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Abstract. It is found the exact solution of the Poisson equation for themultidimensional space with
topologyM3+d = R

3×T d . This solution describes smooth transition from the Newtonian behavior
1/r3 for distances bigger than periods of tori (the extra dimension sizes) to multidimensional be-
havior 1/r1+d

3+d in opposite limit. In the case of one extra dimensiond = 1, the gravitational potential
is expressed via compact and elegant formula. Obtained formula is applied to an infinitesimally
thin shell, a shell, a sphere and two spheres to show deviations from the Newtonian expressions.
It is shown that the corrections to the gravitational constant in the Cavendish-type experiment can
be within the measurement accuracy of Newton’s gravitational constantGN . It is proposed models
where the test masses are smeared over some (or all) extra dimensions. In 10-dimensional spacetime
with 3 smeared extra dimensions, it is shown that the size of 3rest extra dimensions can be enlarged
up to submillimeter for the case of 1TeV fundamental Planck scaleMPl(10). In the models where all
extra dimensions are smeared, the gravitational potentialexactly coincides with the Newtonian one.
Nevertheless, the hierarchy problem can be solved in these models.
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I. INTRODUCTION

There are two well-known problems which are related to each other. They are the dis-
crepancies in gravitational constant experimental data and the hierarchy problem. Dis-
crepancies (see e.g. Figure 2 in the "CODATA Recommended Values of the Fundamen-
tal Constants: 2006") are usually explained by extreme weakness of gravity. It is very
difficult to measure the Newton’s gravitational constantGN. Certainly, for this reason
geometry of an experimental setup can effect on data. However, it may well be that,
the discrepancies can also be explained (at least partly) byunderlying fundamental the-
ory. Formulas for an effective gravitational constant following from such theory can be
sensitive to the geometry of experiments. For example, if correction to the Newton’s
gravitational potential has the form of Yukawa potential, then the force due to this po-
tential at a given minimum separation per unit test-body mass is least for two spheres
and greatest for two planes (see e.g.[1]). The hierarchy problem - the huge gap between
the electroweak scaleMEW ∼ 103GeV and the Planck scaleMPl(4) = 1.2×1019GeV -
can be also reformulated in the following manner: why is gravity so weak? The small-
ness ofGN is the result of relationGN = M−2

Pl(4)
. The natural explanation was proposed

in [2, 3]: the gravity is strong:GD = M−(2+d)
Pl(D)

∼ M−(2+d)
EW and it happens in (D = 4+d)-

dimensional spacetime. It becomes weak when gravity is "smeared" over large extra
dimensions:GN ∼ GD/Vd whereVd is a volume of internal space. To shed light on both
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of these problems from new standpoint we intend to investigate multidimensional grav-
ity in non-relativistic limit.

II. MULTIDIMENSIONAL GRAVITATIONAL POTENTIALS

It is of interest to generalize the well-known Newton’s gravitational potentialϕ(r3) =
−GNm/r3 (r3 = |r3| is magnitude of a radius vector in three-dimensional space)to mul-
tidimensional case. Clearly, the result depends on topology of investigated models. We
consider models where(D = 3+d)-dimensional spatial part of factorizable geometry is
defined on a product manifoldMD = R

3×T d. R
3 describes three-dimensional flat ex-

ternal (our) space andT d is a torus which corresponds tod-dimensional internal space

with volumeVd. Letb ∼V 1/d
d be a characteristic size of extra dimensions. Then, Gauss’s

flux theorem leads to the following asymptotes for gravitational potential (see e.g. [3]):
ϕ ∼ 1/r3 for r3 >> b and ϕ ∼ 1/r1+d

3+d for r3+d << b wherer3+d is magnitude of a
radius vector in(3+d)-dimensional space.

