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Abstract. Itis found the exact solution of the Poisson equation fontiudtidimensional space with
topologyMs, ¢ = R3 x T9. This solution describes smooth transition from the Neveomehavior

1/r3 for distances bigger than periods of tori (the extra dimensizes) to multidimensional be-

havior 1/r§ig in opposite limit. In the case of one extra dimensiba 1, the gravitational potential

is expressed via compact and elegant formula. Obtainedularis applied to an infinitesimally
thin shell, a shell, a sphere and two spheres to show deng@fiom the Newtonian expressions.
It is shown that the corrections to the gravitational consia the Cavendish-type experiment can
be within the measurement accuracy of Newton'’s gravitaficonstanGy. It is proposed models
where the test masses are smeared over some (or all) exteasions. In 10-dimensional spacetime
with 3 smeared extra dimensions, it is shown that the sizere$Bextra dimensions can be enlarged
up to submillimeter for the case of 1TeV fundamental PlaruztesMp, (1. In the models where all
extra dimensions are smeared, the gravitational potestitly coincides with the Newtonian one.
Nevertheless, the hierarchy problem can be solved in theskein
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[. INTRODUCTION

There are two well-known problems which are related to eabkeroThey are the dis-
crepancies in gravitational constant experimental daththe hierarchy problem. Dis-
crepancies (see e.g. Figure 2 in the "CODATA Recommendagk¥aif the Fundamen-
tal Constants: 2006") are usually explained by extreme wesdk of gravity. It is very
difficult to measure the Newton'’s gravitational const@gt. Certainly, for this reason
geometry of an experimental setup can effect on data. Hawiveay well be that,
the discrepancies can also be explained (at least partlyhtgrlying fundamental the-
ory. Formulas for an effective gravitational constantdaling from such theory can be
sensitive to the geometry of experiments. For example, ifeation to the Newton’s
gravitational potential has the form of Yukawa potentibkr the force due to this po-
tential at a given minimum separation per unit test-bodysmnadeast for two spheres
and greatest for two planes (see e.g.[1]). The hierarchigleno - the huge gap between
the electroweak scallew ~ 10°GeV and the Planck scaMp (s = 1.2 x 10°GeV -
can be also reformulated in the following manner: why is gyaso weak? The small-
ness ofGy is the result of relatiosy = M;@. The natural explanation was proposed

in[2, 3]: the gravity is strongGy = M;I(f(;)d) ~ MEV(VZM) and it happens ing = 4+ d)-

dimensional spacetime. It becomes weak when gravity is dset¥ over large extra
dimensionsGy ~ G4 /Vy4 whereVy is a volume of internal space. To shed light on both
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of these problems from new standpoint we intend to invetigaultidimensional grav-
ity in non-relativistic limit.

[I. MULTIDIMENSIONAL GRAVITATIONAL POTENTIALS

It is of interest to generalize the well-known Newton’s gtational potentiakp(rz) =
—Gnm/r3 (r3 = |r3| is magnitude of a radius vector in three-dimensional specejul-
tidimensional case. Clearly, the result depends on topobdgnvestigated models. We
consider models wher® = 3+ d)-dimensional spatial part of factorizable geometry is
defined on a product manifolp = R3 x T9. R3 describes three-dimensional flat ex-
ternal (our) space anflY is a torus which corresponds tbdimensional internal space

with volumeVy. Letb ~ le/d be a characteristic size of extra dimensions. Then, Gauss’s
flux theorem leads to the following asymptotes for gravitasil potential (see e.qg. [3]):
¢ ~1/rzforrz>>band¢ ~ 1/réig for r3.g << b wherers,4 is magnitude of a
radius vector in(3+ d)-dimensional space.
To get the exact expression fB-dimensional gravitational potential, we start with
the Poisson equation:
Ap¢p = SGypp(rp), 1)

whereS, = 2r°/2/(D/2) is a total solid angle (square (D — 1)-dimensional sphere
of a unit radius)Gy is a gravitational constant ifZ = D + 1)-dimensional spacetime
andpp(rp) = md(x1)d(x2)...0(xp). In the case of topologR®, Eq. (1) has the follow-
ing solution:

Gy
. D=3 @)
(D-2)rp
This is the unique solution of Eq. (1) which satisfies the lmaumg condition:
r Iirrl ¢p(rp) = 0. Gravitational constanGy in (1) is normalized in such a way
pD—+0o

¢o(rp) = —

that the strength of gravitational field (acceleration ofeattbody) takes the form:
—d¢p/drp = —Ggym/rg—.

