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CIRCULAR GENERATOR OF PRN’S

Let E,, be a subgroup of multiplicative group of reduced residues modulo p™, p = 3
(mod 4) in the ring of Gaussian integers with norm one (mod p™). Using the description
of elements from F,, we construct the sequence of real numbers which satisfies the condition
of equidistribution and statistical independency, i.e. it is a sequence of PRN’s.
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INTRODUCTION. The sequence of real numbers {a,}, 0 < a, < 1, we call the
sequence of pseudorandom numbers (arbitrary, PRN’s) if it is produced by deter-
ministic generator and being a periodical sequence has the statistical properties such
that it looks like to implementation of the sequence of random numbers with indepen-
dent and uniformly distributed values on [0, 1). More acceptable sequences of PRN’s
generate by the congruential recursion

Yn+1 = f(ynvynflw-'aynfkwkl) (HlOd m)a (1)
where yo,y1,...,yx—1 € {0,1,...,m — 1}, f(u1,...,ux) is integer function over ZF, .
In case f € Zpy[ui,...,u;] we have the congruential polynomial generator of

periodical sequence {y)n} with a period 7, 7 < m.

It emerged that linear function f(u) = au + b does not supply requirements of
7 affinity” to statistical independency (unpredictability) (see, for example [11])

But quadratic function f(u) = au? + bu + c satisfies to condition of ”practical”
unpredictability (see: [8]).

The generator associated with quadratic function f(c) we call parabolical.

The requirements to uniform distribution and unpredictability is satisfied the
following inversive generator

Ynil = ay;l +b (mod p™), (2)

where p is a prime number, a,b € Z, y,;! is a multiplicative inverse to y, (mod p™).

The inversive generator (2) and its generalization was being investigated by many
authors (see: [3-10], [14-18]).

Starting out from our reasoning we will call such inversive generator as hyperbol-
ical.

To apply the sequence {y,} in cryptography it is necessary to carry-out the re-
quirement of secrecy as well. That means providing the impossibility to restore the
generator parameters by single values of sequence elements. There are some interest-
ing researches about this area (see: [1-4] [9,10]). In the paper [18] there are being
investigated the analogues of inversive congruential generators, that without any in-
creases of computational complexity of finding the elements of sequence {y,}, get
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Circular generator of PRN'’s 101

essential complexity for intruder’s work around parameters of inversive or linear gen-
erator to be recovered.

Let p = 3 (mod 4) be a prime rational number, m be a natural. Denote G the
ring of gaussian integers, G = {a + bi : a,b € Z, i* = —1}, and Gpm (accordingly,
Grm) the ring of residue classes (accord., multiplicative group of this ring modulo p™)
over G.

Let

Epn:={aeGy.: N(a)=%1 (modp™)}.

It easy to check, that Ey, is a subgroup in G, with order 2(p + 1)p™~1, that we call
the norm group over the ring Gpm. As far as E,, is a cyclic group, it means that
every generated element u 4 iv defines two sequences of integer numbers modulo p™:

Zn, = R((u+iv)") and W, =S(u+iw)"), n=1,2,....

The main point of this work is to prove that the sequences {5—;} and {%} are

uniformly distributed on [0, 1).

NOTATION AND AUXILIARY RESULTS. Before studying the sequences of PRN’s
produced by circular generator, we standardize some notations to be used throughout
this paper.

Lower case Roman (respectively, Greek) letters usually denote rational (respec-
tively, Gaussian) integers; inparticular, m, n, k are positive integers and p is always
a rational prime number p = 3 (mod 4). We also define a norm over Q(4) into Q by
N(a) = |a]?. For the sake of convenience, we denote by G the set of the Gaussian
integers. Let Z, (or G4) denotes the ring of residue classes modulo ¢, and Z, (or
G?) denotes the multiplicative group in Z (or G,). If x € G} we write =" for the
multiplicative inverse of  mod ¢, i.e. 2! is an arbitrary Gaussian integer sutysfying
the condition zz=! = 1 (mod ¢). As usual, ged(a,b) or (a,b) stand for the greater
common divisor of a and b (or, respectively, @ and § in G), Through Z[z] (or G|x])
we denote the polynomial ring over Z (or G). For a € Z (o € G) stand v,(a) (or
vy() if p@Ja, p" @+ fa.

