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We investigate time-dependent solutions (Sp-brane solutions) for product manifolds consisting of
factor spaces where only one of them is of a non-Ricci-flat type. Our model contains a minimally
coupled free scalar field and form field (flux) as matter sources. We discuss the possibility of generating
late-time acceleration of the Universe. For these models, we investigate the variation with time of
the effective four-dimensional fundamental ‘constants’. We show that experimental bounds for the
fundamental constant variations apply strong restrictions to the considered models.
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1. Introduction

Recent observational data provide strong evidence in favour of the accelerating expansion of
our Universe which began approximately at red shift z ≈ 1 and continues until the present
time. The explanation of this acceleration is one of the main challenges of modern cosmology.
Among a number of attempts, the models originating from fundamental theories (e.g. string or
M-theory) are of the most interest. For example, it was shown that some space-like brane
(Sp brane) solutions have stages of accelerating expansion [1–9]. The topology of these
models represents a product manifold which consists of a number (usually two) factor spaces
that behave dynamically with time. One of the factor spaces (Sp brane) corresponds to the
external (our) space which undergoes the stage of accelerating expansion.Another factor space
corresponds to the dynamic internal space. It is well known that the dynamics of internal spaces
results in variations (dynamic behaviour) in the fundamental ‘constants’ of an effective 4D
theory. (As we analyse the model in the Einstein frame, we consider only variations in the
fine-structure ‘constant’ which is inversely proportional to the volume of the internal space.)
However, there are strong experimental bounds for the variations in the fundamental constants
(see [10] and references therein). Thus, the dynamic behaviour of the internal space should
be slow enough to satisfy these restrictions.
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In the present paper, we investigate the Sp brane solution with flux (form field) and a
minimally coupled free scalar field as matter sources. Here, the external space is a Ricci
flat and the internal space may have any sign of curvature: spherical, hyperbolic or Ricci
flat. We analyse the dynamic behaviour of this model, looking for accelerating stages for the
external space. Then, we check whether these solutions do satisfy the experimental bounds
for variations in the fine-structure constant or not. We show that the external space has stages
of accelerating expansion irrespective of the sign of the internal space curvature. However,
variations in the fine-structure constant do not satisfy the experimental bounds.

2. General set-up

We consider a cosmological model with the factorizable metric

g = �2
[−dt2 + a2

0(τ )g(0)
] + a2

1(τ )g(1) (1)

defined on the manifold with the product topology M = R × Rd0 × Md1 , where Rd0 is the
d0-dimensional Ricci-flat external (our) space with the metric g(0) and the scale factor a0

and where g(1) and a1 are the metric and the scale factor, respectively, for the internal space
Md1 . The internal space is an Einstein space with curvature R1 = kd1(d1 − 1), k = −1, 0, 1.
The total number of dimensions is D = 1 + d1 + d0. The metric (1) is a metric in the
synchronous time gauge in the Einstein frame, where �(τ) = a

−d1/(d0−1)

1 .
The action for the considered model is

S = 1

2κ2

∫
M

dDx (|g|)1/2

(
R[g] − gMN∂Mϕ∂Nϕ − 1

2 × d1!F
2
[d1]

)
, (2)

where ϕ is a free minimally coupled homogenous scalar field and F[d1] is the d1 form-field
strength which is taken as F[d1] = b vol

[
Md1

] → F 2
[d1] = b2d1!a−2d1

1 . Minimizing this action,
we obtain the following solution (the general method for this kind of model was described in
full in [11–14]):

a0(τ ) =
(

eq2v
0

e−(q2/q1)v
1
)d1/[(d0−1)(d1−1)]

, (3)

a1(τ ) =
(

eq2v
0

e−q1q2v
1
)1/d1−1

, (4)

ϕ(τ) = p2τ, (5)

where

v0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−1
2

{
ln

[(
2ε

R1

)1/2
]

− ln
{
cosh

[
(q22ε)1/2 τ

]}}
, R1 > 0,

q−1
2

{
ln

[(
2ε

|R1|
)1/2

]
− ln

{
sinh

[
(q22ε)1/2τ

]}}
, R1 < 0,

(2ε)1/2τ, R1 = 0, p0 = ±(2ε)1/2,

(6)

v1 = (q1q2)
−1

(
ln

∣∣∣∣p1

b

∣∣∣∣ − ln
{
cosh

[
q1q2p

1(τ − τ0)
]})

.