If topology of space isR3 x T9, then it is natural to impose periodic boundary
conditions in the directions of the extra dimensiomg;(rs,&1,82,...,&,...,&) =
¢p(rs,&1,8,....6+4a,...,&), 1=1,...,d, whereg denotes a period in the direc-
tion of the extra dimensio&. Then, Poisson equation has solution (cf. also with [3, 4]):

Gnm 2 g d k)2 Yz
¢D(r3,El,...,Ed):—?klz Yy exp —271(;(5)) rs

=—0 ky=—0 i
271k, 271Ky
X cos(a—lfl) ...cos(xfd) ) 3)
To get this result we, first, use the formudéé;) = %Zﬁfloo cos(%fi) and, second,

put the following relation between gravitational consgimt four- andZ-dimensional
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spacetimes:
2. 6. @)
[Mi=18
The letter relation provides correct limit when ajl— 0. In this limit zero modeg = 0
give the main contribution and we obtagm(rs, &1,...,&q) — —Gnm/rs. Eq. (4) was
widely used in the concept of large extra dimensions whislegpossibility to solve
the hierarchy problem [2, 3]. It is also convenient to ree/(4) via fundamental Planck
scales:
S 2 g2 _ )
5 VP = Mpig) [la'v

o

where Mpy(4) = Gﬁl/z = 1.2 x 10MGeV andMp(g) = szl/(2+d) are fundamental
Planck scales in four an@ spacetime dimensions, respectively.

In opposite limit when all; — -+ the sums in Eq. (3) can be replaced by integrals.
Using the standard integrals (e.g. from [5]) and relatio)) (4e can easily show that,
for example, in particular cases = 1,2 we get desire resulipp(rs,é1,...,&q4) —
—Ggm/[(D—2) r31g].

In the case of one extra dimensidr= 1 we can perform summation of series in Eq.
(3). To do it, we can apply the Abel-Plana formula or simplg tise tables of series [5].
As a result, we arrive at compact and nice expression:

Gum  sinh(Z32)

rs cosh(z—’g?’) — cos( 2

04(rs, &) = —

; (6)
=)
wherersz € [0,4+) andé € [0,a). Itis not difficult to verify that this formula has correct
asymptotes wherg >> a andrs << a. Fig. 1 demonstrates the shape of this potential.
Dimensionless variableg; = rz/a € [0,+«) andn, = & /a € [0,1]. With respect to
variablens, this potential has two minima gt = 0,1 and one maximum aj, = 1/2.
We continue the graph to negative valueg)pk [—1, 1] to show in more detail the form
of minimum atn, = 0. The potential (6) is finite for any value of if & £ 0,aand goes
to —oo as—l/rﬁ if simultaneouslyrs — 0 andé — 0,a (see Fig. 2). We would like to
mention that in particular case= 0 formula (6) was also found in [6].

Having at hand formulas (3) and (6), we can apply it for caltioh of some elemen-
tary physical problems and compare obtained results witwknNewtonian expres-
sions. For a working approximation, it is usually sufficiemsummarize in (3) up to the
first Kaluza-Klein modeg;| = 1(i = 1,...,d). Then, the terms with the biggest periods
g give the main contributions. If all test bodies are on thesanane § = 0) we obtain:

¢D(r3a El = 07~~~,£d = 0) = ¢D(r3) ~ _GLrn |:

1+aexp<—i\—3)} , (7

wherea = 2s (1 <s<d), A = a/(2m) andsis a number of extra dimensions with
periods of torig; which are equal (or approximately equal)de- maxa;. If ay = ap =
...=ag = a, thens = d. Thus, the correction to Newton’s potential has the form of
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FIGURE 1. Graph of functiond(ni,n2) = ¢4(r3,&)/(Gnm/a) = —sinh(2mm1)/[n1(cosh2mn;) —
cog2mmny))].
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FIGURE 2. Sectioné = 0 of potential (6). Solid line i§ (n1,0) = —sinh(2mn1) /[n1(cosH2mn,) — 1)]
which goes to-1/n; (dotted line) form; — +o0 and to—1/(rm#) (dashed line) fon; — 0.