To get the exact expression forD-dimensional gravitational potential, we start with
the Poisson equation:

△DϕD = SDGDρD(rD) , (1)

whereSD = 2πD/2/Γ(D/2) is a total solid angle (square of(D−1)-dimensional sphere
of a unit radius),GD is a gravitational constant in(D = D +1)-dimensional spacetime
andρD(rD) = mδ (x1)δ (x2)...δ (xD). In the case of topologyRD, Eq. (1) has the follow-
ing solution:

ϕD(rD) = −
GDm

(D−2)rD−2
D

, D ≥ 3. (2)

This is the unique solution of Eq. (1) which satisfies the boundary condition:
lim

rD→+∞
ϕD(rD) = 0. Gravitational constantGD in (1) is normalized in such a way

that the strength of gravitational field (acceleration of a test body) takes the form:
−dϕD/drD = −GDm/rD−1

D .
If topology of space isR3 × T d , then it is natural to impose periodic boundary

conditions in the directions of the extra dimensions:ϕD(r3,ξ1,ξ2, . . . ,ξi, . . . ,ξd) =
ϕD(r3,ξ1,ξ2, . . . ,ξi + ai, . . . ,ξd), i = 1, . . . ,d, whereai denotes a period in the direc-
tion of the extra dimensionξi. Then, Poisson equation has solution (cf. also with [3, 4]):

ϕD(r3,ξ1, ...,ξd) = −
GNm

r3

+∞

∑
k1=−∞

...
+∞

∑
kd=−∞

exp



−2π

(

d

∑
i=1

(

ki

ai

)2
)1/2

r3





× cos

(

2πk1

a1
ξ1

)

...cos

(

2πkd

ad
ξd

)

. (3)

To get this result we, first, use the formulaδ (ξi) = 1
ai

∑+∞
k=−∞ cos

(

2πk
ai

ξi

)

and, second,

put the following relation between gravitational constants in four- andD-dimensional
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spacetimes:
SD

S3
·

GD

∏d
i=1 ai

= GN . (4)

The letter relation provides correct limit when allai → 0. In this limit zero modeski = 0
give the main contribution and we obtainϕD(r3,ξ1, ...,ξd) → −GNm/r3. Eq. (4) was
widely used in the concept of large extra dimensions which gives possibility to solve
the hierarchy problem [2, 3]. It is also convenient to rewrite (4) via fundamental Planck
scales:

SD

S3
·M2

Pl(4) = M2+d
Pl(D)

d

∏
i=1

ai , (5)

where MPl(4) = G−1/2
N = 1.2× 1019GeV and MPl(D) ≡ G−1/(2+d)

D
are fundamental

Planck scales in four andD spacetime dimensions, respectively.
In opposite limit when allai → +∞ the sums in Eq. (3) can be replaced by integrals.

Using the standard integrals (e.g. from [5]) and relation (4), we can easily show that,
for example, in particular casesd = 1,2 we get desire result:ϕD(r3,ξ1, . . . ,ξd) →

−GDm/[(D−2) r1+d
3+d ].

In the case of one extra dimensiond = 1 we can perform summation of series in Eq.
(3). To do it, we can apply the Abel-Plana formula or simply use the tables of series [5].
As a result, we arrive at compact and nice expression:

ϕ4(r3,ξ ) = −
GNm

r3

sinh
(

2πr3
a

)

cosh
(

2πr3
a

)

−cos
(

2πξ
a

) , (6)

wherer3 ∈ [0,+∞) andξ ∈ [0,a]. It is not difficult to verify that this formula has correct
asymptotes whenr3 >> a andr4 << a. Fig. 1 demonstrates the shape of this potential.
Dimensionless variablesη1 ≡ r3/a ∈ [0,+∞) and η2 ≡ ξ/a ∈ [0,1]. With respect to
variableη2, this potential has two minima atη2 = 0,1 and one maximum atη2 = 1/2.
We continue the graph to negative values ofη2 ∈ [−1,1] to show in more detail the form
of minimum atη2 = 0. The potential (6) is finite for any value ofr3 if ξ 6= 0,a and goes
to −∞ as−1/r2

4 if simultaneouslyr3 → 0 andξ → 0,a (see Fig. 2). We would like to
mention that in particular caseξ = 0 formula (6) was also found in [6].

