Р. Е. Хома¹-²

Одесский национальный университет имени И.И. Мечникова, ул. Пропиская 2 Одесса Украина 65082

Дворянская, 2, Одесса, Украина, 65082 ²Физико-химический институт защиты окружающей среды и человека МОН Украины и НАН Украины, ул. Преображенская, 3, Одесса, Украина, 65082 e-mail: rek@onu.edu.ua

ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА N-ПРОИЗВОДНЫХ АМИНОМЕТАНСУЛЬФОКИСЛОТЫ

На основании рН-метрических исследований определены концентрационные зависимости силы N-производных аминометансульфокислоты. Установлено, что по силе сульфокислоты располагаются в ряд $(CH_3)_3CNHCH_2SO_3H > H0CH_2CH_2NHCH_2SO_3H > C_6H_5CH_2NHCH_2SO_3H > (H0CH_2)_3CNHCH_2SO_3H > NH_2CH_2SO_3H > C_6H_5NHCH_2SO_3H$. Проведена оценка границ рН буферного действия их растворов и их буферные емкости.

Ключевые слова: N-производные аминометансульфокислоты, буферные растворы, константа ионизации.

В биологических исследованиях для регулирования рН среды широкое применение нашли буферные растворы Н. Гуда [1,2]. В основном, это системы на основе соединений цвиттерионного строения, в частности аминоалкансульфокислоты, их производные и соли [1-6]. Буферные свойства растворов авторы [4-7] характеризуют, используя электрохимические методы.

Ранее для водных растворов аминометансульфокислоты (AMCK) были установлены температурная и концентрационная зависимости константы ионизации AMCK, а также температурная - предельной молярной электропроводности ее водных растворов [7]. Значения констант ионизации в литературе приведены лишь для AMCK ($pK_a = 5.75 \div 6.01$) [4, 8] и некоторых ее N-производных ($pK_a = 3.9 \div 7.9$) [6]. Авторами [9, 10] по оригинальной методике синтезирован ряд новых N-производных AMCK (R-AMCK) - перспективных компонентов буферных растворов Н.Гуда:

$$3mRNH_{2} + 3(CH_{2}O)_{m} \xrightarrow{H_{2}O} m \xrightarrow{R} N$$

$$+3mH_{2}O \qquad (1)$$

$$R$$

63

где R - HOCH $_2$ CH $_2$ (I), (HOCH $_2$) $_3$ C (II), (CH $_3$) $_3$ C (III), C $_6$ H $_5$ CH $_2$ (IV) и С $_6$ H $_5$ (V). По данным PCA, в случае с Tris выделен продукт гидролиза целевого соединения - гидроксиметансульфонат *трис*(оксиметил)аминометана, как и в случае [6]. С целью установления рК $_a$, границы рН буферного действия и оценки буферной емкости растворов R-AMCK (I) - (V) были проведены рН-метрическое исследование их поведения при 293 К.

Экспериментальная часть

В исследованиях использовали М-(гидроксиэтил)аминосульфокислоту (I), гидроксиметансульфонат mpuc(оксиметил)аминометана (II), N- $\{mpem-$ бутил)аминосульфокислоту (III), N-бензиламинометансульфокислоту (IV) и N-фениламинометансульфокислоту (V), синтезированные по методике [9, 10]. Дополнительную очистку дистиллированной воды от органических примесей, растворенных кислорода и оксида углерода (IV), а также ионов NH $^+$ 4 и CI проводили по методике [11].

Потенциометрические измерения проводили с помощью pH-метра марки pH-121. В качестве электродов использовали стеклянный марки ЭСЛ 43-07 и хлорсеребряный марки ЭВЛ IM3.

Для установления pK_a соединений I - V было проведено pH-метрическое титрование их 0,001 M водных растворов 0,01 M водным раствором NaOH (рис. 1) при 293 K.

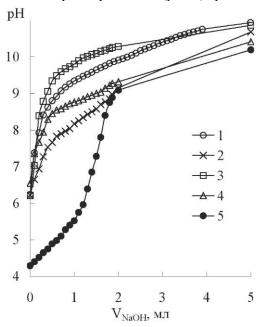


Рис. 1. pH-метрические кривые титрования водных растворов N-производных АМСК водным раствором NaOH. $V_{R-AMCK}^0=20$ мл $C_{R-AMCK}^0=0,001$ М; $C_{NaOH}^0=0,01$ М. R-AMCK: I-1;II-2;III-3;IV-4;V-5.

