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THE ELECTROSTATIC FIELD IN THE TWO-DIMENSIONAL REGION

BETWEEN UNEVEN ELECTRODES

The problem of the static distribution of the potential ¢ of the electric field in vacuum
in the two-dimensional region of space between two uneven electrodes is set and resolved.
Their surface irregularities are modeled with the help of arbitrary periodic functions. The
approximate solution of the Laplace’s equation A =0 satisfying corresponding boundary
conditions is found to the first order of smallness with respect to the magnitude of small
surface irregularities of electrodes. The “theoretical” coordinate dependence of the potential
¢ within established accuracy agrees well with the corresponding “experimental” depen-
dence, which is obtained by methods of computational modeling with the help of the pro-
gram package “COMSOL Multiphysics” in the simple particular case of the “rectangular”
irregularity. The corresponding distribution of the potential ¢ is depicted on the contour
plot. In practice obtained results can be applied, in particular, when conductive probes of
arbitrary form are placed on the even surface of the cathode at equal distances from each
other, and, hence, have direct relevance to the area of scanning tunneling microscopy.

INTRODUCTION

[t is well known that the electrostatic field
in the two-dimensional region of space between
two perfectly even infinite parallel electrodes,
to which the voltage (the potential difference)
U is applied, is homogenous and possesses the
strength

U
E,= (0, Ey), E;,= 4

: (1)

where d is the distance between considered
electrodes, and the potential

U

9u2) =52, (2)
where the coordinate z corresponds to the di-
rection, which is perpendicular to both of elec-
trodes. Its value z=0 corresponds to the cath-
ode and the value z=4d — to the anode. The
subscript “0” indicates that the case of the
perfectly even surface of both of electrodes is
considered. Besides, it is supposed that the
medium, confined between them, only slight-
ly influences on quantities, describing the elec-
tric field, and this influence can be neglected,
considering the distribution of the potential ¢
in vacuum. I desired the influence of the me-
dium can be taken into account, introducing
into denominators of fractions in formulas (1)
and (2) the quantity & — the relative permittiv-
ity of the medium.

The natural question arises, how formulas
(1) and (2) for the strength E and the poten-
tial @ of the considered electric field respective-
ly alter, if surfaces of electrodes are not per-
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fectly even. Irregularities, which are peculiar to
any real surface, can be interpreted as small de-
viations of its shape from the flat one. In the
analogous way in many cases one can inter-
pret conductive probes of the arbitrary shape,
placed on the even surface of the cathode at
equal distances from each other [1]. Changing
the shape and geometric sizes of probes, as
well as the distance between them, one can
achieve optimal relations when using them in-
stead of the only one conductive tip in the scan-
ning tunneling microscope and other analogous
instruments with the purpose of the improve-
ment of their work. Let us note that some of
the latest articles in the area of scanning tun-
neling microscopy are devoted to carbon nan-
otubes [2] and graphene [3—7], that is one of
the most perspective orientations of modern
physics.

The article is constructed in the following
way. At first we consider the case of arbitrary
surface irregularities of both of electrodes and
find in the first order approximation the explicit
expression for the potential ¢ of the electric field
between them. Then as an example we consider
the simple particular case of the “rectangular”
irregularity of the surface of the cathode, find in
the same first order approximation explicit ex-
pressions for the potential ¢ and the component
E, of the strength E along the direction, which is
perpendicular to electrodes, and also graph cor-
responding contour plots, illustrating obtained
formulas. Finally, we compare the “theoretical”
dependence with the corresponding “experimen-
tal” one, obtained by methods of computational
modeling with the help of the program package
“COMSOL Multiphysics”, and draw conclu-
sions.
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ARBITRARY IRREGULARITY

At first let us consider the case of the
arbitrary irregularity. The potential ¢(x, z) of
the electric field satisfies the two-dimensional
Laplace’s equation

__ 09 | %¢
Ap=2242¢2 (3)
0? 0% . . .
where A,= o -+ o7 s the two-dimension-

al Laplace’s operator, and following boundary
conditions:

(P()C, a(x)) == O» (P(xv b()C)) = U’ (4)

where a(x) and b(x) are some functions, which
define the shape of the surface of the cathode
and the anode respectively and are supposed to
be known. Thus, it is supposed that the poten-
tial, which equals 0, is applied to the cathode
and the potential, which equals U,— to the an-
ode. Their difference amounts to U.