Having at hand formulas (3) and (6), we can apply it for calculation of some elemen-
tary physical problems and compare obtained results with known Newtonian expres-
sions. For a working approximation, it is usually sufficientto summarize in (3) up to the
first Kaluza-Klein modes|ki|= 1(i = 1, . . . ,d). Then, the terms with the biggest periods
ai give the main contributions. If all test bodies are on the same brane (ξi = 0) we obtain:

ϕD(r3,ξ1 = 0, ...,ξd = 0) ≡ ϕD(r3) ≈−
GNm

r3

[

1+α exp
(

−
r3

λ

)]

, (7)

whereα = 2s (1 ≤ s ≤ d) , λ = a/(2π) and s is a number of extra dimensions with
periods of toriai which are equal (or approximately equal) toa = maxai. If a1 = a2 =
. . . = ad = a, thens = d. Thus, the correction to Newton’s potential has the form of
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FIGURE 1. Graph of functionϕ̃(η1,η2) ≡ ϕ4(r3,ξ )/(GNm/a) = −sinh(2πη1)/[η1(cosh(2πη1)−
cos(2πη2))].
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FIGURE 2. Sectionξ = 0 of potential (6). Solid line is̃ϕ(η1,0) =−sinh(2πη1)/[η1(cosh(2πη1)−1)]
which goes to−1/η1 (dotted line) forη1 → +∞ and to−1/(πη2

1) (dashed line) forη1 → 0.

Yukawa potential. It is now customary to interpret tests of gravitational inverse-square
law (ISL) as setting limits on additional Yukawa contribution. The overall diagram of
the experimental constraints can be found in [1] (see Figure5) and we shall use these
data for limitationa for givenα.

III. APPLICATION ( d = 1, ξ = 0)

Now, we apply formula (6) to some particular geometrical configurations. For our
calculations we shall use the case ofξ = 0. It means that test bodies have the same
coordinates in the extra dimension. It takes place e.g. whentest bodies are on the same
brane. Also, to get numerical results we should define the size a of the extra dimension.
If the standard model fields are not localized on the brane, then experiments give the
upper bounda . 10−17cm1. This valuea can be greatly increased if we suppose that
the standard model fields are localized on the brane. In this case, we can obtain the
upper bound fora from the gravitational inverse-square law experimental data depicted
in Figure 5 of paper [1]. As we have shown above,α = 2 for d = 1. For this valueα,

1 Coulomb’s law has been tested for separations down to 10−16cm in e+e− leptonic interactions at high-
energy colliders [1]. Nevertheless, see also the footnote 2below.
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Figure 5 givesλ ≤ 2×10−2cm ⇒ a ≤ 1.3×10−1cm.

Infinitesimally thin shell

Let us consider first an infinitesimally thin shell of massm = 4πR2σ , whereR andσ
are radius and surface density of the shell. Then, gravitational potential of this shell in a
point with radius vectorr3 (from the center of the shell) is

ϕ4(r3) = −
GNσRa

r3
ln







cosh
(

2π(r3+R)
a

)

−1

cosh
(

2π(r3−R)
a

)

−1







. (8)

This formula demonstrates two features of the considered models. Firstly, we see that
inside(r3 < R) of the shell gravitational potential is not a constant. Thus, a test body
undergoes an acceleration in contrast to the Newtonian case(and to Birkhoff’s the-
orem of general relativity in four-dimensional spacetime which states that the metric
inside an empty spherical cavity in the center of a spherically symmetric system is the
Minkowski metric). Secondly, this potential has a logarithmic divergency whenr3 → R:
ϕ4(r3) ≈ −GNm

R

[

1− a
2πR ln(2π|R− r3|/a)

]

where we took into accountR >> a and
|R− r3| << a. For example, in the case 2πR = 10cm and 2π|R− r3| = 10−1a, the de-
viation constitutes 2.3×10−2 and 2.3×10−18 parts of the Newtonian value−GNm/R
for a = 10−1cm anda = 10−17cm, respectively. In principle, the former estimate is not
very small. However, it is very difficult to set an experimentwhich satisfies the condition
|R− r3| << a. If the shell has a finite thickness, then the divergence disappears.

