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INTRODUCTION

The modern level of development of a science results in that more and more
specidties which had before the applied (technical) character are included in sphere
of university education. First of all to such specialties we should refer specialties in
the field of computer sencesFeatures of training of students on these spexsadit
university generate a neeaf the accelerated studying of a course of higher eaath
matics, which has the volume coming nearer to the university cd&uske.challenge
is issued by this textook on higher mathematics issuglich is intended for st
dents of the universities specializing in the field of computer sciertsethe rea-
er will find many perfectly developed pages asdbarseof the general madmatics
cannot be originawork. The reason of it that @ursecarries out the first eiactto
new knowledge andt is intended for the persorimished the school education and
having only principlesof elementary ma#matics knowledge Feature of the given
text-bookis also the uniform methodical approach to a statemetheoéntirehigher
mathematicscourse consisting that the basic mathematical conceplsvidrom the
general concepts and from logic concepts with the following distribution of aimater
al.

Thecourseis divided into five books.

The book 1 contains some logic concepts dieenentary concepts concerning
to sets and operatisronthem (nion intersection difference, product), and also the
basic mathematical concepts, namely: concept of functionagping conceptof n
— dimensionahrithmetic space.

The book 2 igledicded to thdinear algebra. From fundamental conceptaipping
concepts of internal and external laws of a compositiomn#&@duced Condtions at
which operationsof these laws om set transfornthem into groups, rings, fields and
vector spaces are ogideredlt is investigateda field of complex numbers; a ring of
multinomials; vector space of multinoais; vector space of free vectors in getme
rical space; vectors in — dimensionarithmetic space. Concepts of matrixes, dete
minantsand system oftie linear equationgesult from concepts of vector space and
linear mappingof one vector spac® anotherone In the separate chaptétris con-
sideredreduction of matrixeby changingof basis to more simple form. Rather ie-d
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tail, it is shown for reduon of the square matrixto the diagonaltype, and the
squarelaw form tothe canonic type

The book 3 contains mumberof concepts of analytical geometry required by
the program: thequations of a straight line on tipkane and irthe space; the equ
tions of a plane; curves and surfaces of the second order, the equation of curves a
sufaces of the second order aegluced to the canonical typéth use of squaraw
forms. These geometrical concepts act as the direct appendix of the book 2 or &
transferring of results of this book on language of geometry as it is made in it for free
vectors in geometrical space.

The book 4 idedicatedo the mathematical analysis. Numerical functions of
one and manyeal variables are considere@oncepts blimit andcontinuity arein-
troduced for these function¥he bookcomes to an end with thetatemenbf differ-
ential and mtegral calculus
In the book She chapterare collectedvhich areconcerning to the conceptsaving
technical character at a level betgeneramathematicgourse, thesare differential
equations and lines.

The statement of a theoretical material is accompanietthdylustra-
tive examples and thsolutionsof typical problems. With the purpose kdinforce-
mentof educational materighere theexercises for independent work aféeoed.

THE BOOK 1


http://www.multitran.ru/c/m.exe?t=1599167_1_2
http://www.multitran.ru/c/m.exe?t=1599167_1_2
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GENERAL CONCEPTS
CHAPTER 1
SETS
A 1IDEFINITIONS AND LOGIC SYMBOLS

Many objectsby some ertain attribute, for exampleobjects of one aure, can be
combinedin a set,which isconceivable as the whole. The objects malarsgt, we
shall nameséa members The set isisuallydesignatedvith capitalletters¢, |, m and
its members are designated siyall lettersQ 9, ». Belonging ofthe members to the
setA is written dowri/ ¢.

If the set contains fite number ofmemberssuch seis referred to asfinite
set
If for any beforehandjiven numberb, whatbig it would not be, in set there will be
the quantityof members whiclexceed this numbelb it is said thasuch sets indef-
inite set More strict definition of infinite set will be givdmelow.

1.1.Number sets

Sets whichmembersarenumbergefer to asnumber sets

Number set{ can put in conformity a variabfewhich possesseall nunber
values of this set i.e. whiathomain of variabilityare all nurbervaues ofthe sett .
Suchconformityis writtendown as followg = {=}.

A number of ninbersetshave standard designations

1. Set of all natural numbers

N={n},wheren=1,2,3..
2. Set of all integers

Z={~},wherex= 0, +1,.; £2, + 3,
Set of all nomegative mtegers

Zo={~},wherenr=0,1, 2,3, . ;
3. Set of all rational numbers

Q:%%%r nelZ, N
g —_—

4. Set of allrealnumbers
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R= {42}, wherer= B U _U...- infinite decimal fraction or periodic
one(set of rational numbers), apnperiodicone (set of irrational numbers), here
is b/ ZyandU/ Z,..