Here, q2 = ((d1 − 1)/d1)
1/2, q1 = (d0d1/(D − 2))1/2, τ0, ε, p

1 and p2 are the constants of
integration with the following constraint: 2ε = (p1)2 + (p2)2. This solution is obtained in the
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harmonic time gauge. The relation between the harmonic time τ and synchronous time t is
dt = f (τ)dτ , where f (τ) = a

d0
0 .

In what follows, to investigate the accelerating behaviour of the external space as well as
the variations in the fine-structure constant, we shall need the deceleration parameter for the
external space given by

−q0 = 1

a0(t)

d2a0(t)

dt2

= 1

f (τ)2a0(τ )

(
d2a0(τ )

dτ 2
− 1

f (τ)

df (τ)

dτ

da0(τ )

dτ

)

= 1

f (τ)2q2(d1 − 1)

[(
v̈0 − 1

q1
v̈1

)
− 1

q2
2

(
v̇0 − 1

q1
v̇1

)2
]

(7)

and the Hubble parameters for both factor spaces given by

Hi = 1

ai(t)

dai(t)

dt
= 1

f (τ)ai(τ )

dai(τ )

dτ
, i = 0, 1. (8)

As we mentioned above, the effective 4D fine-structure constant is inversely proportional to
the volume of the internal space: α ∝ V −1

1 ∝ a
−d1
1 . There are strong constraints on α̇/α [10].

For our calculation we take |α̇/α| � 10−15 year−1, which follows from observations of the
spectra of quasars. So, we can write the following estimate:∣∣∣∣ α̇α

∣∣∣∣ =
∣∣∣∣V1

V1

∣∣∣∣ = |d1H1| � 10−15 year−1. (9)

Combining this with the accepted value for the current Hubble rate H0 = ȧ0/a0 ≈
10−10 year−1 leads to ∣∣∣∣H1

H0

∣∣∣∣ =
∣∣∣∣d0 − 1

d1

v̇0 − q1v̇
1

v̇0 − q−1
1 v̇1

∣∣∣∣ � 10−5. (10)

Let us now test solutions (3)–(6) for different signs of the curvature of the internal space.

3. Spherical internal space

First, we consider the case with spherical internal space (R1 > 0). From equations (7) and (8)
we obtain the conditions of the expansion and acceleration of the external space respectively:

−(2ε)1/2 tanh
[
q2(2ε)1/2τ

] + 1

q1
p1 tanh[q1q2p

1(τ − τ0)] > 0 (11)

and

− 1

d0 − 1
2ε tanh2[q2(2ε)1/2τ ] −

(
1 + 1

q2
1q2

2

)
(p1)2 tanh2[q1q2p

1(τ − τ0)] − (p2)2

+ 2

q1q
2
2

p1(2ε)1/2 tanh[q2(2ε)1/2τ ] tanh[q1q2p
1(τ1 − τ0)] > 0. (12)

Simple analysis of these conditions shows that the accelerating expansion of the external space
takes place for τ0 < 0 and for the corresponding choice of the range of values p2. Here, the
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stage of expansion is split into three successive periods: deceleration, acceleration and again
deceleration. Then, the decelerating stage of contraction follows the stage of expansion.

The ratio of Hubble parameters (10) for this particular model is

H1

H0
= d0 − 1

d1

−(2ε)1/2 tanh[q2(2ε)1/2τ ] + q1p
1 tanh[q1q2p

1(τ − τ0)]
−(2ε)1/2 tanh[q2(2ε)1/2τ ] + q−1

1 p1 tanh[q1q2p1(τ − τ0)]
≈ 1. (13)

It is clear that this model does not satisfy the constraint (10) with the exception of a short
period near τ1 where

(2ε)1/2 tanh[q2(2ε)1/2τ1] = q1p
1 tanh[q1q2p

1(τ1 − τ0)].

