УДК 541.49:546.732

Л. С. Скороход, И. И. Сейфулина, Т. Ф. Гудимович

Одесский национальный университет, кафедра общей химии и полимеров, ул. Дворянская, 2, Одесса, 65082, Украина

ТЕМПЛАТНЫЙ СИНТЕЗ В СИСТЕМАХ NICL₂-1-АМИНО-8-ГИДРОКСИНАФТАЛИНДИСУЛЬФОКИСЛОТА-2,4-БЕНЗОИН (АРОМАТИЧЕСКИЙ АЛЬДЕГИД)

Метолом «самосборки» NiCl из систем 1-амино-8-гидроксинафталиндисульфокислота-2,4-бензоин либо бензальдегид, napaгидроксибензальдегид, 2-гидрокси-1-нафтальдегид выделены ком- $K_{2}[Ni(C_{24}H_{17}NS_{2}O_{8})_{2}(H_{2}O)_{2}]$ (I), $[Ni_{2}(C_{17}H_{11}NS_{2}O_{8})_{2}(H_{2}O)_{4}]$ (II), плексы: К₂[Ni(C₂₁H₁₃NS₂O₈)₂(H₂O)₂] (III), [Ni₂(C₁₇H₁₁NS₂O₇)₂(OH)₂] (IV). I–IV исследованы методами элементного, рентгенофазового анализов, термогравиметрии, магнитной восприимчивости, электропроводности, спектроскопии (ИК- и диффузного отражения). Определена геометрия I-IV и способ координации лиганлов в них.

Ключевые слова: 1-амино-8-гидроксинафталиндисульфокислота-2,4,бензоин, пара-гидроксибензальдегид, бензальдегид, 2-гидрокси-1нафтальдегид, темплатный синтез.

Ранее нами [1] была доказана возможность синтеза комплексов методом «самосборки» непосредственно взаимодействием в системах: CoCl₂ — монокалиевая соль 1-амино-8-гидроксинафталиндисульфокислоты-2,4(1,8,2,4ahKsHs'n) — бензоин (БЕНЗ), *пара*-гидроксибензальдегид (ПГБА), бензальдегид (БА). Получена их полная физико-химическая характеристика.

В развитие данных исследований в настоящей работе была сформулирована цель:

- проверить возможность осуществления одностадийного синтеза комплексов никеля (II) из аналогичных систем;
- выделить соответствующие комплексы;
- совокупностью физико-химических методов элементного, рентгенофазового анализов, термогравиметрии, электропроводности, спектроскопий (ИК- и диффузного отражения) их охарактеризовать.

Методика синтеза соединений I–IV. Горячие этанольные растворы 0,01 моль 1,8,2,4-ahKsHs'n в 80 мл 0,01моль, БЕНЗ (I) в 50 мл или альдегидов в 10 мл ПГБА (II), 2-гидрокси-1-нафтальдегид — ГНА (III), БА (IV) смешивали, добавляли 1мл 50%-ного спиртового раствора КОН и кипятили с обратным холодильником в течение 1,5 ч. Затем к ним добавляли горячий раствор гексагидрата хлорида никеля (II) в 20 мл этанола (0,01 моль для I, 0,005 моль для II–IV) и дополнительно кипятили ещё 1ч. После охлаждения образовавшиеся осадки веществ (I–IV) отделяли фильтрованием, промывали спиртом, эфиром и высушивали при комнатной температуре над

безводным CaCl₂ до постоянной массы. Выход: I — 64.4 %; II — 71,3 %; III — 69,1 %; IV — 70,1 %.

Содержание кобальта и никеля определяли спектральным рентгенофлюоресцентным методом на спектрометре СПАРК-1 с медным излучением в режиме 12 кВ-10 мА со скоростью отсчёта 400 имп/с; калия — методом пламенной фотометрии; углерод, водород, азот — на С,Н,N-анализаторе; серу по методу Шенигера.

Рентгенограммы снимали на дифрактометре ДРОН-05 на железном антикатоде. Межплоскостные расстояния определяли по таблицам [2].

Термогравиметрический анализ проводили на Q-дериватографе Паулик-Паулик-Эрдей в статической воздушной атмосфере в температурном интервале 20-500°С, скорость нагрева 10 град/мин, эталон — α-Al₂O₃. ИК-спектры записывали в диапазоне 4000–350 см⁻¹ на спектрометре Spectrum-Elmer BX-II FT-IR (таблетки с KBr).

Спектры диффузного отражения (СДО) регистрировали на спектрометре Perkin-Elmer Lambda-9 в области 3000–30000 см⁻¹, стандарт MgO (β_{MgO} =100%).

