Forced Vibrations of the Infinite Shell of the Square Cross Section

V.M. Vorobel and V.V. Reut

Abstract

The problem about steady-state forced vibrations of an infinite shell of the square cross section is investigated. The dispersion curves are given, the resonance frequencies are found. The stress distribution in a construction is investigated. In case of low-frequency vibrations the engineering formula for approximate calculation of the construction is offered. The graph of dependence of a relative accuracy on frequency is given.

Mathematics Subject Classification (2000). Primary 74H45; Secondary 74K10.
Keywords. Box-like shell, plate, vibrations, dispersion curve, resonance.

The thin-walled constructions of the square cross section have a wide application in construction, shipbuilding, bridge engineering and mechanical engineering. The theory and the methods of static and dynamic analysis of the box-like shells were studied in numerous works, which review is present in $[1-4]$. The simple harmonic motions of semi-infinite box-like shell of the rectangular cross section are surveyed in work [2], in which the homogeneous solutions were constructed. In the work [3] the dispersion equation for propagation of normal waves in the infinite box-like shell of the corner and the square cross section were obtained. Let's mark, that in the above-mentioned works, the resonance frequencies were not found also numerical calculations were not carried out. The present work is dedicated to study of these problems.

The plate-like construction consist of thin plates of thickness h and a width $2 a$ (Fig. 1). The construction has square cross section. The identical transverse loading $q(x, y) e^{-i \omega t}$ symmetric concerning a medial line of a plate (in the further factor $e^{-i \omega t}$ we shall omit).

In a dimensionless form the boundary value problem that describe the combined planar and flexural state of a construction's plates will consist of the differential equation of vibrations of thin plates

$$
\begin{equation*}
D \Delta^{2} w(x, y)-\omega^{2} \varepsilon^{-2} w(x, y)=q(x, y) \quad(0<x<1,|y|<\infty) \tag{1}
\end{equation*}
$$

the Lame equations, which describes the plain stressed state of the plate

$$
\left\{\begin{array}{c}
G^{-1} \Delta u(x, y)+2(1-\mu)^{-1} \partial \theta(x, y) / \partial x+\omega^{2} u(x, y)=0 \tag{2}\\
G^{-1} \Delta v(x, y)+2(1-\mu)^{-1} \partial \theta(x, y) / \partial y+\omega^{2} v(x, y)=0 \\
(0<x<1,|y|<\infty)
\end{array}\right.
$$

boundary conditions taking into account symmetry, concerning an axis y

$$
\begin{equation*}
\partial w /\left.\partial x\right|_{x=0}=0,\left.\quad V_{x}\right|_{x=0}=0,\left.\quad u\right|_{x=0}=0,\left.\quad \tau_{x y}\right|_{x=0}=0 \tag{3}
\end{equation*}
$$

boundary conditions, which describes the rigid joint of plates taking into account of symmetry to edges of a construction [4]

$$
\begin{equation*}
\partial w /\left.\partial x\right|_{x=1}=0,\left.\quad \tau_{x y}\right|_{x=1}=0,\left.\quad w\right|_{x=1}=-\left.\varepsilon^{2} u\right|_{x=1},\left.\quad V_{x}\right|_{x=1}=\left.\sigma_{x}\right|_{x=1} \tag{4}
\end{equation*}
$$