4. Hyperbolic internal space

Now, we consider the case with hyperbolic internal space (R1 < 0). We shall analyse the
behaviour of the model for τ < 0, because at the point τ = 0 the function v0(τ ) is divergent.
This choice of the range of τ does not affect the results of our consideration because the
dynamic pictures for both τ < 0 and τ > 0 are equivalent.

The conditions of the expansion and acceleration of the external space are

−(2ε)1/2 coth[q2(2ε)1/2τ ] + 1

q1
p1 tanh[q1q2p

1(τ − τ0)] > 0 (14)

and

− 1

d0 − 1
2ε coth2[q2(2ε)1/2τ ] −

(
1 + 1

q2
1q2

2

)
(p1)2 tanh2[q1q2p

1(τ − τ0)] − (p2)2

+ 2

q1q
2
2

p1(2ε)1/2 coth[q2(2ε)1/2τ ] tanh[q1q2p
1(τ − τ0)] > 0, (15)

respectively. From these inequalities it follows that the external space has a stage of accelerating
expansion for an arbitrary sign of τ0 and for a proper choice of the range of the parameter p2.

The ratio (10) of the Hubble parameters in this case is

H0

H1
= d0 − 1

d1

−(2ε)1/2 coth[q2(2ε)1/2τ ] + q1p
1 tanh[q1q2p

1(τ − τ0)]
−(2ε)1/2 coth[q2(2ε)1/2τ ] + q−1

1 p1 tanh[q1q2p1(τ − τ0)]
≈ 1. (16)

As we can see, the model with the accelerating Ricci-flat external space and hyperbolic internal
space cannot satisfy the experimental bounds (10) with the exception of a short period near
the point τ1, where

(2ε)1/2 coth[q2(2ε)1/2τ1] = q1p
1 tanh[q1q2p

1(τ1 − τ0)].



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
5 

6 
D

ec
em

be
r 2

00
7 

Sp branes: integrable multidimensional cosmologies 445

5. Ricci-flat internal space

Let us now investigate the case of the Ricci-flat internal space R1 = 0. It can be easily seen
that in this case the condition of the expansion of the external space given by

(2ε)1/2 + 1

q1
p1 tanh[q1q2p

1(τ1 − τ0)] > 0 (17)

is satisfied for an arbitrary value of τ . For the acceleration condition we have

−
(

1 + 1

q2
1q2

2

) (
p1

(2ε)1/2

)2

tanh2[q1q2p
1(τ1 − τ0)]

− 2

q1q
2
2

p1

(2ε)1/2
tanh[q1q2p

1(τ1 − τ0)] +
[(

p1

(2ε)1/2

)2

− 1

q2
2

]
> 0. (18)

On the left-hand side of this inequality we have a quadratic polynomial with respect to tanh
(with a negative sign of the higher-degree term). Obviously, this polynomial can have positive
values only if its determinant

D = 4
(p1)2

2ε

[
(p1)2

2ε

(
1 + 1

q2
1q2

2

)
− 1

q2
2

]
(19)

is also positive. Thus, we arrive at the following condition for the acceleration:

(p1)2

2ε
>

d0d1

d0d1 + d1 − 1
. (20)

Keeping in mind that 2ε = (p1)2 + (p2)2, we can easily obtain from this expression the range
of p2 which allows acceleration of the external space.

However, analysing the fine-structure constant variations, we obtain

H0

H1
= d0 − 1

d1

(2ε)1/2 − q1p
1 tanh[q1q2p

1(τ1 − τ0)]
(2ε)1/2 − q−1

1 p1 tanh[q1q2p1(τ1 − τ0)]
≈ 1, (21)

which clearly shows that the experimental bounds are not satisfied in this model. These
constraints hold true only about a point τ1 satisfying the equation

(2ε)1/2 = q1p
1 tanh[q1q2p

1(τ1 − τ0)].
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