Йзмерение активного сопротивления (СДО) миллимолярных диметилформамидных растворов I–IV для расчёта молярной электропроводности проводили с помощью измерителя сопротивления (цифрового) Е 7–8 в пределах 0-10 мОм в сосуде Аррениуса.

Магнитную восприимчивость определяли по методу Гуи, при температуре 293 К. В качестве эталона для калибровки использовали Hg[Co(NCS)₄].

Результаты и их обсуждение

Темплатной реакцией в системах 1,8,2,4-ahKsHs'n — БЕНЗ –(альдегиды: ПБА, ГНА) — хлорид никеля (II) получены комплексы I–IV. На основании данных элементного анализа в комплексах (I, III) мольное соотношение Ni²⁺: лиганд = 1:2, а в II, IV — 1:1 (табл. 1). Рентгенофазовый анализ подтвердил индивидуальность комплексов (I–IV). Соединение I характеризуется собственным набором межплоскостных расстояний и относительных интенсивностей: d, Å (I/I₀, %) — 2,86 (26), 3,55 (31), 3,92(100), 5,02 (66), продукты II–IV рентгеноаморфны.

Соединения I, III являются трёхионными электролитами, II, IV — неэлектролиты (табл. 1) [3].

По результатам элементного анализа и термогравиметрии установлено, что в состав комплексов I, II, III входят 2, 4 и 2 молекулы воды, соответственно. Их удаление происходит в интервале 130–160°С. Это позволяет сделать вывод о их внутрисферном характере, что подтверждается присутствием в ИК-спектрах указанных комплексов полос $\delta(H_2O)$ (табл. 2). Полное разложение соединений I–IV происходит в интервале температур 340–490 °С.

	Молярная электро- роводность, м ⁻¹ см ² моль-1		132,6	12,4	111,3	10,5	
		Цвет О)	Вордовый	Тёмно-зелёный	Тёмно- болотный	Тёмно- коричневый	
		$\rm H_2O$	$\frac{3,03}{3,01}$	$\frac{6,77}{6,97}$	$\frac{3,06}{3,23}$	I	
	i o), %	Ni	$\frac{5,08}{4,94}$	$\frac{12,03}{11,43}$	$\frac{4,73}{5,29}$	$\frac{10,98}{11,35}$	
mdny	ычислен	ß	$\frac{10,54}{10,71}$	$\frac{13,00}{12,40}$	$\frac{11,64}{11,48}$	$\frac{12,06}{12,31}$	
	ійдено/в	К	$\frac{6,40}{6,53}$	I	$\frac{6,76}{7,00}$	$\frac{7,20}{7,50}$	
NII II 1001	ание (на	Z	$\frac{2,59}{2,34}$	$\frac{2,62}{2,71}$	$\frac{2,42}{2,51}$	$\frac{2,51}{2,69}$	
	Содерж	Н	$\frac{3,03}{3,18}$	$\frac{2,11}{2,13}$	$\frac{2,18}{2,33}$	$\frac{2,00}{2,12}$	
		C	$\frac{47,81}{48,20}$	$\frac{40,06}{39,53}$	$\frac{44,94}{45,20}$	$\frac{38,79}{39,23}$	
	формула		${f K}_2 [{ m Ni}({ m C}_{24}{ m H}_{17}{ m NS}_2{ m 0}_8)_2 ({ m H}_2{ m 0})_2]$	$[\mathrm{Ni}_{2}(\mathrm{C}_{17}\mathrm{H}_{11}\mathrm{NS}_{2}\mathrm{O}_{8})_{2}(\mathrm{H}_{2}\mathrm{O})_{4}]$ K ₂ [Ni(C ₂₁ H ₁₃ NS ₂ O ₈) ₂ (H ₂ O) ₂]		$[Ni_2(C_{17}H_{11}NS_2O_7)_2(OH)_2]$	
	Комп-	лекс	п	П	II	IV	

Результаты элементного анализа и некоторые характеристики комплексов (I–IV)

Таблица 1

Л. С. Скороход, И. И. Сейфулина, Т. Ф. Гудимович

Таблица 2

Соединение	v(OH)	v(C=N)	$v(SO_2)$	v(C-O)	v(Ni-N)	v(Ni-O)
1, 8, 2, 4-ahKsHs`n	3440		1240, 1030			
БЕНЗ	3420			1210		
ПГБА	3460			1200		
ГНА	3470			1200		
Ι	3420	1570	1240, 1030	1210	610	500
II	3440	1560	1100, 1010	1170	600	490
III	3440	1560	1240, 1030	1160	620	520
IV	3440	1550	1100, 1000		610	500

Отнесение некоторых колебательных частот (см⁻¹) в ИК-спектрах поглощения исходных соединений и комплексов (I–IV)