На основании экспериментальных данных, с использованием математической модели, учитывающей закон действующих масс (3), (4), материальный баланс по R-AMCK (5) и условие электронейтральности (6), рассчитан ион-молекулярный состав водных растворов R-AMCK (например, рис. 2).

$$R\stackrel{+}{N}H_{,}CH_{,}SO_{,}O\stackrel{\rightarrow}{\subset}RNHCH_{,}-SO_{,}O^{-}+H^{+}$$
 (3)

$$H_2O \stackrel{\rightarrow}{\leftarrow} H^+ + OH^-$$
 (4)

$$Q_{RAMCK} = [R_{N}^{+} H_{2}CH_{2}SO_{2}O^{-}] + [RNHCH_{2}SO_{2}O^{-}]$$
 (5)

$$[RNHCH,SO,O^{-}] + [OH^{-}] = [H^{+}] + [Na^{+}]$$
 (6)

Согласно полученным данным (рис. 2), N-производные AMCK в водных растворах существуют при $C_{\text{Na0H}}/Q_{R_\text{AMCK}} < 0.5$ преимущественно в виде цвиттериона (кривая 2). Содержание аниона RNHCH $_2$ SO $_2$ O" (кривая 1) прямо пропорционально отношению $C_{\text{Na0H}}/Q_{R_\text{AMCK}}$ согласно уравнению (7), параметры которого представлены в табл. 1.

$$N_{l} = A_{l} \cdot C_{NaOH}/Q_{R-AMCK}$$
 (7)

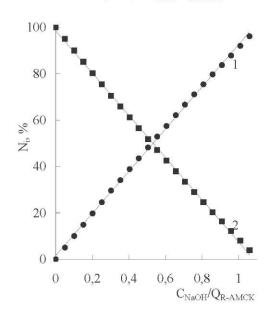


Рис. 2. Соотношение различных форм компонентов в системе $HO(CH_2)_2NHCH_2SO_3H-NaOH-H_2O$ в зависимости от C_{NaOH}/Q_{R-AMCK} . N_i — мольная доля:

$$N_1 = \frac{[HO(CH_2)_2 NHCH_2 SO_2 O^-]}{Q_{R-AMCK}}; N_2 = \frac{[HO(CH_2)_2 NH_2 CH_2 SO_2 O^-]}{Q_{R-AMCK}}$$

Таблица 1 Значения параметров в уравнении (7) (r² – коэффициент корреляции; n – количество точек)

R-AMCK	$A_{\mathbf{i}}$	\mathbf{r}^2	N
I	92,95	0,998	21
II	99,25	0,999	21
III	82,08	0,994	21
IV	98,32	0,999	21
V	99,99	0,998	21

Используя полученные данные, были рассчитаны константы ионизации N-производных АМСК (8). Зависимости pK_a (9) от C_{Na0H}/Q_{R_AMCK} представлены рис. 3.

$$K_{a} = \frac{[RNHCH_{2}SO_{2}O^{-}] \cdot [H^{+}]}{[RNH_{2}CH_{2}SO_{2}O^{-}]}$$
(8)

Рис. 3. Концентрационные зависимости рК, в системах R-AMCK - NaOH - H,O. R-AMCK: I-1; II-2; III-3; IV-4; V-5.

Ввиду того, что зависимости р
$$K_a$$
 = f ($C_{\text{Na0H}}/Q_{\text{R_AMCK}}$) имеют различный характер, для сравнения силы исследованных N-производных АМСК выбраны значения их
$$pK_a$$
 в точках при
$$\frac{\left[RNHCH_2SO_2O^-\right]}{\left[RN^+H_2CH_2SO_2O^-\right]} = 1 \; (pK_{\text{R-AMCR}} \; \text{в табл. 2})$$

C повышением силы азотсодержащих оснований (pKa) сила соответствующих им кислот понижается (pKR- AMCK). Указанная зависимость описывается уравнением (10)с достоверностью аппроксимацииг².

$$pK_{R-AMCK}=2,19+0,73 pKa;$$
 $r^2=0,9842$ (10)

