А.

ниям v(CN) и δ (CNH). В полосы при 1440 и 1380 см⁻¹ основной вклад вносят деформационные колебания группы CH₂. Полоса средней силы при 1336 см⁻¹ соответствует асимметричным, а слабая при 1317 см⁻¹ – симметричным колебаниям v(CN).

В ИК-спектре соединения I присутствуют сильная полоса при 1111 см⁻¹ и очень сильная при 1086 см⁻¹, отвечающие колебаниям соответственно $v_{as}(SO_4^{2-})$ и $v_s(SO_4^{2-})$. Столь высокая интенсивность полосы при 1086 см⁻¹ (самая сильная полоса во всем спектре), по-видимому, обусловлена тем, что в нее вносят вклад также колебания $v(CN^+)$ этилендиаминового фрагмента. Понижение симметрии иона SO_4^{2-} в результате комплексообразования сопровождается появлением в его ИК-спектре сильной полосы полносимметрич-

ного валентного колебания $v_1(A_1)$ при 989 см⁻¹. Аналогично и для соли МФ IV наиболее сильным во всем спектре является дублет при 1123 и 1105 см⁻¹ ($v_{as}(SO_4^{2-})$ и $v_s(SO_4^{2-}) + v(CN^+)$), а $v_1(A_1)$ наблюдается в виде полосы средней интенсивности при 997 см⁻¹. Для смеси IIa и IIb самой сильной полосой в спектре является полоса при 1122 см⁻¹, очевидно, это суперпозиция колебаний $v_{as}(SO_4^{2-})$ и $v(CN^+)$ этилендиаминового фрагмента. Колебание $v_1(A_1)$ для этого комплекса проявляется в виде сильной полосы при 998 см⁻¹.

В ИК-спектре смеси соединений IIIa, IIIb и IIIс присутствуют средние полосы при 1143 и 992 см⁻¹, отвечающие колебаниям $v_{as}(SO_4^{2-})$ и $v_s(SO_4^{2-})$ соответственно. Плечо при 503 см⁻¹ отно-сится к деформационным колебаниям $\delta_s(SO_4^{2-})$.

Рис. 5. Результаты уточнения порошковой дифрактограммы образца III по методу Ритвельда. Экспериментальная кривая показана точками, вычисленная — сплошной линией. Ряды вертикальных штрихов показывают положения дифракционных максимумов (верхний ряд — для IIIa, средний — для IIIb, нижний — для IIIc). Разница между экспериментальными и вычисленными значениями интенсивности в каждой точке показана на нижней кривой.

Рис. 6. Схема нумерации атомов и эллипсоиды тепловых колебаний (уровень вероятности 50%) для структуры IV. Симметрически эквивалентные атомы отмечены буквой А.

Три компоненты асимметричного деформационного колебания $v_4(SO_4^{2-})$ проявляются в ИКспектре соли I в виде интенсивной дублетной полосы с максимумами при 639 и 609 см⁻¹ и полосы средней силы при 672 см⁻¹, тогда как для солей с ТМЭДА и М Φ имеется лишь по одной интенсивной полосе при 619 см⁻¹.

В области 510—440 см⁻¹, характерной для частот симметричных деформационных колебаний иона SO_4^{2-} , к соли ЭДА относятся три полосы