Примечание: $\delta(NH_2) = 1610 \text{ см}^{-1}$ (1,8,2,4-ahksHs`n); $v(C=O) = 1680 \text{ см}^{-1}$ (БЕНЗ, ПГБА, ГНА), 1700 см⁻¹ (БА); $\delta(H_2O) \approx 1630 \text{ см}^{-1}$ (I–III); v(OH) = 3200 (IV); $\delta(OH)_{\text{мост}} = 955 \text{ см}^{-1}$ (IV); $\delta \left(\bigcirc_{\mathsf{M}}^{\mathsf{M}} \bigcirc_{\mathsf{P}}^{\mathsf{P}} = 710 \text{ см}^{-1}$ (II).

Способ координации лигандов был определён сравнением ИК-спектров исходных 1,8,2,4-ahKsHs'n, БЕНЗ, ПГБА, БА и комплексов (табл. 2). Особое внимание было уделено полосам поглощения, ответственным за валентные колебания С=О и С-О карбонильных фрагментов, а также деформационных NH_2 группы 1,8,2,4-ahKsHs'n. Оказалось, что в ИК-спектрах комплексов I-IV отсутствует полоса v(C=O), при этом появляется новая — валентных колебаний C=N, что свидетельствует о конденсации по аминогруппы 1,8,2,4-ahKsHs'n и карбонильному кислороду с образованием оснований Шиффа.

В комплексах I-IV азометиновый атом азота вовлекается в координацию с никелем, о чём свидетельствует появление в ИК-спектрах новой полосы v(Ni-N). В области валентных колебаний гидроксигрупп в ИКспектрах комплексов по сравнению с исходными лигандами были обнаружены следующие изменения: в I исчезает v(OH) гидроксидисульфокислоты и сохраняется v(OH) бензоина. В отличие от него в II, III, IV сохраняется v(OH) 1,8,2,4-ahKsHs`n и исчезает v(OH) альдегида в II, III. Из этого следует, что соответствующие гидроксигруппы депротонируются и связываются с Ni²⁺, на что указывает появление новой полосы v(Ni-O). Сульфогруппы оснований Шиффа в комплексах II, IV также участвуют в образовании связей с никелем (II), так как в их ИК-спектрах происходит смещение полосы v(SO₂) в низкочастотную область. В отличие от них в ИК-спектрах комплексов I, III эта полоса не смещается относительно ее положення в ИК-спектре 1,8,2,4-ahKsHs'n. Следовательно, в этих комплексах сульфогруппы не вовлекаются в координацию к Ni²⁺. В комплексе II кислороды депротонированных гидроксигрупп являются мостиковыми, что характерно для аналогичных соединений [4] и подтверждено наличием в ИК-спектре II полос деформационных колебаний оксомостика (табл. 2). В ИК-спектре комплекса IV появляются полосы поглощения колебаний ~3200 см⁻¹ и 955 см⁻¹, характерные для мостиковых ОН-групп [5, 6] (табл. 2).

Пространственное строение комплексов было определено на основании данных спектров диффузного отражения и значений эффективных магнитных моментов (табл. 3). В случае комплексов I–III реализуется октаэдр, а IV представляет собой тетраэдр. При этом заниженные значения $\mu_{_{эфф.}}$ для II, IV и данные их элементного анализа позволяют заключить, что они являются димерами [7].

В итоге для комплексов I-IV были предложены схемы строения:

Таким образом, в результате проведенного исследования была доказана

возможность синтеза рассмотренных комплексов методом самосборки из соответствующих исходных реагентов. Показано, что координационный полиэдр Ni²⁺ и тип образующегося комплекса определяет стереохимия лигандной системы, формирующейся в процессе самосборки.

Таблица 3

Энергии	электронных	переходов	И	величины	эффект	гивных	магнитных	моментов
комплексов І-ІV								

Соединение	Эл	Эффективный маг- нитный момент,		
	v_1	V ₂	v_3	М. Б. (Т 293 К)
т	$^{3}A_{2g} \rightarrow ^{3}T_{2g}(F)$	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$	
1	7900	14000	20000	3,08
II	8800	15900	22100	2,28
III	9400	16200	21000	3,11
	${}^{3}\mathrm{T_{1}}(\mathrm{F}) \rightarrow {}^{3}\mathrm{T_{2}}$	${}^{3}T_{1}(F) \rightarrow {}^{3}A_{2}$	${}^{3}T_{1}(F) \rightarrow {}^{3}T_{1}(P)$	
IV		8960	15080	3,52

Примечание. Расчёт $\mu_{_{ \mathfrak{d}\varphi_{\cdot}}}$ сделан на один ион $Ni^{_{2+}}$ (II, IV).