Yukawa potential. It is now customary to interpret tests @uifational inverse-square
law (ISL) as setting limits on additional Yukawa contrilari The overall diagram of
the experimental constraints can be found in [1] (see Figlir@nd we shall use these
data for limitationa for givena.

[ll. APPLICATION ( d=1, ¢ =0)

Now, we apply formula (6) to some particular geometrical fagurations. For our
calculations we shall use the caseéof= 0. It means that test bodies have the same
coordinates in the extra dimension. It takes place e.g. vibstrbodies are on the same
brane. Also, to get numerical results we should define thesstf the extra dimension.

If the standard model fields are not localized on the brarem #xperiments give the
upper bounda < 10-1’cmt. This valuea can be greatly increased if we suppose that
the standard model fields are localized on the brane. In @gg,cwe can obtain the
upper bound foa from the gravitational inverse-square law experimentshdkepicted

in Figure 5 of paper [1]. As we have shown abowes= 2 for d = 1. For this valuex,

1 Coulomb’s law has been tested for separations down td%en in e"e™ leptonic interactions at high-
energy colliders [1]. Nevertheless, see also the footndiel@w.
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Figure 5 givest <2x102cm = a<1.3x 10 cm.

Infinitesimally thin shell

Let us consider first an infinitesimally thin shell of mass- 4R%c, whereR ando
are radius and surface density of the shell. Then, grawitatipotential of this shell in a
point with radius vectors (from the center of the shell) is

GnoRa, COSh(L?R)) 1
5 cosh(Lg’R)) -1

This formula demonstrates two features of the consideredetsoFirstly, we see that
inside (r3 < R) of the shell gravitational potential is not a constant. Thugest body
undergoes an acceleration in contrast to the Newtonian @as# to Birkhoff's the-
orem of general relativity in four-dimensional spacetimbieh states that the metric
inside an empty spherical cavity in the center of a sphdyicsimmetric system is the
Minkowski metric). Secondly, this potential has a logarith divergency whemns — R
a(rs) ~ —CN™[1 2 In(2miR—r3|/a)] where we took into accourR >> a and
|R—r3| << a. For example in the case® = 10cm and 2R —r3| = 10~ 1a, the de-
viation constitutes 3 x 102 and 23 x 10718 parts of the Newtonian valueGym/R
for a= 10"1cm anda = 10 1’cm, respectively. In principle, the former estimate is not
very small. However, it is very difficult to set an experimeuritich satisfies the condition
|R—r3] << a. If the shell has a finite thickness, then the divergencepgisars.

¢a(rs) = —

®)

Spherical shell

The gravitational potential of a spherical shell of innatites R, and outer radiuf,
can be written as

Gnpa /
r3) = RI 9
¢4( ) rs Cosh(zn rs—R) ) 1 ( )
wherep is a constant volume density of the shegll= m/ [%’T )] It is useful to
present this potential in the form of series. For exampls ( 3 < Ry) of the shell it

reads:

a2 e sinh(2Xrs)

$a(rs) = 2GNP{ (R —RY) + s 2 K2
1

. [(R+ 2) exp(—%k )]R} 7 (10)
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where we singled out zero mo#le= 0 which corresponds to the Newtonian limit. It can
be easily seen that this series does not diverge when R;. However, acceleration of
a test body diverges when it approaches boundd&jeand R, of the shell. It clearly
follows e.g. from the form of the acceleration insidg < R;) of the shell:

dgs 2Gypa® = 1 [ 2mk 27k
" kglkz 3 rzcosh palE
_[2nk a 2rk _\ 1%
— — - >
+ smh( a r3>] {(RJF 2nk> exp( a )]Rl/o (11)

and outsiddrs > Ry) of the shell:

dgs  Gum Gypad L2 (14 2K
drs 3 w2 L K

ra) exp(—z%krs) [h(Rz2) —he(Ry)] <O,

12)
where h(R) = 2Z¥Rcosh2ZXR) — sinh(2ZR). Divergence of acceleration originates
from the divergence of the seri€g!® 1/k and has the formt2Gypaln % Here,
€ = |Ry2 —r3| and —,+ corresponds taz — Ry andrz — Ry, respectively. In the
case of a sphereR{ = 0 andR, = R) this divergence can be rewritten in the form
—3%’“%Rln(2n|R— rs|/a). Similar to the case of the infinitesimally thin shell, this
deviation from the Newtonian acceleratierGym/R? is also difficult to observe at
experiments for considered above parameters. Egs. (L1{12)@how that acceleration
changes the sign from negative outside of the shell to pesitiside of the shell (see
Figure (3)). This change happens within the shell.

w/ (aGuo)
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|

-10
-15
-20

-25

FIGURE 3. Graph of acceleratiow = —d¢,/dr3 in dimensionless units (see Egs. (11) and (12)). Here,
a=2.5R; =5 andR, = 10. The dashed lines correspond to radii of the shell. THemgst line goes to
the Newtonian asymptotel/r3 whenrs — -+oo.
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Gravitational self-energy of a sphere

For a sphere of constant volume dengitymasan and radiusR, a gravitational self-
energy is

R
U = 2mp [ r3pa(ra)drs (13)

onf 1415055 [Fa s () )

where
F— (1+ 2nkR> exp(_anR> [sinh(znkR> B anRcosh(znkR)} (14)
a a a a a

andUy = —3Gnn?/(5R) is gravitational self-energy of a sphere in the Newtoniaitli
[7]. In the caseR >> a, the differenceAU = U — Uy reads:

AU

15 (a)22n+°° 1 5 (a)Z’ (15)

~Ungs(r) 3 2 e = Wl

where we took into accouryty_; 1/k? = 1?/6. Therefore, this difference is suppressed
by power law (with respect to ratio betweenand R) but not exponentially as it is
usually expected for Kaluza-Klein modes. NeverthelessStm withR ~ 7 x 10%m
this value is a negligible part dfy even ifa~ 10-1cm : AU ~ 4 x 102Uy where
Un ~ —2 x 10%erg [7]. In the case of a neutron star wihr 10°cm, the difference is
AU =~ 2 x 10~ 13Uy fora~ 10 1cm .

Gravitational interaction of two spheres

Energy of gravitational interaction between two spheresonfstant volume densities
p,p’, massesn, M and radiiR,R on a distances > R+ R reads

Gnmm a3/ a\3™1 27k
(16)
The member of the series wikh= 1 (first Kaluza-Klein mode) gives the main correction
to the Newtonian expression and acquires the form of Yukasterial. In this case, for
the force of gravitational interaction between these twitesps we obtain:

au Gnmn 9/ a \2/ a \22mrs 21
“as TR {”z(zm) (z) aexp[a<r3RF*)H' an
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where we made additional natural assumpfoR >> a/(2n). If r—R— R ~ a, then
we get an estimate:

(‘ﬁzw{1+o.0084(;R)2(;Q)22T”}. (18)

For example, in the case = R = 1cm anda/(2m) = 2 x 10~%cm the correction is
1.4x 10~7. In the case of the internal space topoldBy the correction term in (18)
acquires a pre-fact@which satisfies the conditiond s < d and represents a number
of extra dimensions with periods of the torus which are egoabpproximately equal)
to a = maxg. If all of g are equal to each othes,= d. Increasing the number of
extra dimensiond, finally we arrive at the condition when the correction terecbmes
big enough to contradict with experimental data. Thereforeghis case we can get a
limitation on a maximal number of extra dimensions for cdesed models. Certainly,
the models with infinite number of extra dimensions vate maxa; are forbidden.

It is worth of noting that all formulas obtained above can leoapplied to the
Coulomb'’s law if electromagnetic field is not localized oe thrane.