Before starting out the study of the sequences {Z,} and {W,,} we need several
lemmas being used in sequel.

Lemma 1. Let f(&) = a1& +ao€?p+az€3p2 +- - -+ ancFug, where vz, vy, ..., g,

n = 2 be positive integers, aq,...,a € G, (ag,p) =+ = (ag,p) = 1. Then we have
0 if p#F1+4, (a,p)=1
N or p=1+1i, ag Z0 (mod p?),
1S(f, ")) < EES oL
N(p)= if p#1+i, a1 =0 (mod p),
2"3° if p=1+i, a1 =0 (mod?2).
Proof. For n = 2 the estimated sum is the Gaussian sun, and thus in such

case our assertion holds.
For n > 3, p be a odd prime. We put

E=n+p""1, n€ Gy, (€ Gy
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Taking into account that &* = 77k + ]mk*lc (mod pnﬂ)’ we get
S(fph) = > 2GR )R(S5421) _ () 3 2miR(4)

nern_l nern—1
a1+2a2n#£0  (mod p)

Let a1 + 2agm0 = 0 (mod p), no € G- We put n =g + p&, £ € Gyn-2. Then we
infer

Fno 4+ &) = f(no) + play + 2aam)& + p*abe® + -+ = f(no) + p° f1(8),

where the polynomial f;(£) has such type as f(§).

So, after [%] steps we obtain

n

N(p)2 if nis even,
ny| _ e Bitse?
U= et | 5 (2 )‘ if mis odd.

§€Gy

By the estimate of the Gauss sum we have the assertion of Lemma.
The case p = 1+ ¢ can be considered similarly. |

Corollary 1. Let f(&) = a& + BE%2 + p(y€2 + - -+ ) be a polynomial over G, and
let (B,p) =1. Then for any § € G, we have

> R G | T

EeG;n

Indeed, putting € = n+p" "¢, n € G;,L,l, ¢ € Gy, and observing that {71 =
=t —pn7LE(n~1)2, where n~! be a multiplicative inverse modp™ for 7, we immedi-
ately infer that inequality holds by Lemma 1.

Similarly, assertion holds for the same exponential sums over Z,~.

Let us denote by Ej, the following subgroup of G, p = 3 (mod 4), p be a
prime number in Z:

El ={ze€G} : N@z)=1 (modp™)}.

The subgroup E; we will call the norm group in Gom.

Take into account that the multiplicative group of the field G, is a cyclic group.
It is easy to prove (as in Zj..) that it exists a generating element of the group Ef,
such that it will generate every group E;}, m > 1.

In order to find that element, we take such generating element gy of group G, for
which g(()p O _q + hp? with (h,p) = 1. Then g(’r1 is revealed generating element of
group Ef,m=1,2,....

Moreover, we have

Lemma 2. Let us u+iv € E,, be a generating element of E,,. Then ord(u+iv) =
|Epl = 2(p+ 1)p™ " and

(u+ iv)2PTY =1 4 p?zq + ipyo,

o + ng =0 (mOd p)7 ($07p) = (y07p) = la
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and also for any t =4,5,..., we have modulo p™
R(u + ) 2PVt = Ag + Ayt + Agt? + -+ + Apy_yt™ 1, )
S(u+ )2 Pt = By 4+ At + Bot? + -+ + Bt 1,
where
AOEI (mod p*), By =0 (mod p?),
Ay =p’zo+ 5p°y3 =0 (mod p*), By =pyo (mod p?), (4)
Ay = —%p Y2 (mod p3), By =0 (mod p?),
A;=B;=0 (modp?), j=3,4,...m—1.
Denote
(u+iv)** = u(k) +iv(k), 0 <k <p,
m—1
(u+ iv)2PTDH2k = S~ (A (k) +4iB;(k))t?  (mod p™).
7=0
It is clear