The exact solution of the equation (3) with
boundary conditions (4) is unknown to us,
therefore let us look for its approximate solu-
tion in the form

Q(x, 2) ~ @o(2) + @i(x, 2), (5)

where the function @,(z) is defined by the for-
mula (2) and the additional function ¢,(x, 2)
takes into account the small deviation of the
shape of the surface of both of electrodes from
the flat one and is supposed to be the quantity
of the first order of smallness with respect to
this deviation. Thus, in the zero order approx-
imation the potential ¢(x, 2) is defined by the
formula (2), corresponding to the case of per-
fectly even surfaces of both of electrodes, and
in the first order approximation — by the for-
mula (5). In the same approximation for func-
tions a(x) and b(x) we obtain

a(x) =~ ag(x) + a,(x) = a,(x),

b(x) = bo(x) + b,(x) =d + by(x),  (6)

where functions aqy(x) =0 and b,(x) = d define
positions of the cathode and the anode respec-
tively in the zero order approximation and ad-
ditional functions a,(x) and b,(x) take into ac-
count their small deviations from values z=10
and z = d respectively and are supposed to be
quantities of the first order of smallness with
respect to these deviations.

Let us establish the explicit form of func-
tions a,(x) and b,(x). Let us suppose that they
are periodic with different periods 2/, and 2/, re-
spectively, where [, and [, are arbitrary positive
real numbers, then in accordance with they can
be expanded into following Fourier series:

A, cos (kl—ﬂ x> +C,sin <kl—ﬂ x>

)

(7)

+o0
a()=2+3
k=1
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B, cos <1§—H x) + D, sin <§—ﬂ x)

2

(8)

which coefficients can be found by correspond-
ing well known formulas. They are quantities of
the first order of smallness. If deviations of the
shape of the surface of both of electrodes from
the flat one were on average symmetric with
respect to the coordinate z, then equalities

Ay =0, By=0 (9)

would hold. However, these deviations general-
ly are not symmetric, since in any case there
is the electrode itself on the one side from the
surface and the medium, in which it is placed,
from the other. In spite of this, by the appro-
priate choice of positions of electrodes one can
always achieve fulfillment of equalities (9).
Substituting (5) into (3) and taking into
account (2), we obtain the following Laplace’s
equation with regard to the function ,(x, 2):

%9, + 2’¢, -0

ox? 0z? ( ! O)

Substituting (5) into (4) and taking into ac-
count (2), we obtain

Y a(x) + @,(x,a(x)) =~ 0,

b(x) + @i(x,b(x)) ~ U.

AU o

(1)

From (11) in the same first order approxi-
mation we obtain

U

2 a,(x) + ¢,(5,0) = 0,

Zb(0) + @i(x,d) = 0. (12)

Thus, the function ¢,(x, z) satisfies the La-
place’s equation (10) and boundary conditions
(12). The set problem permits of the exact so-
lution. Finding it and substituting the obtained
expression and (2) into (5), in the first order
approximation we finally obtain

9(x,2) ~ Sz +

A, cos <kl—ﬂx) —+ C, sin (lel—nx>

sinh

(e — )|

1

sinh (1;—7{ 2).

(13)

B, cos (kz—ﬂ x) + D, sin (1;—7{ x)
2 2

“RECTANGULAR” IRREGULARITY

As an example let us consider the case of
the “rectangular” surface irregularity of the



cathode. Deviations of the shape of the surface
of electrodes from the flat one in this case is
described by following functions:

o) = h, |x|<r
! —n,r<lx|<l’

b(x) =0,

(14)
(15)

where A, A’ and r are positive real numbers,
r<<l,, h and A" are connected by the relation

hr=h'(l,—r), W=

h, (16)

7

ensuring the fulfillment of the first equality (9).
The graph of the function (14) when x € [—1,, {,]
and A=0.1 cm, r=0.1 cm, [, =1 cm is shown
on fig. 1.
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Fig. 1. The graph of the function (14) when x € [—1,, /]
and h=0.1 ecm, r=0.1 cm, /[,=1 cm

Expanding functions (14) and (15) into Fouri-
er series (7) and (8) and substituting coefficients
of obtained expansions into (13), we obtain

U 2UAL
ox,2)~ =2+ L

d nd(l—r)
4o sin (k—:r[ r)
h LayP. d)].

X z e cos (kz—ﬂ x) sinh Z
%=1 ksinh <l—“ d) !

1

1

(17)

Obtained function (17) corresponds to the
“rectangular” surface irregularity of the cath-
ode. When #=0.1 cm, r=0.1 cm, [,=1 cm,
d=1cm, U=1V from (17) we obtain

0(x,2) ~ z+

o0
2 sin(0. 1)

+ o 2 ksin—h(kﬂ)cos(knx)sinh[kﬂ(z — 1], (18)

where coordinates x and z are measured in
centimeters and the potential ¢ — in volts.
The contour plot of the function (18) when
! € [2—0.5, 0.5] and z €[0.1, 0.5] is shown on
ig. 2.