The dimensional quantities (they further will be marked by a sinuous line) are connected with dimensionless following relations $\tilde{x}=\tilde{a} x, \tilde{y}=\tilde{a} y, \tilde{h}=\tilde{a} \varepsilon$, $\tilde{D}=\tilde{E} \tilde{h}^{3} D, \tilde{G}=\tilde{E} G, \tilde{q}=\tilde{E} q, \tilde{w}=\tilde{a} \varepsilon^{-3} w, \tilde{u}=\tilde{a} \varepsilon^{-1} u, \tilde{v}=\tilde{a} \varepsilon^{-1} v, \tilde{V}_{\tilde{x}}=\tilde{E} \tilde{a} V_{x}$, $\tilde{\sigma}_{\tilde{x}}=\tilde{E} \sigma_{x}, \tilde{\tau}_{\tilde{x} \tilde{y}}=\tilde{E} \tau_{x y}, \tilde{\omega}=\omega \tilde{T}^{-1}, \tilde{T}=\tilde{a} / \tilde{c}, \tilde{c}=\sqrt{\tilde{E} / \tilde{\rho}} ; \tilde{u}, \tilde{v}, \tilde{w}-$ the displacements of points of plates in the directions of axes $\tilde{\tilde{V}}, \tilde{y}, \tilde{z}$ accordingly; $\tilde{V}_{\tilde{x}}=-\tilde{D}\left[\partial^{3} \tilde{w} / \partial \tilde{x}^{3}+(2-\mu) \partial^{3} \tilde{w} / \partial \tilde{x} \partial \tilde{y}^{2}\right], \quad \tilde{\sigma}_{\tilde{x}}=\tilde{F}(\partial \tilde{u} / \partial \tilde{x}+\mu \partial \tilde{v} / \partial \tilde{y}), \quad \tilde{\tau}_{\tilde{x} \tilde{y}}=$ $\tilde{G}(\partial \tilde{u} / \partial \tilde{y}+\partial \tilde{v} / \partial \tilde{x})$ - generalized transverse force, normal and tangential stresses; $\tilde{D}=\tilde{E} \tilde{h}^{3}\left[12\left(1-\mu^{2}\right)\right]^{-1}$-flexural rigidity of a plate; \tilde{h} - thickness of a plate; $\tilde{\rho}-$ the plate density; \tilde{E} - Young's modulus; μ - Poisson's ratio; $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$ - the Laplace operator; $\tilde{G}=\tilde{E} /[2(1+\mu)]$ - shear modulus; $\theta=\partial u / \partial x+\partial v / \partial y$; $\tilde{F}=\tilde{E} /\left(1-\mu^{2}\right)$.

The solution of the problem (1)-(4) can be noted as the Fourier integral

$$
f(x, y)=\frac{1}{2 \pi} \int_{\Gamma} f_{\alpha}(x) e^{-i \alpha y} d \alpha
$$

Where the contour of an integration Γ is picked by a principle of a limiting absorption $[5,6]$ and bypasses real poles of function $f_{\alpha}(x)$. The select of a contour of an integration enables to construct a unique solution of dynamic problems $[5,6]$. The function $f_{\alpha}(x)$ represents the Fourier transforms of all required magnitudes of the problem:

$$
\begin{aligned}
& u_{\alpha}(x)=\varphi_{\alpha}^{\prime}(x)-i \alpha \psi_{\alpha}(x)=C_{3} \chi_{1} \operatorname{sh}\left(\chi_{1} x\right)+C_{4} \alpha \operatorname{sh}\left(\chi_{2} x\right) / \chi_{2} \\
& v_{\alpha}(x)=-i \alpha \varphi_{\alpha}(x)-\psi_{\alpha}^{\prime}(x)=-i\left[C_{3} \alpha c h\left(\chi_{1} x\right)+C_{4} \operatorname{ch}\left(\chi_{2} x\right)\right] \\
& \tau_{x y \alpha}(x)=-G\left[2 i \alpha \varphi_{\alpha}^{\prime}(x)+\left(2 \alpha^{2}-k_{2}^{2}\right) \psi_{\alpha}(x)\right] \\
& =-i G\left[2 C_{3} \alpha \chi_{1} \operatorname{sh}\left(\chi_{1} x\right)+C_{4}\left(2 \alpha^{2}-k_{2}^{2}\right) \operatorname{sh}\left(\chi_{2} x\right) / \chi_{2}\right] \\
& \sigma_{x \alpha}(x)=-F\left[\left(k_{1}^{2}-(1-\mu) \alpha^{2}\right) \varphi_{\alpha}(x)+i \alpha(1-\mu) \psi_{\alpha}^{\prime}(x)\right] \\
& =-F\left[C_{3}\left(k_{1}^{2}-(1-\mu) \alpha^{2}\right) \operatorname{ch}\left(\chi_{1} x\right)+C_{4} \alpha(1-\mu) \operatorname{ch}\left(\chi_{2} x\right)\right] \\
& M_{x \alpha}(x)=-D\left[w_{\alpha}^{\prime \prime}(x)-\mu \alpha^{2} w_{\alpha}(x)\right]=-D\left\{\left(\frac{d^{2}}{d x^{2}}-\mu \alpha^{2}\right) w_{\alpha}^{q}(x)\right. \\
& \left.+C_{1}\left[(1-\mu) \alpha^{2}+\gamma^{2}\right] \operatorname{ch}\left(\lambda_{1} x\right)+C_{2}\left[(1-\mu) \alpha^{2}-\gamma^{2}\right] \operatorname{ch}\left(\lambda_{2} x\right)\right\} \\
& w_{\alpha}(x)=w_{\alpha}^{q}(x)+C_{1} \operatorname{ch}\left(\lambda_{1} x\right)+C_{2} \operatorname{ch}\left(\lambda_{2} x\right) \\
& \varphi_{\alpha}(x)=C_{3} \operatorname{ch}\left(\chi_{1} x\right), \quad \psi_{\alpha}(x)=i C_{4} \operatorname{sh}\left(\chi_{2} x\right) / \chi_{2} \\
& \lambda_{n}=\sqrt{\alpha^{2}-(-1)^{n} \gamma^{2}}, \quad \chi_{n}=\sqrt{\alpha^{2}-k_{n}^{2}} \quad(n=1,2) \\
& w_{\alpha}^{q}(x)=\frac{1}{D} \int_{0}^{1} q_{\alpha}(\xi) \Phi_{\alpha}(x, \xi) d \xi \\
& \Phi_{\alpha}(x, \xi)=e_{\alpha}(|x-\xi|)+e_{\alpha}(x+\xi) \\
& e_{\alpha}(x)=\left(4 \gamma^{2}\right)^{-1}\left[\lambda_{1}^{-1} \operatorname{sh}\left(\lambda_{1} x\right)-\lambda_{2}^{-1} \operatorname{sh}\left(\lambda_{2} x\right)\right] \\
& C_{n}=\Delta_{n} / \Delta, \quad n=\overline{1,4}, \quad-\text { is the solution of the system } \\
& \begin{aligned}
&\left(\begin{array}{cccc}
\lambda_{1} \operatorname{sh}\left(\lambda_{1}\right) & \lambda_{2} \operatorname{sh}\left(\lambda_{2}\right) & 0 & 0 \\
0 & 0 & 2 \alpha \chi_{1} \operatorname{sh}\left(\chi_{1}\right) & \left(2 \alpha^{2}-k_{2}^{2}\right) \frac{\operatorname{sh}\left(\chi_{2}\right)}{\chi_{2}} \\
\operatorname{ch}\left(\lambda_{1}\right) & \operatorname{ch}\left(\lambda_{2}\right) & \varepsilon^{2} \chi_{1} \operatorname{sh}\left(\chi_{1}\right) & \varepsilon^{2} \alpha \frac{\operatorname{sh}\left(\chi_{2}\right)}{\chi_{2}} \\
\frac{\lambda_{1}^{3} \operatorname{sh}\left(\lambda_{1}\right)}{12} & \frac{\lambda_{2}^{3} \operatorname{sh}\left(\lambda_{2}\right)}{12} & \left((1-\mu) \alpha^{2}-k_{1}^{2}\right) \operatorname{ch}\left(\chi_{1}\right) & \alpha(1-\mu) \operatorname{ch}\left(\chi_{2}\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4}
\end{array}\right)=\left(\begin{array}{c}
-d w_{\alpha}^{q}(1) / d x \\
0 \\
-w_{\alpha}^{q}(1) \\
-\frac{1}{12} d^{3} w_{\alpha}^{q}(1) / d x^{3}
\end{array}\right) \\
& \Delta=\Delta_{u} \Delta_{V}-\Delta_{\sigma} \Delta_{w}
\end{aligned} \\
& \Delta_{\sigma}=2(1-\mu)\left[\alpha^{2} \chi_{1} \operatorname{sh}\left(\chi_{1}\right) \operatorname{ch}\left(\chi_{2}\right)-\left(\alpha^{2}-\frac{1}{2} k_{2}^{2}\right)^{2} \operatorname{ch}\left(\chi_{1}\right) \chi_{2}^{-1} \operatorname{sh}\left(\chi_{2}\right)\right] \\
& \Delta_{u}=\varepsilon^{2} k_{2}^{2} \chi_{1} \operatorname{sh}\left(\chi_{1}\right) \chi_{2}^{-1} \operatorname{sh}\left(\chi_{2}\right), \quad \Delta_{V}=-\frac{k_{1}}{\sqrt{3}} \lambda_{1} \lambda_{2} \operatorname{sh}\left(\lambda_{1}\right) \operatorname{sh}\left(\lambda_{2}\right) \\
& \Delta_{w}=\lambda_{1} \operatorname{sh}\left(\lambda_{1}\right) \operatorname{ch}\left(\lambda_{2}\right)-\lambda_{2} \operatorname{sh}\left(\lambda_{2}\right) \operatorname{ch}\left(\lambda_{1}\right) .
\end{aligned}
$$

