Вісник ОНУ

УДК 542.924:541.127:546.26

Т. Л. Ракитская, А. С. Труба, С. Э. Самбурский, Л. В. Короева Одесский национальный университет им. И. И. Мечникова, кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65026, Украина

СОСТОЯНИЕ ЗАКРЕПЛЕННОГО НА ОКСИДНЫХ НОСИТЕЛЯХ ГЕКСАМЕТИЛЕНТЕТРАМИНА И ЕГО КОМПЛЕКСОВ С Сu(II), Co(II) И Mn(II)

Методом ИК-спектроскопии и ЭСДО получены спектральные характеристики ГМТА, воздушно-сухих образцов SiO₂ и Al₂O₃, а также закрепленных на них ГМТА и его комплексов с медью(II), кобальтом(II) и марганцем(II). Показано, что ГМТА, а также его комплексы с Cu(II), Co(II) и Mn(II) взаимодействуют с OH-группой оксидных носителей через молекулу воды.

Ключевые слова: спектральные характеристики, гексаметилентетрамин, комплексы, носители.

Нами впервые показано, что закрепленный на оксидных носителях (SiO₂, Al₂O₃) ГМТА и его комплексы с хлоридами Cu(II), Co(II) и Mn(II) эффективно разлагают озон. Однако из-за отсутствия информации о характере связи и механизме формирования поверхностных соединений в сложных системах ГМТА/SiO₂, ГМТА/Al₂O₃ и MCl₂/ГМТА/SiO₂ затрудняется интерпретация данных по реакционной способности указанных систем при разложении озона.

Целью настоящей работы является установление состояния закрепленного на SiO_2 и Al_2O_3 гексаметилентетрамина и его комплексов с Cu(II), Co(II) и Mn(II).

Методика эксперимента

Закрепление ГМТА на оксидных носителях. В качестве носителей использовали SiO₂ (КСМГ) (S_{ya} = 360 м²/г, d₃ = 0,5–1,0 мм, pH водной вытяжки 4,5) и Al₂O₃ (S_{ya} = 120 м²/г, d₃ = 0,5-2,0 мм, pH водной вытяжки 6,8). Силикагель и оксид алюминия предварительно сушили при 373 К. 10 г носителя SiO₂ импрегнировали (по влагоемкости) 6 мл водного раствора с заданным количеством моль ГМТА, чтобы его содержание в образцах после сушки составляло 1,0·10⁻⁴ моль/г. В случае применения в качестве носителя Al₂O₃ 10 г носителя импрегнировали (по влагоемкости) 9 мл раствора с заданным количеством моль ГМТА.

Закрепление ГМТА и солей металлов на SiO₂. Во избежание гидролиза солей металлов в растворе ГМТА образцы $MCl_2/\Gamma MTA/SiO_2(M = Cu^{2+}, Co^{2+}, Mn^{2+})$ получали методом ступенчатого импрегнирования. На первой стадии наносили раствор солей; на второй — пропитывали водным раствором ГМТА заданной концентрации. Изменение порядка нанесения компонентов не влияет на активность образцов в реакции разложения озона.

ИК спектры регистрировали с помощью спектрофотометра Perkin Elmer Spectrum BX FT-IR System (4400–350 см⁻¹) с использованием сильной аподизации Нбира-Нортона и спектральной разделительной способностью 4 см⁻¹. Спектры полученных образцов записывали в прессованных таблетках с KBr.

© Т. Л. Ракитская, А. С. Труба, С. Э. Самбурский, Л. В. Короева, 2007

Электронные спектры диффузного отражения регистрировали при комнатной температуре в диапазоне волновых чисел 30000–12000 см⁻¹ с помощью "Specord M-40" с использованием кювет из нержавеющей стали, путем запрессовки в них образцов, относительно внутреннего стандарта MgO.