Spherical shell

The gravitational potential of a spherical shell of inner radiusR1 and outer radiusR2
can be written as

ϕ4(r3) = −
GNρa

r3

R2
∫

R1

R ln







cosh
(

2π(r3+R)
a

)

−1

cosh
(

2π(r3−R)
a

)

−1







dR , (9)

whereρ is a constant volume density of the shell:ρ = m/
[

4π
3 (R3

2−R3
1)
]

. It is useful to
present this potential in the form of series. For example, inside(r3 ≤ R1) of the shell it
reads:

ϕ4(r3) = 2GNρ

{

−π
(

R2
2−R2

1

)

+
a2

πr3

+∞

∑
k=1

sinh
(2πk

a r3
)

k2

×

[

(

R+
a

2πk

)

exp

(

−
2πk

a
R

)]R2

R1

}

, (10)
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where we singled out zero modek = 0 which corresponds to the Newtonian limit. It can
be easily seen that this series does not diverge whenr3 → R1. However, acceleration of
a test body diverges when it approaches boundariesR1 andR2 of the shell. It clearly
follows e.g. from the form of the acceleration inside(r3 ≤ R1) of the shell:

−
dϕ4

dr3
=

2GNρa2

πr2
3

+∞

∑
k=1

1
k2

[

−
2πk

a
r3cosh

(

2πk
a

r3

)

+ sinh

(

2πk
a

r3

)][

(

R+
a

2πk

)

exp

(

−
2πk

a
R

)]R2

R1

> 0 (11)

and outside(r3 ≥ R2) of the shell:

−
dϕ4

dr3
= −

GNm

r2
3

−
GNρa3

π2r2
3

+∞

∑
k=1

(

1+ 2πk
a r3

)

k3 exp

(

−
2πk

a
r3

)

[hk(R2)−hk(R1)] < 0,

(12)
where hk(R) = 2πk

a Rcosh(2πk
a R)− sinh(2πk

a R). Divergence of acceleration originates
from the divergence of the series∑+∞

k=11/k and has the form±2GNρa ln 2πε
a . Here,

ε = |R1,2 − r3| and −,+ corresponds tor3 → R1 and r3 → R2, respectively. In the
case of a sphere (R1 = 0 andR2 ≡ R) this divergence can be rewritten in the form
−3GNm

R2
a

2πR ln(2π|R− r3|/a). Similar to the case of the infinitesimally thin shell, this
deviation from the Newtonian acceleration−GNm/R2 is also difficult to observe at
experiments for considered above parameters. Eqs. (11) and(12) show that acceleration
changes the sign from negative outside of the shell to positive inside of the shell (see
Figure (3)). This change happens within the shell.

1 2 3 4 5 6
r3�a

-25

-20

-15

-10

-5

5

10
w�HaGNΡL

FIGURE 3. Graph of accelerationw =−dϕ4/dr3 in dimensionless units (see Eqs. (11) and (12)). Here,
a = 2.5,R1 = 5 andR2 = 10. The dashed lines correspond to radii of the shell. The rightmost line goes to
the Newtonian asymptote−1/r2

3 whenr3 → +∞.
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Gravitational self-energy of a sphere

For a sphere of constant volume densityρ, massm and radiusR, a gravitational self-
energy is

U = 2πρ
∫ R

0
r2
3ϕ4(r3)dr3 (13)

= UN

{

1+15
( a

2πR

)3 +∞

∑
k=1

1
k3

[

2πkR
3a

+
( a

2πkR

)2
Fk

]

}

,

where

Fk =

(

1+
2πkR

a

)

exp

(

−
2πkR

a

)[

sinh

(

2πkR
a

)

−
2πkR

a
cosh

(

2πkR
a

)]

(14)

andUN = −3GNm2/(5R) is gravitational self-energy of a sphere in the Newtonian limit
[7]. In the caseR >> a, the difference△U ≡U −UN reads:

△U ≈ UN
15
8π3

( a
R

)2 2π
3

+∞

∑
k=1

1
k2 = UN

5
24

( a
R

)2
, (15)

where we took into account∑∞
k=11/k2 = π2/6. Therefore, this difference is suppressed

by power law (with respect to ratio betweena and R) but not exponentially as it is
usually expected for Kaluza-Klein modes. Nevertheless, for Sun withR ≈ 7×1010cm
this value is a negligible part ofUN even if a ≈ 10−1cm : △U ≈ 4× 10−25UN where
UN ≈ −2×1048erg [7]. In the case of a neutron star withR ≈ 106cm, the difference is
△U ≈ 2×10−15UN for a ≈ 10−1cm .

Gravitational interaction of two spheres

Energy of gravitational interaction between two spheres ofconstant volume densities
ρ,ρ ′, massesm,m′ and radiiR,R′ on a distancer3 ≥ R+R′ reads

U(r3) = −
GNmm′

r3

{

1+18
( a

2πR

)3( a
2πR′

)3 +∞

∑
k=1

1
k6 exp

(

−
2πk

a
r3

)

hk(R)hk(R
′)

}

.

(16)
The member of the series withk = 1 (first Kaluza-Klein mode) gives the main correction
to the Newtonian expression and acquires the form of Yukawa potential. In this case, for
the force of gravitational interaction between these two spheres we obtain:

−
dU
dr3

≈−
GNmm′

r2
3

{

1+
9
2

( a
2πR

)2( a
2πR′

)2 2πr3

a
exp

[

−
2π
a

(

r3−R−R′
)

]}

. (17)

128

Downloaded 15 Mar 2010 to 188.115.164.149. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



where we made additional natural assumptionR,R′ >> a/(2π). If r−R−R′ ≈ a, then
we get an estimate:

−
dU
dr3

≈−
GNmm′

r2
3

{

1+0.0084
( a

2πR

)2( a
2πR′

)2 2πr3

a

}

. (18)

For example, in the caseR = R′ = 1cm anda/(2π) = 2× 10−2cm the correction is
1.4× 10−7. In the case of the internal space topologyT d the correction term in (18)
acquires a pre-factors which satisfies the condition 1≤ s ≤ d and represents a number
of extra dimensions with periods of the torus which are equal(or approximately equal)
to a = maxai. If all of ai are equal to each other,s = d. Increasing the number of
extra dimensionsd, finally we arrive at the condition when the correction term becomes
big enough to contradict with experimental data. Therefore, in this case we can get a
limitation on a maximal number of extra dimensions for considered models. Certainly,
the models with infinite number of extra dimensions witha = maxai are forbidden.

It is worth of noting that all formulas obtained above can be also applied to the
Coulomb’s law if electromagnetic field is not localized on the brane.

IY. SMEARED EXTRA DIMENSIONS

In what follows, we consider asymmetrical extra dimension model (cf. [8]) with topol-
ogy

MD = R
3×T d−p ×T p , p ≤ d , (19)

where we suppose that(d − p) tori have the same "large" perioda and p tori have
"small" equal periodsb. In this case, the fundamental Planck scale relation (5) reads

SD

S3
·M2

Pl(4) = M2+d
Pl(D)a

d−p bp . (20)

Additionally, we assume that test bodies are uniformly smeared/spreaded over small
extra dimensions. Thus, test bodies have a finite thickness in small extra dimensions
(thick brane approximation). For short, we shall call such small extra dimensions as
"smeared" extra dimensions. Ifp = d then all extra dimensions are smeared.