Сопоставляяданныетабл. 1 и2, необходимо отметить, что значения $A_{,}$ вуравнении (7) изменяются антибатно значениям р $H_{1/2}$ Зона эффективного буферного действия

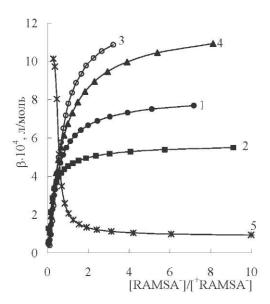
раствора (pH_{буф}) лежит в области pH, при которой
$$\frac{1}{10} \leq \frac{[RNHCH_2SO_2O^-]}{[RNH_2CH_2SO_2O^-]} \leq \frac{10}{1} \ [12]$$

Таблица 2 Кислотно-основные характеристики азотсодержащих оснований и соответствующих им аминометансульфокислот

Основание	pK _a	Сульфокислота	$pK_{_{R-AMCK}}$	$pH_{_{\bar{0}y\Phi}}$
NH ₃	4,76 [13]	AMCK	5,75* [4, 8]	
HOCH ₂ CH ₂ NH ₂	9,20 [14]	I	9,36	7,83 – 9,91
(HOCH ₂) ₃ CNH ₂	8,30 [15]	П	8,16	6,94 – 8,85
(CH ₃) ₃ CNH ₂	10,59 [14]	Ш	9,96	9,06 – 10,29
C ₆ H ₅ CH ₂ NH ₂	9,34 [14]	IV	8,76	7,66 – 9,25
$C_6H_5NH_2$	4,58 [14]	V	5,51	4,52 – 10,19

^{*} значение для термодинамической константы. Буферная емкость раствора (Р)

$$\beta = \frac{dC}{dpH} \tag{11}$$


где dC - число молей добавленного основания (OH^-), которое вызвало численно равное увеличение концентрации основания ($RNHCH_2SO_2O$) за счет присутствующего в растворе сопряженной кислоты ($RNH_2CH_2SO_2O$), согласно:

$$RN^{+}H2CH2S020^{-} + OH^{-} \rightarrow RNHCH_{2}SO_{2}O^{-} + H_{2}O$$
(12)

Согласно данным, представленным на рис. 4, с ростом соотношения

а V - уменьшается.

R-AMCK.

Таким образом, определены концентрационные зависимости силы N-производных АМСК, границы рН буферного действия их растворов, а также установлены их буферные емкости.

СПИСОК ЛИТЕРАТУРЫ

- 1. GoodN.E., Winget G.D., Winter W., Connolly T.N., Izawa S., Singh R.M.M. Hydrogen Ion Buffers for Bifologi- cal Research II Biochemistry. 1966. Vol 5, No 2 P. 467-477.
- 2. GoodN.E., Izawa S. Hydrogen ion buffers II Methods Enzymol. 1972. Vol. 24. P. 53-68.
- 3. Grady J.K., ChasteenN.D., HarrisD.C. Radicals from "Good's" Buffers //Analyt. Biochem. -1988. -No 173. P. 111-115.
- 4. Benoit R.L., BouletD., Frechette M. Solvent effect on the solution, ionization, and structure of aminosulfonic acid II Can. J. Chem. 1988. V.66. P. 3038-3043.
- Yu Q., Kandegedara A., Xu Y, Rorabacher D.B. Avoiding Interferences from Good's Buffers: A Contiguous Series of Noncomplexing Tertiary Amine Buffers Covering the Entire Range of pH 3-11// Analyt. Biochem. - 1997. - No 253.-P. 50-56.
- Long R.D., Milliard Jr. N.R, Chhatre S.A., Timofeeva T.V., YakovenkoA.A., Dei D.K., Mensah E.A. Comparison of zwitterionic N-alkylaminomethanesulfonic acids to related compounds in the Good buffer series II Beilstein Journal of Organic Chemistry. -2010. - Vol. 6, No 31. doi:10.3762/bjoc.6.31
- Хома Р.Е. Электрохимические свойства системы аминометансульфокислота вода ІІ Вестник ОНУ. Х.и- мия- 2013.-Т. 18,№3.-С. 89-95.
- 8. BickertonJ., MacNabJ.I., Skinner HA., PilcherG. Enthalpies of solution of some aromatic sulphonic acids and of some aminosulphonic acids II Thermochimica Acta. 1993. No 222. P. 69-77.
- 9. Патент України на корисну модель UA 06510 МПК С07С 309/00, 309/15 Спосіб одержання N-похідних амінометансульфонової кислоти /Хома Р.Є., Еннан А.А., Короєва Л.В., Лаврека О.О., Гельмболь∂т В.О. Заявл. 29.05.2012; Опубл. 26.11.2012, Бюл. № 22 2012.