Экспериментальные результаты и их обсуждение

В таблице обобщены результаты ИК-спектральных исследований ГМТА, воздушно-сухих образцов SiO₂ и Al₂O₃, а также закрепленных на них ГМТА и его комплексов с медью(II), кобальтом(II) и марганцем(II). Спектр ГМТА хорошо совпадает с известными [1–3]. По данным [4] в ИК-спектрах гидроксилированной поверхности кремнезема полосы в области 3400–3690 см⁻¹ соответствуют валентным колебаниям OH (v_{OH}) адсорбированных ассоциатов и концевых групп воды; колебаниям OH-групп адсорбированных молекул воды в области 1630–1635 см⁻¹ — деформационным (δ_{H_2O}); колебаниям молекул воды, связанных с силанольными группами, в области 500–200 см⁻¹ – либрационным (γ_{H_2O}). Для откачанных при 25°С образцов валентные колебания v_{OH} "свободной" силанольной группы проявляются при 3745–3750 см⁻¹ [4, 5].

В случае Al_2O_3 изолированной OH-группе приписывают полосу при 3700 см⁻¹, а с увеличением от одного до четырех числа O^{2-} -ионов, окружающих OH-группу, v_{OH} приписывают значения 3733; 3744; 3780; 3800 см⁻¹, соответственно [5]. Как видно из данных таблицы спектры воздушно-сухих SiO₂ и Al_2O_3 не содержат характерные полосы поглощения валентных колебаний изолированных OH-групп и можно говорить о том, что адсорбированные молекулы воды взаимодействуют с поверхностными OH-группами через водородные связи.

К сожалению, при анализе спектров образцов ГМТА и ГМТА/SiO₂ приходим к выводу, что поглощения валентных колебаний 1238 (v_{10}) и 1006 (v_9) см⁻¹, а также деформационных δ_{CH_2} при 1370 и 1048 см⁻¹ молекулы ГМТА перекрываются интенсивным поглощением в области 962-1375 см⁻¹ с максимумом при 1072 см⁻¹, относящимся к валентным колебаниям связей Si-O. По той же причине не обнаруживается полоса 1026 см-1, приписываемая монопротонированной форме ГМТА [6]. Полоса 672 см⁻¹ (v₈) совпадает с полосой либрационных колебаний молекул воды, связанных с кремнеземным каркасом, 669 см⁻¹, что приводит к возрастанию относительной интенсивности поглощения; обнаруживается слабое деформационное колебание δ_{CH_2} при 1487 см⁻¹ в виде плеча на высокочастотной компоненте полосы 1072 см-1. Произошли изменения в области колебаний ОН-групп, связанных водородными связями с адсорбированными молекулами воды (низкочастотный сдвиг, $\Delta v = 10$ см⁻¹), а также в области деформационных колебаний (б_{н20}) – расщепление полосы на две с максимумами при 1658 и 1642 см⁻¹. Это может свидетельствовать о неравноценности молекул воды, связанных с поверхностной ОН-группой, из-за формирования водородной связи с третичным азотом ГМТА.

В ИК-спектре ГМТА/Al₂O₃ появляются новые полосы при 2079 (сл), 582 (о.сл.) и 412 (о.сл.) см⁻¹; полоса v_9 1006 см⁻¹ испытывает высокочастотный сдвиг до 1022 см⁻¹ и совпадает с полосой 1024 см⁻¹ исходного Al₂O₃; полоса v_8 672 см⁻¹ испытывает низкочастотное смещение и совпадает с полосой 668 см⁻¹ для Al₂O₃.

Можно отметить некоторые изменения деформационных колебаний δ_{CH_2} – наблюдается высокочастотное смещение до 1466 см⁻¹ по сравнению с 1440 см⁻¹ для ГМТА, а полоса 812 см⁻¹ для маятниковых колебаний CH₂ фиксируется при

Золновые числа (см ⁻¹) максимумов полос поглощения в ИК спектрах ГМГА, закрепленного на SiO ₂ и Al ₂ O ₃ и его комплексов с Cu(II), Co(II) и Mn(II)