It is not difficult to show that the gravitational potential does not feel smeared
extra dimensions. We can prove this statement by three different methods. First,
we can directly solve D-dimensional Poisson equation (1) with the periodic
boundary conditions for the extra dimensionsξp+1, . . . ,ξd and the mass density
ρ =

(

m/∏p
i=1 ai

)

δ (r3)δ (ξp+1)...δ (ξd). Second, we can average solutions (3) and
(6) over dimensionsξ1, . . . ,ξp and take into account that

∫ a
0 cos(2πkξ/a)dξ = 0. In

particular case of one extra dimensional, we can also show that

−
GNm
ar3

sinh

(

2πr3

a

)
a
∫

0

[

cosh

(

2πr3

a

)

−cos

(

2πξ
a

)]−1

dξ = −
GNm

r3
. (21)
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Finally, it is clear that in the case of test masses smeared over extra dimensions, the
gravitational field vectorED = −∇DϕD does not have components with respect to
extra dimensions:ED = EDnr3. Thus, applying the Gauss’s flux theorem to the Poisson
equation, we obtain:ED(r3) = −GNm/r2

3 → ϕD(r3) = −GNm/r3. Therefore, all these
3 approaches show that in the case ofp smeared extra dimensions the wave numbers
k1, . . . ,kp disappear from Eq. (3) and we should perform summation only with respect
to kp+1, . . . ,kd .

Effective gravitational constant

As it follows from Eq. (17), in the Yukawa approximation, thegravitational force
between two spheres with massesm1,m2, radii R1,R2 and distancer3 between the
centers of the spheres reads:

F = −
GN(e f f )m1m2

r2
3

, (22)

where

GN(e f f )(r3) ≈ GN

{

1+
9
2

s

(

a
2πR1

)2( a
2πR2

)2 2πr3

a
exp

[

−
2π
a

(r3−R1−R2)

]

}

≡ GN(1+δG) (23)

is an effective gravitational constant. Here, the pre-factor s appeared due to general-
ization of formula (17) to the case of the internal space topology T d. If we consider a
model withp smeared extra dimensions,s in Eq. (23) is replaced by(d − p). Now, we
want to evaluate the correctionsδG to the Newton’s gravitational constant and to esti-
mate their possible influence on the experimental data. As itfollows from Figure 2 in the
CODATA 2006, the most precise values ofGN were obtained in the University Wash-
ington and the University Zürich experiments [9, 10]. They are GN/10−11m3kg−1s−2 =
6.674215±0.000092, and 6.674252±0.000124, respectively. Let us consider two par-
ticular examples:(D = 5)-dimensional model withd = 1, p = 0 →α = 2 and(D = 10)-
dimensional model withd = 6, p = 3 → α = 6. For these values ofα, Figure 5
in [1] gives the upper limits forλ = a/(2π) correspondinglyλ ≈ 2× 10−2cm and
λ ≈ 1.3×10−2cm. To calculateδG, we take parameters of the Moscow experiment [11]:
R1 ≈ 0.087cm for a platinum ball with the massm1 = 59.25×10−3g, R2 ≈ 0.206cm for
a tungsten ball with the massm2 = 706×10−3g andr3 = 0.3773cm. For both of these
models we obtainδG ≈ 0.0006247 andδG ≈ 0.0000532, respectively. Both of these val-
ues are very close to the measurement accuracy ofGN in [9, 10]. So, if the same accuracy
can be achieved in the Moscow-type experiments, then, changing values ofR1,2 andr3,
we can reveal extra dimensions or obtain experimental limitations on considered models.
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Model: D = 10 with d = 6, p = 3

Let us consider in more detail(D = 10)-dimensional model with 3 smeared di-
mensions. Here, we have very symmetrical with respect to a number of spacial di-
mensions structure: 3 our external dimensions, 3 large extra dimensions with peri-
odsa and three small smeared extra dimensions with periodsb. For b we put a lim-
itation: b ≤ bmax = 10−17cm which is usually taken for thick brane approximation2.
As we mentioned above, in the case ofα = 6, for a we should take a limitation
a ≤ amax = 8.2×10−2cm. To solve the hierarchy problem, the multidimensional Planck
scale is usually considered from 1TeV up to approximately 130 TeV (see e.g. [8, 12]).
To make some estimates, we takeMmin = 1TeV. MPl(10) . Mmax = 50TeV. Thus, as it
follows from Eq. (20), the allowed values ofa andb should satisfy inequalities:

S9

S3

M2
Pl(4)

M8
max

≤ a3b3 ≤
S9

S3

M2
Pl(4)