Y. SMEARED EXTRA DIMENSIONS

In what follows, we consider asymmetrical extra dimensiarded (cf. [8]) with topol-

ogy
Mp=R3xTIPxTP p<d, (19)

where we suppose that — p) tori have the same "large" pericaland p tori have
"small" equal period$. In this case, the fundamental Planck scale relation (%)srea

S
= M4 = Mgﬁgﬂ)
Additionally, we assume that test bodies are uniformly sedspreaded over small
extra dimensions. Thus, test bodies have a finite thicknessniall extra dimensions
(thick brane approximation). For short, we shall call suoaB extra dimensions as
"smeared" extra dimensions.pf= d then all extra dimensions are smeared.

It is not difficult to show that the gravitational potentiabes not feel smeared
extra dimensions. We can prove this statement by threerdiffemethods. First,
we can directly solve D-dimensional Poisson equation (1}hwthe periodic
boundary conditions for the extra dimensiodg,1,...,{q and the mass density
p = (m/NP a)8(r3)d(Eps1)-..0(&q). Second, we can average solutions (3) and
(6) over dimensiongy,...,¢p and take into account thafﬁcos(anf/a)dE =0.1In
particular case of one extra dimensional, we can also shatv th

a -1
o (50) [[on(50) ()] S e
0

ad~PpP. (20)
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Finally, it is clear that in the case of test masses smeared extra dimensions, the
gravitational field vectolEp = —[p¢p does not have components with respect to
extra dimensionsEp = Epny,. Thus, applying the Gauss'’s flux theorem to the Poisson
equation, we obtairEp(rz) = —GNm/r§ — ¢p(r3) = —Gnm/r3. Therefore, all these

3 approaches show that in the casepo§meared extra dimensions the wave numbers
ki,...,kp disappear from Eq. (3) and we should perform summation orilly vespect

tO kp+17...,kd.
Effective gravitational constant
As it follows from Eq. (17), in the Yukawa approximation, theavitational force

between two spheres with masses, mp, radii Ry, R, and distance; between the
centers of the spheres reads:

G m
F = Nt (22)
r3
where
9 a \? a \22m 21
Gnietr)(rs) =~ GN{1+§S(2T[R1> <2nR2> asexp[—g(rg—Rl—Rz)]}
= Gn(1+ds) (23)

is an effective gravitational constant. Here, the predastappeared due to general-
ization of formula (17) to the case of the internal space logpTY. If we consider a
model withp smeared extra dimensiorssin Eq. (23) is replaced byd — p). Now, we
want to evaluate the correctiordg to the Newton’s gravitational constant and to esti-
mate their possible influence on the experimental data. ##aws from Figure 2 in the
CODATA 2006, the most precise values @f; were obtained in the University Wash-
ington and the University Ziirich experiments [9, 10]. They @y /10 'm’kg~1s 2 =
6.674215+0.000092, and 74252+ 0.000124, respectively. Let us consider two par-
ticular examples(Z = 5)-dimensional model witd =1,p=0 — a =2 and(Z = 10)-
dimensional model wittd = 6,p = 3 — a = 6. For these values oft, Figure 5

in [1] gives the upper limits fol = a/(2m) correspondinglyA ~ 2 x 10~2cm and

A ~ 1.3x 10 2cm. To calculatés, we take parameters of the Moscow experiment [11]:
Ry ~ 0.087cm for a platinum ball with the masg = 59.25x 103g, R, ~ 0.206cm for

a tungsten ball with the mass, = 706x 10~3g andrz = 0.3773cm. For both of these
models we obtaidg ~ 0.0006247 andg ~ 0.0000532, respectively. Both of these val-
ues are very close to the measurement accuraGyon [9, 10]. So, if the same accuracy
can be achieved in the Moscow-type experiments, then, éhgwglues ofRy » andrs,

we can reveal extra dimensions or obtain experimentalditioihs on considered models.
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Model: 2 =10with d=6,p=3

Let us consider in more detafl? = 10)-dimensional model with 3 smeared di-
mensions. Here, we have very symmetrical with respect torabeun of spacial di-
mensions structure: 3 our external dimensions, 3 largeaedimensions with peri-
odsa and three small smeared extra dimensions with peridsor b we put a lim-
itation: b < bax = 10~’cm which is usually taken for thick brane approximafion
As we mentioned above, in the case @f= 6, for a we should take a limitation
a< amax = 8.2 x 10~%cm. To solve the hierarchy problem, the multidimensionahiek
scale is usually considered from 1TeV up to approximately T8V (see e.g. [8, 12]).
To make some estimates, we taWgin = 1TeV< Mpy(10) < Mmax = 50TeV. Thus, as it
follows from Eq. (20), the allowed values afandb should satisfy inequalities:

M2 M2
S P < 5303 < S Pl 24)
83 Mmax S3 |Vlmin

Counting all limitations, we find allowed region fa and b (shadow area in Fig.
(4)). In this trapezium, the upper horizontal and right igatt lines are the decimal
logarithms ofamax andbyay, respectively. The right and left inclined lines corresg oo
Mpi(10 = 1TeV andMp 10) = 50TeV, respectively. To illustrate this picture, we coresid
two points A and B on the linép 10 = 1TeV. Here, we have = 0.82x 10~1cm,

b = 10"2%5cm for A anda = 10-“cm, b = 10~ 86cm for B. These values of large
extra dimensions are much bigger than in the standard approach 1032/6)-17cm
~1017cm[2, 3].

FIGURE 4. Allowed region (shadow area) for periods of largg &énd smeareddj dimensions in the
modelZ = 10 withd = 6,p = 3.

Model: Z-arbitraryand d=p

In this model, the test masses are smeared over all extrandiores. Therefore, in
non-relativistic limit, there is no deviation from the Newts law at all. It worth of

2 This limitation follows from the electrical inverse-sqedaw experiments. However, in the case of the
smeared extra dimensions, the ISL is not sensitive to thiesergions. Thus, it gives us a possibility to
relax considerably this bound.
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noting, that this result does not depend on the size of srdeatga dimensions. The
ISL experiments will not show any deviation from the Newtlaw without regard to
the sizeb (see also Eq. (23) whese=d — p=0). Similar reasoning are also applicable to
Coulomb’s law. It is necessary to suggest other experimehish can reveal the multi-
dimensionality of our spacetime. Nevertheless, we canestile hierarchy problem in
this model because Eq. (20) (whette= p) still works. For example, in the case of
bosonic string dimensio@ = 26 we findMpy 26 ~ 31TeV forb = 10t’cm. In the case

2 =10 we getMp (109 ~ 30TeV forb = 5.59x 10~ *4cm.

Y. CONCLUSIONS

We have considered generalization of the Newton’s potetdithe case of extra di-
mensions where multidimensional space has topoMgy= R3 x T9. We obtained the
exact solution which describes smooth transition from tleg/tddnian behavior Ar3 for
distances bigger than periods of tori (the extra dimensimas3 to multidimensional be-
havior ]/rB* in opposite limit. In the case of one extra dimension, thevitgtonal
potential is expressed via compact and elegant formulalt@n, this formula was ap-
plied to an infinitesimally thin shell, a shell, a sphere awd spheres to get gravita-
tional potentials and acceleration of a test body for thesdigurations and to compare
obtained results with the known Newtonian formulas. In sarases, obtained poten-
tials and accelerations have logarithmic divergences timaboundaries of shells and
spheres. Additionally, in contrast to the Newtonian casst, bodies accelerate inside of
shells. For each considered problems, we found deviatimms the known Newtonian
expressions.

As an Yukawa potential approximation, it was shown that tberections to the
gravitational constant in the Cavendish-type experimanttze within the measurement
accuracy ofGy. It may reveal the extra dimensions or provide experimdirtatations
on parameters of multidimensional models.

Then, we proposed models where test masses can be smearedtoaaimensions.
In this case, the gravitational potential does not feel setedimensions. The number of
smeared dimensions can be equal or less than the total nahther extra dimensions.
Such approach opens new remarkable possibilities.

For example in the cas® = 10 with 3 large and 3 smeared extra dimensions and
Mpi(10) = 1TeV, the large extra dimensions can be as big as the uppeelstablished
by the ISL experiments for = 6, i.e.a~ 0.82x 10 1cm. This value ofais in many
orders of magnitude bigger than the rough estinzate 10-1%’cm obtained from the
fundamental Planck scale relation of the form of Eq. (5).

The limiting case where all extra dimensions are smearedchighar interesting
example. Here, there is no deviation from the Newton’s lavalatNevertheless, the
hierarchy problem can be solved in this model.
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