Таблица

	Остальные частоты	2955 с.; 2922 с.; 2906 с.; 2874 с.; 2018 сл.; 1786 сл.; 1748 сл.; 1458 с.; 1440 ср.; 1370 с.; 1048 ср.; 834 сл.; 812 с.	794 сл.; 460 с; 372 о.сл.; 351 сл	1538 о.сл.; 1487 пл.; 796 ср.; 462 с.; 371 о.сл.; 351 сл.	1402 о.сл.; 797 ср.; 461 с.; 372 о.сл.; 364 о.с.; 352 сл.	1563 о.сл.; 1402 о.сл.; 791 сл.; 461 с.; 371 о.сл.; 351 сл.	794 ср.; 463 с.; 371 о.сл.; 358 сл.; 350 сл.	2014 о.сл.; 1385 сл.; 753 сл.; 533 о.сл.; 427 о.сл.; 395 о.сл.; 374 о.сл.; 351 о.сл	2079 о.сл.; 1466 о.сл.; 1385 сл.; 800 о.сл.; 753 о.сл.; 582 о.сл.; 426 о.сл.; 412 о.сл.; 395 о.сл.; 372 о.сл.; 351 о.сл.
	$\gamma(H_2O)$		669 сл. 562 сл.	668 сл. 563 сл.	669 сл. 572 сл.	669 сл. 538 пл.	668 сл. 572 сл.	668 сл. 560 сл.	667 сл. 561 сл.
	$\delta_{CN}, \delta(CNC)$	$\begin{array}{c} 1238 \text{ o.c.}(v_{10}) \\ 1006 \text{ o.c.}(v_9) \\ 672 \text{ c.}(v_8) \\ 513 \text{ c.}(v_7) \end{array}$							1238 cp.
	$v(SiO), v(Al_2O_3),$		1072 о.с.ш.	1072 о.с.ш.	1071 о.с.ш.	1072 о.с.ш.	1073 о.с.ш.	1024 о.с.ш.	1022 о.с.ш.
	$\delta(OH_2)$		1639 cp.	1658 cp. 1642 cp.	1658 cp. 1642 cp.	1657 cp. 1641 cp.	1651 cp. 1632 cp.	1640 cp. 1632 cp.	1632 cp.
	v(OH)		3469 с.ш.	3460 с.ш.	3468 с.ш.	3460 с.ш.	3440 с.ш.	3655 cp. 3621 c. 3527 o.c. 3456 o.c.	3622 c. 3528 o.c. 3455 o.c.
	Соединение	ГМТА	SiO ₂ (KCMF)	FMTA/SiO ₂	CuCl ₂ /FMTA/ SiO ₂	MnCl ₂ /FMTA/ SiO ₂	CoCl ₂ /FMTA/ SiO ₂	АІ ₂ О ₃ (гранулированный)	FMTA/Al ₂ O ₃

Состояние закрепленного на оксидных носителях гексаметилентетрамина

800 см⁻¹. Наблюдающиеся изменения в ИК-спектре ГМТА/Al₂O₃ указывают на деформацию молекулы ГМТА и, возможно, образование поверхностного комплекса, что согласуется с данными [7].

Обычно о вхождении ГМТА в координационную сферу металла судят по изменению в ИК-спектре скелетных колебаний С–N-связей: 513 (v_7), 674 (v_8), 1007 (v_9) и 1240 (v_{10}) см⁻¹ [1] (значения v могут незначительно отличаться [3, 8, 9]). Наибольшую относительную интенсивность проявляют полосы 1007 (v_9) и 1240 (v_{10}) см⁻¹ и по их смещению или расщеплению судят о проявлении лигандных свойств ГМТА. Авторами [10] была сделана попытка на основании характера изменения v_9 и v_{10} классифицировать комплексы состава mMXj·nC₆H₁₂N₄·pH₂O (M = Co(II), Ni(II), Cu(II); X = Cl⁻, SO₄²⁻); объяснить разное соотношение M : ГМТА в комплексах и проявление разной дентатности лиганда. Очевидно, что одних этих данных недостаточно, чтобы сделать окончательные выводы о способе координации ГМТА. Несомненным доказательством вхождения ГМТА во внутреннюю сферу металла является появление в ИК-спектре полосы M–N_{ГМТА}, которая в зависимости от природы центрального атома проявляется в области 600–200 см⁻¹ [1, 11, 12].