Thus from Lemma 1 we have
Corollary 2. For k=1,2,...,p, we have
u(k) = u(—k), v(k) = —v(—k) (mod p™),
(u(k).p) = (o(k).p) = 1, if k£ P2,
u(0) =1, v(0) =0,
p+1

u(k)=0 (mod p), (v(k),p)=1, if k= —

Moreover, for k # p—;l
Ao(k) = u(k), Bo(k) =wv(k) (mod p),
pllAi(K), pl|Bi(k), p*||A2(k), p*||Ba(k);

and
A1(0) =0 (mod p*), Bi(0) =pyo (mod p*), p*[|42(0), B2(0)=0 (mod p?),
Ag(k) =0, Bo(k)=0 (mod p),
Pl|Ai(K), p°||Bu(k), p*||A2(k), Ba(k) =0 (mod p°)if k = %

Aj(k)=B;(k)=0 (mod p®), k=0,1,...,p, j>3.
The proof of Corollary is a simple exercise (in view the congruence
(u+ )P =14 p?zg + iyo,
(z0,p) = (y0,p) =1,
229 +y2 =0 (mod p),
u? +v2=+1 (mod p™) ),
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and we omit.

MAIN RESULTS
1. Circular generator of PRN’s. We select a random number & from {0, 1, 2,
...,p — 1} and consider the sequence {(u + iv)?P+VH2RY ¢+ — 0 1 ... pm~t — 1,
where u + tv is a generating element of F,,.
Denote
Zu(k) = Zu = R (u + i) 262

Wi(k) = Wy = %((u + Z'U)Z(p+1)t+2k>.

These sequences discribed in Lemma 2.
We saw that (u + iv)2P+1) = g 4 ivg, where ug = 1 + p?xo, vo = Yo, (T0,p) =
(yo,p) = 1 and x¢ + 292 =0 (mod p).
Hence,
Zis1 = R((uo + ivo)" - (uo + ivo) - (u(k) + iv(k))) =
= Zyug — Wyvo  (mod p™),
Wit1 = Zywg + Wi (mod p™) (6)
fort=0,1,...,pm ! —1.
The sequence (5) and (6) satisfies that condition
Z24+W2=1 (modp")

for any t € Z,n-1 and k € {0,1,...,p}.
Thus we call the sequences (5) and (6) circular sequences of PRN’s.

Theorem 1. Let a,b € Zpm, (a,b,p) =1. Then for the exponential sum

S(a,b;p™) = Z epm (aZy + W)

€L m 1
we have the following bound
1S(a,b;p™)| < 2p%
Proof. Lemma 2 and its Corollary give
aZy(k) +bWi(k) = co + cit + cot> + -+ (mod p™),
where notationally of Lemma 2 we have
¢j(k) = augA;(k) — bvoB;(k), j=0,1,2,....
In particular, taking into account uy = 1 + p2xg, vg = pyo, We have

{ c1 = pyo(—av(k) + bu(k)) + p*y3(—au(k) — bu(k)) (mod p?), (8)
c2=—1p*yda (mod p?), ¢; =0 (mod p?), j > 3.

Therefore, by Lemma 1, we easy obtain

if au(k) —bv(k) =0 (mod p)

else.

py
2

sabmi<{ oF
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Corollary. For 1 <T < p™~ ! and any k € {0,1,...,p}

SR ACELAC

< 2p7 logp™. (9)

t=0

Indeed, the inequality (9) is consequence of well-known estimate of incomplete
sum by complete sum. |

Denote
aZy(k) + bWi(k) = z¢(a, by k) := z(t). (10)

Theorem 2. Let s be positive integer, hi,...,hs € Zpm, (h1,...,hs,p) = 1.
Then for s € {1,2,...,p — 1} the following estimate

p7n71_1

S(hi,...she) = > epm(haz(t) + haw(t+1) + - + hea(t+5 - 1)) < p*
t=0
holds.
(with an absolute constant depending only on s).