In Fig. 2 the dispersion curves of the equation $\Delta=0$ concerning dimensionless quantities α and ω are constructed with relative thickness of the shell $\varepsilon=0.1$ and Poisson's ratio $\mu=0.3$. For negative α the graph should symmetrically be reflected concerning an axis ω. In Fig. 3 the site of the graph Fig. 2 is figured in the enlarged aspect. We can see that curves 1 and 2 are not intersected. With a decrease of the parameter ε the dispersion curves are contracted to the origin of coordinates, along both axes. The values ω at which slope angle of a tangent to a dispersion curve is equal to 90 degrees are resonance frequencies [6].

TABLE 1

ε	ω				
0.01	0.017	0.091	0,225	0.419	0,670
0.1	0.168	0.852	1.444	1.463	1.948

In Table 1 the values of the first several resonance frequencies (in Figs. 2, 3 they are marked by dagger) with $\mu=0.3$. Let's mark, that all frequencies which given in the table, except for $\omega=0.444$ can be obtained from a solution of a problem about vibrations square frame if Young's modulus E to exchange on $E /\left(1-\mu^{2}\right)$.

In Fig. 4 the graph of amplitude values dimensionless maximum bending stresses $\sigma M=6 \tilde{a}^{2} \tilde{M}_{\tilde{x}}(\tilde{x}, \tilde{y}) /\left(\tilde{P} \tilde{h}^{2}\right),\left(\tilde{M}_{\tilde{x}}(\tilde{x}, \tilde{y})=-\tilde{D}\left(\partial^{2} \tilde{w} / \partial \tilde{x}^{2}+\mu \partial^{2} \tilde{w} / \partial \tilde{y}^{2}\right)\right)$ at $\mu=0.3, \varepsilon=0.1, y=0, \omega=0.1$ (thus actual frequency $\tilde{\omega} \approx 52 / \tilde{a} \mathrm{rad} / \mathrm{sec}$) for a case of a concentrated force $\tilde{q}(\tilde{x}, \tilde{y})=\tilde{P} \delta(\tilde{x}) \delta(\tilde{y})$ is given. Thus the values of plain stresses less then bending stresses, and greatest maximum bending stresses arise under a concentrated force (logarithmic singularity) and on an edge.