Нами впервые получены ИК-спектры сложных систем MCl₂/ГМТА/SiO₂, где M = Cu(II), Co(II) и Mn(II) (табл.). В них, как и для образца ГМТА/SiO₂, полосы 1006 (v₉) и 1238 (v₁₀) см⁻¹, перекрываются широкой полосой колебаний Si–O с максимумом при ~1072 см⁻¹. Существенно возрастает относительная интенсивность поглощения (γ_{H_2O}) в ряду металлов Mn(II) < Cu(II) << Co(II). В области валентных колебаний OH-группы низкочастотный сдвиг усиливается в ряду Cu(II) < Mn(II) << Co(II), а полоса деформационных колебаний молекулы воды (δ_{H_2O}) подвергается расщеплению. Полосы, характеризующие валентные колебания связи M–O в гидратированных ионах металлов [13, 14], обнаруживаются при 572 см⁻¹ (CuCl₂/ГМТА/SiO₂), 572 и 358 см⁻¹ (CoCl₂/ГМТА/SiO₂) и 538 см⁻¹ (MnCl₂/ГМТА/SiO₂).

На основании полученных результатов, а также анализа литературных данных для комплексных соединений M(II) с ГМТА можно заключить. ГМТА при комплексообразовании в растворах конкурирует с молекулами растворителя (H₂O, спирт) за место во внутренней координационной сфере центрального атома. В этой связи из спиртовых растворов выделяются комплексы, в которых молекулы ГМТА являются исключительно внутрисферными и их число по стерическим соображениям не превышает два [12]; остальные места занимают молекулы спирта, легко удаляемые при 140°С. При синтезе из водных растворов возможно образование двух типов комплексов, в которых во внутреннюю сферу входят: i) H₂O и ГМТА (смешаннолигандный); ii) только молекулы H₂O. В этом случае молекулы ГМТА присоединяются водородной связью к внутри- (а) либо внешнесферным (б) молекулам воды

Наличие двух типов структурно неэквивалентных молекул воды подтверждается расщеплением в ИК-спектре полосы ее деформационного колебания на две, положение максимумов которых определяется природой центрального атома [15]. В случае (а) и (б) ГМТА не связывается с металлом, о чем свидетельствует отсутствие полосы в области 400–200 см⁻¹ связи М–N_{ГМТА}. Как отмечают авторы [1], наряду с конкуренцией между молекулами ГМТА и H₂O за место в координационной сфере, решающую роль играет взаимодействие между самими лигандами, приводящее к образованию ассоциированных каркасов из воды, внутри которых находятся водородносвязанные молекулы ГМТА. Так из концентрированных растворов ГМТА при T < 13,5°С выделен кристаллогидрат C₆H₁₂N₄·6H₂O. Такая блокированная молекула ГМТА участвует в комплексообразовании с ионом металла через молекулу воды, выступая в качестве внешнесферного лиганда. С понижением концентрации ГМТА уменьшается степень межмолекулярной ассоциации и осуществляется непосредственная связь М–N_{ГМТА} [16].

Воздушно-сухой силикагель с нанесенными ГМТА и соответствующими солями MCl_2 (M = Cu(II), Co(II), Mn(II)) является гидратированным и такую систему можно рассматривать как концентрированный раствор [17], в котором протекают процессы ассоциации молекул ГМТА и их комплексообразования с ионами металлов, подобно тому, как это происходит в водном или водно-спиртовых растворах. Исходя из анализа полученных данных можно полагать образование следующих поверхностных комплексов:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H^{-1} N_{\Gamma MTA} \\ \end{array} \\ H^{-1} O H \end{array} \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} N_{\Gamma MTA} \\ \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H \end{array} \\ H^{-1} O H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H H \end{array} \\ H^{-1} O H H \end{array} & \begin{array}{c} \begin{array}{c} H^{-1} O H H \end{array} & \begin{array}{c} \end{array} \end{array}$$
 (1)