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 62 № 6 2017

	Ι	IIa + IIb + IIc	IIIa + IIIb + IIIc	IV
v _{as} (NH)		3437 с.ш.	3388 c.	3418 c.
v _s (NH)			3252 ср.	3286 c.
$v_{as}(N^+H)$	3013 c.	3019 c.	3030 c.	3035 с.ш.
$\nu_{s}(N^{+}H)$	2930 с.	2623 с.	2616 сл.	2627 cp.
$\delta(HN^+H)$	1645 c.			
$\delta(CN^+H)$	1631 c.	1635 ср. ш.	1631 cp.	1634 cp.
$\delta_{as}(CNH)$			1492 сл.	
$v(CN) + \delta(CNH)$			1462 cp.	1464 сл.
$\delta_{s}(NH_{3}^{+}), \delta(NH_{2}^{+})$	1537 c.		1560 сл.	1561 c.
$v_{as}(CN)$			1335 ср.	
v _s (CN)			1317 сл.	1308 ср., 1243 сл., 1227 ср.
$v_{as}(S_2O_6^{2-})$		1240 ср., 1214 сл.	1240 сл., 1216 сл.	
$v_{s}(S_{2}O_{6}^{2-})$			1094 cp.	
$v_{as} (SO_4^{2-})$	1111 c.		1143 cp.	1123 оч. с.
$v_{as}(SO_4^{2-}) + v(CN^+)$	1086 оч. с.	1122 оч.с.	1105 cp.	1105 оч. с.
$v_{as} + v_s(SO_3^{2-})$			1029 ср., 1008 сл., 992 сл., 952 с., 905 с.	
$v_{s}(SO_{4}^{2-})$	989 c.	998 c.	992 cp.	997 cp.
$\delta_{as}(SO_4^{2-})$	672 cp., 639 c., 609 c.	619 c.	620 cp	619 оч. с.
$\delta_{s}(SO_{3}^{2-})$			020 cp.	
$\delta(S_2O_6^{2-})$		582 cp.	572 пл.	
$\delta_s(SO_4^{2-})$	511 ср., 442 ср.	518 cp.	503 пл.	518 сл., 438 с.
$\delta_d(SO_3^{2-})$			492 cp.	
$\delta_{s}(SO_{4}^{2-}) + \delta(N^{+}-C-C-N^{+})$	464 cp.		470 сл.	

Таблица 3. Волновые числа (см⁻¹) максимумов основных полос поглощения в ИК-спектрах продуктов взаимодействия SO₂ с 1,2-диаминами и морфолином

средней интенсивности. Можно предполагать, что в полосе при 464 см⁻¹ имеется также вклад деформационных колебаний $\delta(N^+-C-C-N^+)$ катиона. Для образца с ТМЭДА обнаружена только полоса средней интенсивности при 518 см⁻¹, а для IV – полосы $\delta_s(SO_4^{2-})$, как и полосы $v_{as}(SO_4^{2-})$ и $v_s(SO_4^{2-})$, проявляют сходство с таковыми для I.

Сильные полосы при 3013 и 2930 см⁻¹ в спектре соли I отвечают соответственно валентным колебаниям $v_{as}(NH_3^+)$ и $v_s(NH_3^+)$. "Ножничные" деформационные колебания аммонийных групп $\delta(H \overset{+}{N} H)$ и $\delta(C \overset{+}{N} H)$ отличаются довольно высокой характеристичностью и регистрируются в виде дублета интенсивных полос при 1645 и 1631 см⁻¹. Еще более интенсивная полоса при 1537 см⁻¹ соответствует, очевидно, $\delta_s(NH_3^+)$. Полосы в области ~1560 см⁻¹, соответствующие деформационным колебаниям $\delta(NH_2^+)$, присутствуют также и в спектрах комплексов с пиперазином и морфолином. Свидетельством корректности такого отнесения может быть отсутствие подобной полосы в спектре смеси IIa с IIb, где в исходном ТМЭДА азот не гидрогенизирован. В области ~1635–1630 см⁻¹ полосы присутствуют в спектрах всех полученных соединений.

В спектрах "ониевых" солей ТМЭДА и ПП имеются полосы в области ~1210–1250 см⁻¹, которые можно отнести к $v_{as}(S_2O_6^{2^-})$, и в области ~580 см⁻¹, соответствующие $\delta(S_2O_6^{2^-})$. Это под-

тверждает, что в полученных продуктах наряду с сульфатным (IIa, IIIc) и сульфитным (**IIIa**) анионами присутствуют дитионат-анионы. Кроме того, для ПП образца наблюдается также полоса

$$v_{s}(S_{2}O_{6}^{2^{-}})$$
 при 1094 см⁻¹.

Корректно идентифицировать полосы поглощения воды в ИК-спектрах не представляется возможным из-за их перекрывания с полосами v(NH).