From (17) we obtain in the first order ap-
proximation the following expression for the
component E, of the strength E of the consid-
ered electric field along the direction, which is
perpendicular to both of electrodes:

.

0.4 -0z nn nz 04

Fig. 2. The contour plot of the function (18) when
x €[—0.5,0.5] and z €[0.1, 0.5]

__ 9% _ U  20n
Elna)=—5 d dl—r)
+oo  sin (k—nr)
X E —l‘cos(k—nx)cosh k—ﬂ(z—d)l. (19)
. kmt l] ll
k=1 sinh (l_d)

When A=0.1 cm, r=0.1 cm, /,=1 cm,
d=1cm, U=1 V from (19) we obtain

_l_zx

E,(x,2) ~ 5

4o
x Y IO o5 (k) coshle(z — 1)),

sinh (k) (20)

where coordinates x and z are measured in cen-
timeters and the quantity E, — in volts per cen-
timeter. The contour plot of the function (20)
when x € [—1, 1] and 2 €[0.1, 1] is shown on
fig. 3.

When x =0 from (20) we obtain

o sin(0.1km) .
E.(0,2) ~ —1— 92 b coshlk(z — D)

(21)

The graph of the function (21) when
z2€[0.1, 1] is shown on fig. 4.

Thus, on fig. 4 the “theoretical” dependence

of the function E,(0, 2) on the variable z is de-
picted. Its comparison with the corresponding
“experimental” dependence, which is obtained
by methods of computational modeling with the
help of the program package “COMSOL Mul-
tiphysics” and depicted on fig. 5, shows that
within established accuracy they agree well
with each other.
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Fig. 3. The contour plot of the function (20) when
xe[—1,1] and z€[0.1, 1]
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Fig. 4. The graph of the function (21) when z€[0.1, 1]

CONCLUSIONS

Obtained results allow to draw following
conclusions:

1. The problem of the static distribution of
the potential ¢ of the electric field in vacuum
in the two-dimensional region of space between
two uneven electrodes is set and resolved in
the first order approximation.

2. The simple particular case of the “rect-
angular” irregularity of the surface of the cath-
ode is considered and explicit expressions for
the potential ¢ and the component E, of the
strength E along the direction, which is per-
pendicular to electrodes, are found in the first
order approximation.

3. Contour plots, illustrating obtained for-
mulas, are graphed and it is shown that the
“theoretical” coordinate dependence within es-
tablished accuracy agrees well with the corre-
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Fig. 5. The graph of the function E,(0, z) of the variable

(z—0.1) when z€10.1, 1], obtained by methods of com-

putational modeling with the help of the program package
“COMSOL Multiphysics”

sponding “experimental” dependence, which is
obtained by methods of computational modeling
with the help of the program package “COM-
SOL Multiphysics”.

4. In practice obtained results can be ap-
plied, in particular, when conductive probes of
arbitrary form are placed on the even surface of
the cathode at equal distances from each other,
and have direct relevance to the area of scan-
ning tunneling microscopy.
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Abstract

The problem of the static distribution of the potential ¢ of the electric field in vacuum in the two-dimensional region
of space between two uneven electrodes is set and resolved. Their surface irregularities are modeled with the help of
arbitrary periodic functions. The approximate solution of the Laplace’s equation Ag =0 satisfying corresponding bound-
ary conditions is found to the first order of smallness with respect to the magnitude of small surface irregularities of
electrodes. The “theoretical” coordinate dependence of the potential ¢ within established accuracy agrees well with the
corresponding “experimental” dependence, which is obtained by methods of computational modeling with the help of
the program package “COMSOL Multiphysics” in the simple particular case of the “rectangular” irregularity. The corre-
sponding distribution of the potential ¢ is depicted on the contour plot. In practice obtained results can be applied, in
particular, when conductive probes of arbitrary form are placed on the even surface of the cathode at equal distances
from each other, and, hence, have direct relevance to the area of scanning tunneling microscopy.
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M. B. Yusxcos, M. B. JiineopH
AJIEKTPOCTATUYECKOE TMOJIE B JIBYMEPHOW OBJACTU ME)XJY HEPOBHbIMU 3JIEKTPOJAMH