ИЛИ

 $\equiv \text{Sioh} - O \xrightarrow{H} O \xrightarrow{H} O \xrightarrow{H} H$

Формирование комплексов типа (2) подтверждается данными, полученными из электронных спектров диффузного отражения. Так в случае Cu(II) отмечается слабый максимум в области 12800 см⁻¹, что соответствует искаженнооктаэдрическим комплексам меди(II) в кислородном окружении и находится в соответствии с результатами для Cu(II)/SiO₂(KCK) -v = 12500 см⁻¹ [18]. Для индивидуальных комплексов Cu(NCS)₂·(C₆H₁₂N₄)₂ максимум поглощения фиксируется при 14705 см⁻¹ [2]. Для CoCl₂/ГМТА/SiO₂ фиксируется максимум около 19600 см⁻¹ с плечом при 21500 см⁻¹, что соответствует октаэдрической конфигурации Co(II) и не противоречит известным данным [2, 18, 19]. Из-за отсутствия

(2)

поглощения в области 30000-12000 см⁻¹ невозможно сделать вывод о строении комплексов, формирующихся в системе MnCl₂/ГМТА/SiO₂.

Таким образом, на основании данных ИК-спектроскопии показано, что в системах ГМТА/SiO₂ и ГМТА/Al₂O₃ молекула гексаметилентетрамина закрепляется на поверхностной OH-группе через молекулу воды за счет водородной связи.

Порезультатам ИК-спектроскопии и ЭСДОсложных систем $MCl_2/\Gamma MTA/SiO_2$ (M = Cu(II), Co(II), Mn(II)) показано, что центральный атом связан с поверхностной ОН-группой и молекулой ГМТА посредством водородных связей, формируемых с участием молекул воды.

Литература

- 1. Иманакунов Б. И., Лукина Л. И. Взаимодействие гексаметилентетрамина с неорганическими солями и свойства твердых фаз. – Фрунзе: Илим, 1984. – 103 с.
- Ahuja I. S., Singh R., Yadava C. L. Hexametylenetetramine complexes with manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) thiocionates // Spectrochimica Acta. – 1981. – Vol. 37A, N 6. – P. 407–414.
- Эннан А. А., Гаврилова Л. А., Борисенко Т. С. Аддукт тетрафторида кремния с гексаметилентетрамином // Журн. неорг. химии. – 1976. – Т. 21, вып. 4. – С. 983–986.
- 4. *Киселев А. В.* Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высшая школа, 1986. 360 с.
- 5. Бремер Г., Вендландт К. П. Введение в гетерогенный катализ. М.: Мир, 1981. 157 с.
- Brolo A. G., Temperini M. L. A., Agostinho S. M. L. Copper dissolution in bromide medium in the absence and presence of hexamethylentetramine (HMTA) // Electrochimica Acta. – 1998. – Vol. 44. – P. 559–571.
- An anionic framework aluminophosphate |(CH₂)₆N₄H₃·H₂O|[Al₁₁P₁₂O₄₈] and computer simulation of the template positions / W. Yan, J. Yu, Z. Shi, P. Miao, K. Wang, Y. Wang, R. Xu // Micropor. Mesopor. Materials. – 2001. – Vol. 5. – P. 151–158.
- Ahuja I. S., Yadava C. L., Singh R. Tetradentate behaviour of hexametylenetetramine // J. Molec. Structure. - 1982. - Vol. 81. - P. 289-291.
- *9. Ahuja I. S., Singh R., Yadava C. L.* Hexametylenetetramine complexes with manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) thiocionates // Spectrochimica Acta. 1981. Vol. 37A, N 6. P. 407–414.
- Актанова С. Т., Сарукина Дж. Б., Казыбаев С. А. Инфракрасные спектры поглощения комплексных соединений гексаметилентетрамина с солями кобальта, никеля и меди // Гетерогенные равновесия систем из неорганических и органических соединений. – Фрунзе: Илим, 1974. – С. 131–134.
- Иманакунов Б. И., Лукина Л. П. О координации гексаметилентетрамина неорганическими солями // Журн. неорг. химии. – 1979. – Т. 24, вып. 4. – С. 916–920.
- Синтез и ЭПР комплексов Ag(II) с гексаметилентетрамином / Л. В. Антонова, Н. С. Ахметов, Т. Е. Бусыгина, В. К. Половняк, А. Е. Усачев // Журн. общ. химии. — 1990. — Т. 60, вып. 11. — С. 2539—2543.
- 13. Кукушкин Ю. Н. Химия координационных соединений. М.: Высшая школа, 1985. 445 с.
- 14. Костромина Н. А., Кумок В. Н., Скорик Н. А. Химия координационных соединений. М.: Высшая школа, 1990. 432 с.
- 15. Баличева Т. Г., Пологих И. В. ИК спектры и строение комплексов гексаметилентетрамина с кристаллогидратами перхлоратов двухвалентным металлов и MgCl₂ // Журн. неорг. химии. 1975. Т. 20, вып. 12. С. 3202–3209.
- 16. Взаимодействие гексаметилентетрамина с хлористым кобальтом в водных растворах / У. Исаева, Л.И. Лукина, С.Т. Актанова, Л.А. Щедрова, Б.И. Иманакунов // Изв. АН Киргиз. ССР. – 1979. – № 1. – С. 33–34.
- Ракитская Т. Л., Эннан А. А., Волкова В. Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. – Одесса: Экология, 2005. – 191 с.