Необходимо отметить, что в подобных условиях синтеза [16] (pH реакционной смеси 7.2–7.8) с ПП получен продукт, идентифицированный как сульфит (соотношение ПП : SO₂ = 3 : 2). В системе SO₂–ЭДА–Sol (Sol – абсолютный этанол, водный этанол или ацетон) выделен "ониевый" сульфит белого цвета [17].

На основании приведенных выше результатов, данных наших предыдущих исследований систем $SO_2-L-H_2O(L-$ алкилмоноамины) [18–21] и литературных данных можно сделать следующее заключение.

Как показано в [22], оксид серы(IV) при растворении в воде образует моногидрат (уравнение (1)), продуктами диссоциации которого являются гидросульфит-, пиросульфит- и сульфит-ионы (уравнения (2)–(4)):

$$SO_2 + H_2O \rightarrow SO_2 \cdot H_2O,$$
 (1)

$$SO_2 \cdot H_2O \xrightarrow{K_1} H^+ + HSO_3^-,$$
 (2)

$$2HSO_{3}^{-} \xrightarrow{K^{\cdot}} S_{2}O_{5}^{2-} + H_{2}O, \qquad (3)$$

$$HSO_{3}^{-} \xrightarrow{K_{2}} H^{+} + SO_{3}^{2-}.$$
 (4)

Согласно механизму окисления свободнорадикального сульфит-иона [23, 24], зарождение цепочки происходит в результате распада пиросульфит-иона:

$$S_2O_5^{2-} \rightleftharpoons SO_3^{-} + SO_2^{-}$$
 (5)

либо при взаимодействии иона SO_3^{2-} с небольшими количествами примесных ионов металлов переменной валентности, всегда присутствующих и в дистиллированной воде:

$$\mathrm{SO}_3^{2-} + \mathrm{M}^{n+} \rightleftharpoons \mathrm{SO}_3^{-} + \mathrm{M}^{(n-1)+}.$$
 (6)

Кроме того [25], SO₂ с органическими азотсодержащими основаниями, в частности с $M\Phi$, образует комплексы с переносом заряда, являющиеся также источниками свободных радикалов:

$$0 \qquad \overset{\cdot\cdot}{\operatorname{NH}} + \operatorname{SO}_2 \Longrightarrow 0 \qquad \overset{\cdot\cdot}{\operatorname{NH}} \longrightarrow \operatorname{S} \qquad \overset{\circ}{\operatorname{O}} \xrightarrow{\operatorname{O}} \operatorname{S}^{\bullet-} + O \qquad \operatorname{NH}^{\bullet+}.$$
(7)

Продолжение образования цепочки протекает согласно уравнениям (8)–(15) [24]. В системах с образованием "ониевых" дитионатов обрыв цепочки обусловлен реакцией (16). Отсутствие в препаративно выделенных продуктах пиросульфитов указывает на протекание реакции (17) [24]:

$$\mathrm{SO}_3^{-} + \mathrm{O}_2 \to \mathrm{SO}_5^{-} 2.5 \times 10^9,$$
 (8)

$$SO_5^{-} + HSO_3^{-} \rightarrow HSO_5^{-} + SO_3^{-}$$
 (3.4–8.6)×10², (9)

$$SO_5 + HSO_3 \rightarrow$$

 $\Rightarrow SO_4^{2-} + SO_4^{-} + H^+ \leq (2-3.6) \times 10^2,$ (10)

$$SO_5^{-} + SO_3^{2-} \to SO_5^{2-} + SO_3^{-} 2.1 \times 10^5$$
, (11)

$$SO_5^{-} + SO_3^{2-} \rightarrow SO_4^{2-} + SO_4^{-} \quad 5.5 \times 10^5,$$
 (12)
 $SO_5^{-} + HSO_5^{-} \rightarrow$

$$\rightarrow \mathrm{SO}_{4}^{2^{-}} + \mathrm{SO}_{3}^{-} + \mathrm{H}^{+} \ (6.8-7.5) \times 10^{8}, \tag{13}$$

$$SO_4^{-} + SO_3^{2-} \rightarrow SO_4^{2-} + SO_3^{-}$$
 (3.1–5.7)×10⁸, (14)

$$SO_{5}^{+} + SO_{5}^{-} \rightarrow SO_{4}^{+} + SO_{4}^{-} + O_{2} (8.7 - 22) \times 10^{7},$$
(15)