Proof. Using (8) and calculating coefficients for ¢ and ? in presentation
hiz(t)+hox(t+1)+- -+ hsx(t+s—1) as a polynomial of ¢ or (t+1),..., or t +s—1,
we obtain (by Lemma 1) that S(hq,...,hs) = 0 only if —av(k) + bu(k) =0 (mod p).
In such case we estimate the sum S(hy,..., hs) as O ( "7) with the absolute constant
in symbol ”O”. In other cases this sum is zero. ]

Remark 1. It easy to prove that for the congruence av(k) = bu(k) (mod p) at
most sixz solutions satisfies.

Corollary. In the conditions of Theorem 2 we have

!

-1
epm(h1z(t) + hox(t + 1)+ hx(t+s—1)) <€ p? logp™
t

i
<

2. Discrepancy bound. Consider the sequence {z(t)}, t = 0,1,2,... of the
elements of Z,m defined in (10). Let {y(¢)} be a sequence of PRN’s in interval [0, 1)
obtained by the normalization y(t) = %,

The sequence {y(t)}, ¢ = 0,1,..., is purely periodic with the period length
T=pm L

Equidistribution and statistical independency properties of pseudorandom num-
bers can be analyzed based on the discrepancy of certain point sets in [0, 1)*.

Besides the discrepancy, there exist other important criteria for the uniformity
and independence of PRN’s. We will restrict our attention to the discrepancy, since
it is the most important measure of uniformity and independence in connection with
PRN’s.

For N arbitrary points, 2o, 21,...,zn_1 € [0,1)%, the discrepancy is defined by

An(I)
N

DN(xo,xl,...,xN_l): sup (11)

IC[0,1)4
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where the supremum is extended over all subintervals I of [0,1)%, Ax(I) is the num-
ber of points among xg, 21, ..., zn_1 falling into I, and |I| denotes the d-dimensional
volume of 1.

Our goal is to obtain a nontrivial discrepancy estimate for a part of period
for the circular generators of pseudorandom numbers. In particular, we shall es-
timate discrepancy for the sequence {wy}, wy = ;%, ¢ > 0 and for the sequence
{0}, QU = (we,wegt, - wegs—1), £ = 0, s = 2. Well-known that a small value
D(wo,wr,...,wy—_1) guarantees an uniform distribution {we}, £ > 0 on [0,1), and a
small value D(Qg,Q1,...,Qx_1) means that the sequence {w¢}, £ > 0, pass the two-
dimensional serial test on the statistical independence properties of this sequence. In
the cryptographical applications the property of statistical independence means that
the circulate congruential pseudorandom sequence {z;}, ¢ > 0, is unpredictable.

In the following, some further notation is necessary.

For integers d > 1 and q > 2, let Cd( ) be the set of all nonzero lattice points
h = (h1,...,hq) € Z¢ with —1 <h < 4 for 1 < j < d. Define for h € Cy(q)

1 if h=0,
T(h7Q){ qsm( |h\) th#O)

hj,q)

—~
=

ECH

I a

1=
3
—

Moreover, several auxiliary results are given.

Lemma 3. Let N > 1 and q > 2 be integers. Suppose thatyo,y1,-..,YN—1 € Zg.
Then the discrepancy of the points ty; = % €0,1)4, ¢=0,1,...,N — 1, satisfies

N-1
d 1 1
DN(t07t17"'7t'N—1) g -+ = Z Z@(hte) (13)
¢ N heC r(h,g) |2
a(q) =0

(Proof see in [13], Theorem 3.1).