Состояние закрепленного на оксидных носителях гексаметилентетрамина

- Воробьев В. Н., Хасанов Ф. Н., Разиков К. Х. Изучение условий формирования структуры и координационных свойств поверхностных центров с ионами Ni²⁺, Co²⁺, Cu²⁺ и Fe²⁺ на силикагеле // Адсорбция и адсорбенты. – 1982. – № 10. – С. 44–49.
- Бротиковский О. И., Швец В. А., Казанский В. Б. Исследование координационного состояния ионов Co²⁺, нанесенных на поверхность силикагеля // Кинетика и катализ. — 1972. — Т. 13, вып. 5. — С. 1342–1344.

Т. Л. Ракитська, А. С. Труба, С. Е. Самбурський, Л. В. Короєва

Одеський національний університет ім. І. І. Мечникова, кафедра неорганічної хімії та хімічної екології, вул. Дворянська, 2, Одеса, 65026, Україна

СТАН ЗАКРІПЛЕНОГО НА ОКСИДНИХ НОСІЯХ ГЕКСАМЕТИЛЕНТЕТРАМІНА ТА ЙОГО КОМПЛЕКСІВ З Сu(II), Co(II) ТА Mn(II)

Резюме

Методом IЧ-спектроскопії та ЕСДВ отримані спектральні характеристики ГМТА, повітряно-сухих зразків SiO₂ та Al_2O_3 , а також закріпленних на них ГМТА та його комплексів з купрумом(II), кобальтом(II) і манганом(II). Показано, що ГМТА, а також його комплекси з Cu(II), Co(II) та Mn(II) взаємодіють з OH-группою оксидних носіїв через молекулу води.

Ключові слова: спектральні характеристики, гексаметилентетрамін, комплекси, носії

T. L. Rakytskaya, A. S. Truba, S.E. Samburskiy, L.V. Koroeva

Odessa I. I. Mechnikov National University, Department of Inorganic Chemistry and Chemical Ecology, Dvoryanskaya St., 2, Odessa, 65026, Ukraine

THE STATE OF HEXAMETHYLENETETRAMINE AND ITS COMPLEXES WITH Cu(II), Co(II), AND Mn(II) ANCHORED ON OXIDE SUPPORTS

Summary

Spectral characteristics of hexamethylenetetramine (HMTA), air-dry samples of SiO₂ and Al_2O_3 , as well as HMTA and its complexes with copper(II), cobalt(II), and manganese(II) anchored on those supports have been obtained by IR spectroscopy and EDR spectroscopy. It has been revealed that HMTA and its complexes with Cu(II), Co(II), and Mn(II) interact with an OH group of the oxide supports via a water molecule.

Keywords: spectral characteristics, hexamethylenetetramine, complexes, supports