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 62 № 6 2017

$$SO_3^{-} + SO_3^{-} \rightarrow S_2O_6^{2-}, \tag{16}$$

$$HSO_{5}^{-} + HSO_{3}^{-} + H^{+} \rightarrow$$

$$225 \circ 2^{2-} \circ 24^{+} + 10^{7} e^{1} e^{1}$$

$$\rightarrow 2SO_4^{2-} + 3H^+ \approx 10^7 [H^+].$$

В пользу реализации реакций (10), (13), (14) и
) свилетельствует выделение сульфатов I. Па.

(17) свидетельствует выделение сульфатов I, IIa, IIIс и IV, а также результаты [18–21]; реакции (16) – выделение дитионатов IIb и IIIb в составе смесей.

Ранее [27–30] из систем $SO_2-L-H_2O(L - эта$ ноламины, аминогуанадин) в аналогичных условиях препаративно нами были выделены "ониевые" сульфиты, поскольку алканолы являютсяингибиторами сульфоокисления [31–33]. В случае с TRIS в подобных условиях образуется "ониевый" сульфат [19]. В отличие от результатов [27],диэтаноламин ускоряет процесс окисления S(IV),а триэтаноламин индифферентен [34].

Установленный факт, что добавки ЭДА и МЭА частично подавляют каталитическое окисление сульфита натрия под действием катионов 3*d*-металлов (Mn^{2+} , Fe²⁺ и Cu²⁺) [32], очевидно, указывает на то, что в изученных нами системах реакция (6) зарождения свободных радикалов маловероятна.

Выяснение возможности реализации процесса мягкого окисления SO₂ в приведенных условиях синтеза на более широком круге аминных лигандов будет являться предметом наших дальнейших исследований.

СПИСОК ЛИТЕРАТУРЫ

- Eller K., Henkes E., Rossbacher R., Höke H. // Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag, Weinheim, 2005. V. 2. P. 647. doi 10.1002/ 14356007.a02_001
- Jayaraman K., Choudhury A., Rao C.N.R. // Solid State Sci. 2002. V. 4. № 3. P. 413. doi 10.1016/S1293-2558(02)01269-4
- Cuccia L.A., Koby L., Ningappa J.B., Dakessian M. // J. Chem. Educ. 2005. V. 82. № 7. P. 1043. doi 10.1021/ ed082p1043
- Santhakumari N.C., Vallabhan C.P.G. // J. Phys. Chem. Solids. 1992. V. 53. № 5. P. 697. doi 10.1016/0022-3697(92)90210-5
- Bellanato J. // Spectrochim. Acta. 1960. V. 16. P. 1344. doi 10.1016/S0371-1951(60)80008-2
- Marchewka M.K., Drozd M. // Spectrochim. Acta, Pt. A Mol. Biomol. Spectrosc. 2012. V. 99. P. 223. doi 10.1016/ j.saa.2012.09.026
- Srinivasan B.R., Khandolkar S.S., Jyai R.N. et al. // Spectrochim. Acta, Pt. A. 2013. V. 102. P. 235. doi 10.1016/ j.saa.2012.09.103
- Yamin B.M., Narimani L., Ibrahim N. // Int. J. Adv. Sci., Eng. Inf. Technol. 2013. V. 3. № 2. P. 47.
- 9. *Климова В.А.* Основные методы анализа органических соединений. М.: Химия, 1975. 104 с.
- 10. *Sheldrick G.M.* // Acta Crystallogr. 2008. V. 64A. № 1. P. 112. doi 10.1107/S0108767307043930
- Вульфсон Н.С., Заикин В.Г., Микая А.И. Масс-спектрометрия органических соединений. М.: Химия, 1986. 312 с.
- Guerfel T., Gharbi A., Jouini A. // J. Soc. Alger. Chim. 2007. V. 17. V. 2. P. 125.
- 13. *Gunasekaran S., Anita B.* // Ind. J. Pure Appl. Phys. 2008. V. 46. № 12. P. 833.
- Nyquist R.A., Kagel R.O. Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: in 4 vol. V. 4: Infrared Spectra of Inorganic Compounds (3800–45 cm⁻¹). Academic Press, 1996. 1184 p.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- 16. Pat. US № 3046277, 1962.
- 17. Pat. US № 2069165, 1937.