Литература

- 1. Скороход Л. С., Сейфуллина И. И., Власенко В. Г. Продукты комплексообразования в системах CoCl₂-1-амино-8-гидроксинафталиндисульфокислота-2,4-α-фенилацетофенон ензальдегид и его гидроксипроизводные) // Ж. общей химии. 2009. Т. 79. № 1. С. 39–43.
- 2. Толкачёв С. С. Таблицы межплоскостных расстояний. Л.: Химия, 1968. 132 с.
- 3. Geary W. J. The use of conductivity measurements in organic solvents for characterization of coordination compounds // Coord. Chem Rev. 1971. V. 7. P. 81–122.
- 4. Гарновский А. Д., Бурлов А. С., Луков В. В. и др. Металлохелаты новых тридентатных азометиновых лигандов с N,N,O- и N,N,S- донорными атомами // Коорд. химия. 1996. Т. 22. № 11. С. 838-843.
- 5. Григорьев А. И. Введение в колебательную спектроскопию неорганических соединений. — М.: МГУ, 1977. — 87 с.
- 6. Накомото К. ИК-спектры и КР неорганических соединений. М.: Мир, 1991. С. 256.
- 7. Богданов А. П., Зеленцов В. В., Падалко В. М. Магнетохимия и электронная спектроскопия соединений никеля (II) // Ж. неорган. химии. — 1977. — Т. 22. — № 10. — С. 2611–2628.

Л. С. Скороход, І. Й. Сейфулліна, Т. Ф. Гудимович Одеський національний університет, кафедра загальної хімії і полімерів, вул. Дворянська, 2, Одеса, 65082, Україна

ТЕМПЛАТНИЙ СИНТЕЗ В СИСТЕМАХ NICL₂-1-АМІНО-8-ГІДРОКСИНАФТАЛІНДИСУЛЬФОКИСЛОТА-2,4-БЕНЗОЇН (АРОМАТИЧНИЙ АЛЬДЕГІД)

Резюме

Методом «самозбірки» NiCl. 1-аміно-8iз систем гідроксинафталіндисульфокислота-2,4-бензоїн або бензальдегід, пара-гідроксибензальдегід, 2-гідрокси-1-нафтальдегід виділені ком- $[Ni_{2}(C_{17}H_{11}NS_{2}O_{8})_{2}(H_{2}O)_{4}]$ $K_{9}[Ni(C_{94}H_{17}NS_{9}O_{8})_{9}(H_{9}O)_{9}]$ плекси: (I), (II), $\begin{array}{c} \text{Intervent} & \text{Intervent} \\ \text{K}_{2}[\text{Ni}(C_{24}\text{H}_{13}\text{NS}_{2}\text{O}_{8})_{2}(\text{H}_{2}\text{O})_{2}] & (\text{III}), \\ \text{[Ni}_{2}(C_{17}\text{H}_{11}\text{NS}_{2}\text{O}_{7})_{2}(\text{OH})_{2}] & (\text{IIV}). \\ \text{I-IV} \text{ досліджені} \end{array}$ методами елементного, рентгенофазового аналізів, термогравіметрії, магнітної сприйнятливості, електропровідності, спектроскопії (ІЧ- та дифузного відбиття). Визначена геометрія I-IV та спосіб координації лігандів в них.

Ключові слова: 1-аміно-8-гідроксинафталіндисульфокислота-2,4-бензоїн, *пара*гідроксибензальдегід, бензальдегід, 2-гідрокси-1-нафтальдегід, темплатний синтез.

L. S. Skorokhod, I. I. Seifullina, T. F. Gudymovich

Odessa National University, Department of General Chemistry and Polymers Dvoryanskaya st., 2, Odessa, 65082, Ukraine

TEMPLATE SYNTHESIS IN SYSTEMS NICL₂-1-AMINO-8-HYDROXYNAPHTALENEDISULFONIC-2,4ACID-BENZOIN (AROMATIC ALDEHYDE)

Summary

From systems $NiCl_2$ -1-amino-8-hydroxynaphtalenedisulfonic-2,4acid-benzoin or benzaldehyde, para-hydroxybenzaldehyde, 2-hydroxy-1-naphtaldehyde complexes: were obtained by method of self — assemblage. I — IV were investigated by elementary analysis, X-ray powder diffraction, thermogravimetry, IR- and diffuse spectroscopy, their magnetic susceptibilities and electric conductivities were determined. The geometry of I-IV and coordination modes of ligands were determined.

Key words: 1-amino-8-hydroxynaphtalenedisulfonic-2,4acid, benzoin, *p*-hydroxy-benzaldehyde, 2-hydroxy-1-naphtaldehyde, template synthesis.