Let's mark, that in case of low-frequency vibrations the solution of a problem (1)-(4) practically coincides with a solution of a problem about vibrations of the

Fig. 4
clamped plate

$$
\begin{gather*}
D \Delta^{2} w^{*}(x, y)-\omega^{2} \varepsilon^{-2} w^{*}(x, y)=q(x, y) \quad(0<x<1,|y|<\infty) \tag{5}\\
\partial w^{*} /\left.\partial x\right|_{x=0}=0,\left.\quad V_{x}^{*}\right|_{x=0}=0, \quad \partial w^{*} /\left.\partial x\right|_{x=1}=0,\left.\quad w^{*}\right|_{x=1}=0 \tag{6}
\end{gather*}
$$

The plain stresses and displacements thus can be neglected. Moreover if the solution of this problem is known at frequencies ω_{0}, ω_{1} (in particular it is possible to take $\omega_{0}=0$, i.e., static case) approximate solution of a problem (1)-(4) present by the convenient formula for the engineering calculations

$$
\begin{gather*}
w_{\omega}(x, y)=L_{0}(\omega) w_{0}^{*}(x, y)+L_{1}(\omega) w_{1}^{*}(x, y)+O\left(\omega^{4} \varepsilon^{-4}\right) \tag{7}\\
u_{\omega}=v_{\omega}=O\left(\varepsilon^{2} w_{\omega}\right) \\
L_{0}(\omega)=\left(\omega_{1}^{2}-\omega^{2}\right)\left(\omega_{1}^{2}-\omega_{0}^{2}\right)^{-1}, \quad L_{1}(\omega)=\left(\omega^{2}-\omega_{0}^{2}\right)\left(\omega_{1}^{2}-\omega_{0}^{2}\right)^{-1} .
\end{gather*}
$$

It is necessary to have in view, that this formula is valid for the small frequencies $\left(\omega / \varepsilon \ll 1\right.$, i.e., $\left.\tilde{\omega} \ll \tilde{h} \tilde{c} / \tilde{a}^{2}\right)$ smaller then first resonance frequency.

In Fig. 5 the graph of relative accuracies of maximum bending stresses on dimensionless frequency ω in the point of the edge $x=1, y=0$ is constructed, with $\omega_{0}=0, \omega_{1}=0.1$. The solid line shows an error of the formula (7), and dashed error for a problem (5)-(6). From the graph we can see that with $\omega<0.12$ relative accuracy of the formula (7) less than 10%. The approximate solution of a problem (5)-(6) about the fastened plate gives good outcomes up to the first natural frequency.

References

[1] M. Mitra, S. Gopalakrishnan, M.S. Bhat, A new super convergent thin walled composite beam element for analysis of box beam structures. Int. J. Solids Struct. 41, No. 5-6 (2004), 1491-1518.
[2] V.I. Mossakovskij, D.V. Kulikov, The method of homogeneous solutions for box-type shells under dynamic loads (Russian). Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1 (1987), 24-27.
[3] Y.I. Bobrovnitskii, M.D. Genkin, Waves propagation in thin walled rods (Russian). Vibroizoliruyuschie sistemy v mashinah i mechanizmah, Moskva, Nauka (1977), 3248.
[4] V.A. Grishin, G.Ya. Popov, V.V. Reut, Analysis of box-like shells of rectangular cross-section. J. Appl. Math. Mech. 54, No. 4 (1990), 501-507.
[5] V.A. Babeshko, Radiation conditions for an elastic layer. Sov. Phys. Dokl. 18 (1973), 759-760.
[6] I.I. Vorovich, V.A. Babeshko, Dynamic mixed problems of the theory of elasticity for nonclassical domains (Russian). Moskva, Nauka 1979.
V.M. Vorobel and V.V. Reut

Dvoryanskaya str., 2
The chair of methods of mathematical physics
The Institute of Mathematics, Economics and Mechanics
Odessa National University named after I.I. Mechnikov
65082 Odesa, Ukraine
e-mail: vrbl@rambler.ru
reut@onu.edu.ua