- Хома Р.Е., Эннан А.А., Шишкин О.В. и др. // Журн. неорган. химии. 2012. Т. 57. № 12. С. 1658 [*Khoma R.E., Ennan A.A., Shishkin O.V. et al.* // Russ. J. Inorg. Chem. 2012. V. 57. № 12. Р. 1559. doi 10.1134/ S003602361212008X].
- Хома Р.Е., Эннан А.А., Гельмбольдт В.О. и др. // Журн. неорган. химии. 2014. Т. 59. № 1. С. 60 [Khoma R.E., Gel'mbol'dt V.O., Shishkin O.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 1. Р. 1. doi 10.1134/ S0036023614010069].
- Хома Р.Е., Эннан А.А., Гельмбольдт В.О. и др. // Журн. общей химии. 2014. Т. 84. № 4. С. 557 [Khoma R.E., Ennan A.A., Gelmboldt V.O. et al. // Russ. J. Gen. Chem. 2014. V. 84. № 4. Р. 637. doi 10.1134/S1070363214040069].
- Хома Р.Е., Гельмбольдт В.О., Баумер В.Н. и др. // Журн. неорган. химии. 2015. Т. 60. № 10. С.1315 [Khoma R.E., Gel'mbol'dt V.O., Baumer V.N. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 10. Р. 1199. doi 10.1134/S0036023615100101].
- Pereda S., Thomsen K., Rasmussen P. // Chem. Eng. Sci. 2000. V. 55. P. 2663. doi 10.1016/S0009-2509(99)00535-7
- 23. Федорова С.К., Скибида И.П., Гладкий А.В. // Журн. прикл. химии. 1976. Т. 50. № 4. С. 716.
- 24. Ermakov A.N., Purmal' A.P. // Kinet. Catal. 2001. V. 42. № 4. P. 479. doi 10.1023/A:1010565304435
- Ghosh P., Pal G. // J. Polym. Sci., Pt. A. 1998. V. 36.
 № 12. P. 1973. doi 10.1002/(SICI)1099-0518(19980915)36:12<1973::AID-POLA1>3.0.CO;2-P
- Qing-yu G., Run-ming L., Geng-xu Y. et al. // Imag. Sci. Photochem. 2001. V. 19. № 2. P. 116. doi 10.7517/j.issn.1674-0475.2001.02.116
- 27. Хома Р.Е., Гельмбольдт В.О., Короева Л.В. и др. // Вопросы химии и хим. технологии. 2012. № 1. С. 133.
- 28. Хома Р.Е., Эннан А.А., Мазепа А.В., Гельмбольдт В.О. // Вопросы химии и хим. технологии. 2013. № 1. С. 136.
- Хома Р.Е., Гельмбольдт В.О., Шишкин О.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 716 [Khoma R.E., Gelmboldt V.O., Shishkin O.V. et al. // Russ. J. Inorg. Chem. 2014. V. 84. № 5. P. 541. doi 10.1134/S0036023614060096].
- 30. Хома Р.Е., Гельмбольдт В.О., Баумер В.Н. и др. // Журн. неорган. химии. 2013. Т. 58. № 7. С. 950 [Khoma R.E., Gelmboldt V.O., Baumer V.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 7. Р. 843. doi 10.1134/S0036023613070140].
- Deister U., Warnek P. // J. Phys. Chem. 1990. V. 94. № 5. P. 2191. doi 10.1021/j100368a084
- 32. Ziajka J., Pasiuk-Bronikowska W. // Atmos. Environ. 2003. V. 37. № 28. P. 3913. doi 10.3109/1 0715769309056520
- 33. Pat. US № 213032, 1938.
- 34. Pat. US № 4310438, 1982.