Peslome

[TocTtaBseHa u pelleHa 3ajjada O CTATHYECKOM paclpelesieHHH IOTeHLHaa (p 3JeKTPUIECKOro IMOJs B BaKyyMe B JBY-
MepHOﬁ obJsacT MPOCTPAHCTBA MEXAY ABYMA HEPOBHBIMHU 3SJIEKTPOAAMH. HepOBHOCTI/I 1508 l'lOBerHOCTeIL/’I CMOAENMUPOBAHBI C
MOMOLIbIO TPOU3BOJIBHBIX MepUOAHYecKUX (YHKUMEH. Hafineno mnpubsanmxkeHHoe pelieHue ypaBHeHus Jlammaca A¢@ =0, yno-
BJIETBOPAIOLIEE COOTBETCTBYIOLUUM T'PAHUYHBIM YCJAOBHUSAM, C TOYHOCTBIO [0 IEPBOro mnopgaka MaJloCTH I10 BEJAWYHHE MaJiblX
HEepPOBHOCTEH NoBepxHOCTel 371eKTponoB. ‘TeopeTnyeckass” 3aBHCHMOCTb MOTEHLHANa (p OT KOOPAMHAT B Ipefesax YCTaHOB-
JIEHHOH TOYHOCTH XOPOLIO COIJIaCyeTCsl C COOTBETCTBYIOLIEH “‘IKCIepHUMEeHTa]bHOH 3aBHUCHMOCTBIO, KOTOpas MOJydYeHa MeTo-
JIaMH YUCJIEHHOTO MOIEJUPOBAHUs C TOMOLIbI0 nporpamMHoro nakera “COMSOL Multiphysics” B mpocToM yacTHOM cJiyyae
“npsimoyrosibHON” HepoBHOCTH. COOTBETCTBYIOLIEE paclpeleseHHe MOTeHLHana (¢ H300pakeHO Ha KOHTYpPHOM rpaduke. Ha
MpPaKTHKe MOJy4YeHHble Pe3yJbTaThl MOIYT OBITb NPHUMEHEHbl, B YaCTHOCTH, KOTJa Ha POBHOH MOBEPXHOCTH KaTOAa Ha paB-
HBIX PACCTOAHUAX APYT OT Jpyra yCTaHOBJIEHBI NPOBOASLIME 30HAbI NPOM3BOJBLHOH (DOPMBI, H, CJIEL0BATEJNbHO, HUMEIOT Mps-
MOe OTHOLIeHHe K 00/1aCTH CKAaHHUPYIOUIEH TYHHEJbHOH MHKPOCKOIHH.

Katouesbie cjoBa: sjnexTpuueckoe roJe, AByMepHas 00/acTb, 3J€KTPOJ.
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EJIEKTPOCTATUYHE TMOJIE ¥ JIBOBUMIiPHIN OBJIACTiI Mi)K HEPiBHUMU EJIEKTPOIAMH

Pestome

[ToctaBsena Ta pos3p’d3aHa 3afaya Mpo CTATHYHHH DO3MOALNT MOTEHLiany (p eJeKTPHYHOTO IMOJS y BaKyyMi y ABOBHMIp-
Hill o6sacTi npocTopy MiXK ABOMa HepiBHUMHU eseKTponamu. HepiBHocTi iX moBepXoHb 3MOne/bOBaHi 3a IOMNOMOIOI JOBiJb-
HUX TepionuyHuX (YHKLiH. 3Ha#neHo HaOMMKeHHH po3B’s30K piBHAHHA Jlammaca A@ =0, sku#l 3a00BiJbHSE BiAMOBiTHUM
IPAaHUYHUM YyMOBaM, 3 TOYHICTIO [0 MEPLIOro MOPSIAKY MasoCTi MO BeJMYMHI MajuX HepiBHOCTeH MoBepXoHb esekTpomiB. “Te-
opeTHyHa’ 3a/Ie’KHICTb MOTEeHLiany ( Bil KOOpPIMHAT y MexXaxX BCTAHOBJIEHO! TOYHOCTI moOpe Y3TOmKyeTbCs i3 BiAMOBiIHOMO
“eKCIepUMeHTa/NbHOI” 3a/eXKHICTIO, siKa OTPUMaHa MeTOIAaMH YHMCEJbHOrO MOJEJIOBAHHS 33 [OMOMOrOI0 NPOrpaMHOr0 Make-
Ty “COMSOL Multiphysics” y nmpoctomy oKpeMoMy BHNanKy “TpsiMOKyTHOI  HepiBHocTi. BinmoBimuuil posmoxin morenuiamy
¢ 300pakeHO Ha KOHTypHOMY rpadiky. Ha mpaxTuui oTpumani pesyjbTaTH MOXKYTb OYTH 3aCTOCOBaHi, 30KpeMa, KOJH Ha
piBHIl MoBepxHi KaTomy Ha PIBHUX BIACTAHAX OAMH Bill OJHOTO BCTAHOBJIEHI MPOBIAHI 30HAM NOBiNBHOI (hOPMHU i, OTXKe, Ma-
I0Tb NpsIMe BiJHOLIEHHS A0 00/1acTi CKaHyuoi TyHeJbHOI MiKPOCKOMIi.

KatouoBi cioBa: enekTpuuHe moJe, ABOBHMipHa 00/1aCTb, €JEKTPOLI.