M8
min

(24)

Counting all limitations, we find allowed region fora and b (shadow area in Fig.
(4)). In this trapezium, the upper horizontal and right vertical lines are the decimal
logarithms ofamax andbmax, respectively. The right and left inclined lines correspond to
MPl(10) = 1TeV andMPl(10) = 50TeV, respectively. To illustrate this picture, we consider
two points A and B on the lineMPl(10) = 1TeV. Here, we havea = 0.82× 10−1cm,
b = 10−21.5cm for A and a = 10−4cm, b = 10−18.6cm for B. These values of large
extra dimensionsa are much bigger than in the standard approacha ∼ 10(32/6)−17cm
≈ 10−11.7cm [2, 3].

-24 -22 -20 -18
lg b

-10

-8

-6

-4

-2

lg a

A

B

FIGURE 4. Allowed region (shadow area) for periods of large (a) and smeared (b) dimensions in the
modelD = 10 with d = 6, p = 3.

Model: D-arbitrary and d = p

In this model, the test masses are smeared over all extra dimensions. Therefore, in
non-relativistic limit, there is no deviation from the Newton’s law at all. It worth of

2 This limitation follows from the electrical inverse-square law experiments. However, in the case of the
smeared extra dimensions, the ISL is not sensitive to these dimensions. Thus, it gives us a possibility to
relax considerably this bound.
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noting, that this result does not depend on the size of smeared extra dimensions. The
ISL experiments will not show any deviation from the Newton’s law without regard to
the sizeb (see also Eq. (23) wheres = d− p = 0). Similar reasoning are also applicable to
Coulomb’s law. It is necessary to suggest other experimentswhich can reveal the multi-
dimensionality of our spacetime. Nevertheless, we can solve the hierarchy problem in
this model because Eq. (20) (whered = p) still works. For example, in the case of
bosonic string dimensionD = 26 we findMPl(26) ≈ 31TeV forb = 10−17cm. In the case
D = 10 we getMPl(10) ≈ 30TeV forb = 5.59×10−14cm.

Y. CONCLUSIONS

We have considered generalization of the Newton’s potential to the case of extra di-
mensions where multidimensional space has topologyMD = R

3×T d . We obtained the
exact solution which describes smooth transition from the Newtonian behavior 1/r3 for
distances bigger than periods of tori (the extra dimension sizes) to multidimensional be-
havior 1/rD−2

D in opposite limit. In the case of one extra dimension, the gravitational
potential is expressed via compact and elegant formula (6).Then, this formula was ap-
plied to an infinitesimally thin shell, a shell, a sphere and two spheres to get gravita-
tional potentials and acceleration of a test body for these configurations and to compare
obtained results with the known Newtonian formulas. In somecases, obtained poten-
tials and accelerations have logarithmic divergences nearthe boundaries of shells and
spheres. Additionally, in contrast to the Newtonian case, test bodies accelerate inside of
shells. For each considered problems, we found deviations from the known Newtonian
expressions.

As an Yukawa potential approximation, it was shown that the corrections to the
gravitational constant in the Cavendish-type experiment can be within the measurement
accuracy ofGN . It may reveal the extra dimensions or provide experimentallimitations
on parameters of multidimensional models.

Then, we proposed models where test masses can be smeared over extra dimensions.
In this case, the gravitational potential does not feel smeared dimensions. The number of
smeared dimensions can be equal or less than the total numberof the extra dimensions.
Such approach opens new remarkable possibilities.

For example in the caseD = 10 with 3 large and 3 smeared extra dimensions and
MPl(10) = 1TeV, the large extra dimensions can be as big as the upper limit established
by the ISL experiments forα = 6, i.e.a ≈ 0.82×10−1cm. This value ofa is in many
orders of magnitude bigger than the rough estimatea ≈ 10−11.7cm obtained from the
fundamental Planck scale relation of the form of Eq. (5).

The limiting case where all extra dimensions are smeared is another interesting
example. Here, there is no deviation from the Newton’s law atall. Nevertheless, the
hierarchy problem can be solved in this model.
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