Lemma 4. Let T be the period of the sequence {yx}, T > N > 1 and g > 2 be
integers, yx € {0,1,...,q— 1} fork=0,1,...,N — 1; t} = %“ € [O,l) . Then

d 1
Dy (to,t1,...,t - _
v{to. b1, N-1) q Z 2 r(h,q)r(ho, T)
hECd(q)hoe(*%,% (14)
r kho
X Z (h tk+T)
k=0

This assertion follows from Lemma 3 and from an estimate of uncomplete expo-
nential sum through complete exponential sum.
Now it easy to prove the following theorems.

Theorem 3. Let p = 3 (mod 4) be a prime number and let x(k,0) := x(¢) =
aR((u+ w)2(p+1)[+2k) b ((u + iv)2PHD2E) be the sequence circular PRN’s. Then
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for any k € {0,1,...,p}, k#% we have

Dy (m(O) :v(l)’”.’:v(N—l)> <i+2p% <;<2logpm+7)2+l>,

pm ) pm pm pm, N ; 5

where 1 < N < pm~t —1.

Theorem 4. Let ty, { = {0,1,...,p"™ 1 — 1} be a sequence of points ty € [0,1)%,
te = (x(0),z(+1),...,2({+s—1)). Then the following estimate for T = p™~! and
s<p—1

s s 1 1/2 7\’
D’g") = DT(t07t1,7tT71) <7m+ﬁ (1+ (logpm+) )
P prT p A\ )

holds.

The proofs of these theorems follow from the estimates of theorems 1 and 2 and
their corollaries.

From Theorem 3 and 4 it follows that the sequences {R((u + iv)2P+D+2k)} and
{S((u + v)2PFDEH2R) Y are equidistributed and pass s-dimensional test on unpre-
dictability.

CoNcCLUSION. Using the description of elements from FE,, we construct the se-
quence of real numbers which satisfies the condition of equidistribution and statistical
independency, i.e. it is a sequence of PRN’s.
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Bapbaneuw C. II.
HuprkviisggspHU1 rEHEPATOP [IBY

Pesrome

Hexait E,, — niarpymna My/bTUILIIKATUBHOI TPYIU 3BEISHUX 3a/IUIIKIB 3a MoaysieMm p”', p = 3
(mod 4) B Kismbni minux raycoBux umces HopMu 1 3a momysiem (mod p™). Kopucryouncs
OIMCOM €JIEMEHTIB i3 Fy,, MU OYLyEMO TOCJIIOBHICTD JIHCHUX YHCe, STKa 3a/0BIJIbHIE yMO-
BaM PiBHOPO3MO/ILIIEHOCTI Ta CTATUCTUYHOI He3aJIe>KHOCTI, TOOTO BOHA € mociigosuicTio [IBY.
Karowosi crosa: ncesdosunadkosi “ucaa, mpuzohomMempuiHi cymu, OUCKPUNGHCIs.

Bapbéaney C. II.
IIMPKYJISAPHBIN TEHEPATOP [1CY

Pesrome

Ilycrs E,, ecTh MOArpyIIia MyJbTHILIAKATUBHON TPYTINBI IPUBEIEHHBIX BBIYETOB IO MOJLY-
mo p™, p = 3 (mod 4) B KOJbIle IEJBIX FAyCoOBBIX 4Yuces] HOpMBL 1 1o momyno (mod p™).
Tlonb3ysich onMcaHWeM 3JeMEeHTOB U3 Fy,, MBI CTPOMM MOCJIEI0BATEbHOCTD JIEHCTBUTEb-
HBIX 9HUCEJI, KOTOpasl YIOBJIETBOPSET YCIOBUSM PABHOPACIPEIETEHHOCTH U CTATUCTHYCCKON
HE3aBUCUMOCTH, TO €CThb OHA SBJISETCS TocienoBaTesbHocTh0 [ICH.

Kmouesvie caosa: ncesdocayuatinbie wucaa, mpuzoHoMempPuuecKue Cymmol, OECKPUNAGHCUS.