- 10. *ХомаР.Е., ГельмбольдтВ.О., Шишкин О.В., БаумерВ.Н., КороеваЛ.В.* "Метод синтеза, кристаллическая структура и спектральные характеристики ^(гидроксиэтил)аминометансульфокислоты" // Журн. общ. химии. 2013. Т. 83, № 5. С. 834.836
- 11. Корякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. 407 с.
- 12. Harvey D.T. Modern analytical chemistry. 2000. P. 167.
- 13. Гороновский И.Т., НазаренкоЮ.П., Некряч Е.Ф. Краткий справочник химика. К.: Наукова думка, 1974. 991 с.
- 14. Hall H.K., Jr. Correlation of the Base Strengths of Amines // J. A.m. Chem. Soc. 1957. Vol. 79, No 20. P. 5441-5444.
- El-Harakany A.A., AbdelHalimaF.M., BarakatA.O. Dissociation constants and related thermodynamic quantities of the protonated acid form of tris-(hydroxymethyl)-aminomethane in mixtures of 2-methoxyethanol and water at different temperatures. // J. Electroanal. Chem. - 1984. - Vol. 162, No 1-2. - P. 285-305. D01:10.1016/ S0022-0728(84)80171-0.
- 16. Гуляницкий А. Реакции кислот и оснований в аналитической химии. М.: Мир, 1975. 240 с.

Стаття надійшла до редакції 30.10.13

Р. €. Хома^{1,2}

Одеський національнийуніверситет імені І.І. Мечникова, вул. Дворянська, 2, Одеса, 65082;

e-mail: rek@onu.edu.ua

²Фізико-хімічний інститут захисту навколишнього середовища і людини МОН України та НАН України, вул. Преображенська, 3, Одеса, 65082

ЕЛЕКТРОХІМІЧНІ ВЛАСТИВОСТІ N-ПОХІДНИХ АМІНОМЕТАНСУЛЬФОКИСЛОТИ

Резюме

На основі рН-метричних досліджень визначені концентраційні залежності сили N-похідних амінометансульфокислоти. Встановлено, що за силою сульфокислоти розташовуються в ряд $(CH_3)_3CNHCH_2S0_3H > H0CH_2CH_2NHCH_2S0_3H > C_6H_5CH_2N-HCH_2S0_3H > (H0CH_2)_3CNHCH_2S0_3H > NH_2CH_2S0_3H > C_6H_5NHCH_2S0_3H$. Проведена оцінка границь рН буферної дії їх розчинів та їх буферні ємності.

Ключові слова- N-похідні амінометансульфокислоти, буферні розчини, константа іонізації.

R. E. Khoma^{1, 2}

'Odessa I.I. Mechnikov National University, Dvoryankaya str., 2, Odessa, 65082, Ukraine; email: rek@onu.edu.ua
²Physico-Chemical Institute of Environment and Human Protection,

²Physico-Chemical Institute of Environment and Human Protection, Preobrazhenskaya str., 3, Odessa, 65082, Ukraine

ELECTROCHEMICAL PROPERTIES OF AMINOMETHANESULPHONIC ACIDS N-DERIVATIVES

Summary

On the basis of the pH-metric studies the concentration-dependence forces N-derivatives aminomethanesulphonic acids have been determinated. It is found sulphonic acids arranged in series (CH₃)₃CNHCH₂S0₃H > H0CH₂CH₂NHCH₂S0₃H > C₆H₅CH₂N-HCH₂S0₃H > (H0CH₂)₃CNHCH₂S0₃H > NH₂CH₂S0₃H > C₆H₅NHCH₂S0₃H... The estimation of Hie bound aries of their pH buffering solutions and buffers capacity has been dene.

Keywords: aminomethanesulphonic acids N-derivatives, buffers, ionization constant.