The set of all positive real numbers is design&gdind all negativenes- R’
. If thesesets are addetie number zero we shall write accordingy d Ry

1.2.Point sets of geometrical space

The least and indivisible structure of geometrical space is the point. All other
geometrical figures and bodies of gestrical space are considered as set of points.
Therefore geometrical figures on a plane, such ssganent, a line, a polygon, etc.
and alsdbodies in geometrical space, for example, a sphere, the polyhedron, a cone
etc., represermioint sets whichmembaes are points.

1.3.Setassignment

To assign aet, means, to specify that gendealturesthat separates itaem-
bersfrom other objects. In most casesisaissigneavith the help of charactetic
property of itsmembersCharacteristic propéy of thesetA is understood asuch
property which allnemberof the given selhaveand only theyhave it If characte-
istic praperty ofthesetA, which membeis -, we designate throug® (= ,)the setis
writtendown:

A={ic(x}

For example, iA istheset of all even natural numbeisis writtendown:

d={n|"=2n.n/N}
If two setsA and B consist of the sammemberssuch sets refer tasequal
sets Equdity of two setss writtendown¢ =

1.4.Inclusion. Empty set

The £t A which allmemberdelong to some s&, is calleda subsebr a part of set
of B. It is written down a$p£ ] or] E¢ and it is read asA is includedinto B or B
containsA. . Symbol E is calledinclusion symbol
The subset whicldoes notcontain anymembersis referredto asempty set
andit is designateavith symbolA .
By definitionit is acceped, that for any sep A £¢, ¢ £ ¢.
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If & £] and | E, then ¢ E[ —is theproperty of transitivity For
exampleNEZEQERT NER
If & £] andl £¢,then o=l .

1.5Propositional logic. The theorem.
Necessary and sufficientonditions

Implication. We shall speak, thairoposition W implies or attracts, and also
hasas @nsequencéhe propositiorQ, if Q is validevery time as it isalid W, and we
shall write downw Y Q. If, in its turn, Q attractsW then proposition®V andQ refer
to asequivalentones it is written downW Y Q. Then in any reasoning it is gsible
to replace one of these twaropositions byanothemne

Quantifiers. For designation of exprbogsio

ever that may bé , "exists", “ there will dse e
guantifiers are used:
Universal quantifief:“ f or al | 7 , hofNevefthatmaghiee r y o n
Quantifier of existencé:: "exists", “ there wil!l

For example, the statement, thaf | it is possible to write down aslfows -
" ¢ Y& 1. The opposite is incorrect. That fact, ti@tl does not attract, that
& ¢. Propositionsare not equivalent.

Negation Negationof the given property is represented by a symbol of the
given prgerty crosseadutwith lineEl , Y
For example, thetatement, thahe setF is not a part ofthe setB, is equia-
lent to the following: there is suchembera from F, thata does nobelongB.
FEIU ($O/ FY O/ )
Propositionsare equivalent.

The theorem.The mathematicgbroposition which validity is definedby the
proving (by thereasoning)is referredo asthe theoremThe auxiliary theorens re-
ferredto asthe lemma.

The formulation of any theorem consisif two parts: conditions and conel
sion which follows from the given condinh. The condition and the conclusion can
interchange the position: a conditicanbecome the conclusion, and the cosmn—
can becoma condition. Then one of these theorameeferredio asdirect theorem
and anotheto inverse theorem

In mathenatics there are theoremsth three various conditions; necessary,
suficient and bothnecessary and sufficient.

The necessary conditiors a condition withoufulfillment of which the given stat
ment is incorrect.



18

The sufficient conditionis a conditionfrom which follows, that the given statement
IS true.

For example: 1For the quadrangléo bea square, it is necessary, that its draajs
aremutually perpendicular.
This condition is necessary, but there is not enoégiually, if diagonals are not
perpendicular, a quadrangenot a square but if diagonals are perpendrs it does
not mean still, that a quadrangtea square.
2. If the sides of a quadrangle are equal, such quadramgéeparallebgram.

This conditionis sufficient, utit is not necessary since and withastfulfil Iment
(the sides are not equal) the quadrangle can be a payediel.
The same condition can be both necessary, and suffatiéme same time

For example, if in a triangle twanglesareequal, such triangle isosceles

The given conditions sufficient, since the theorem is true am@s necessary
Actually, if in a triangle twoanglesare not equal, such trianglentet beisosceles
the condtion is necessary.

Necesdly and sufficiency of a condition can be written down, using imaplic
tion. If the theorem is considered set of twg@ropositionsW andQ and if the the-
rem is true, i.e. implicatiois trueW Y Q, thenQ is a necessary condition fav, and
W is a sufficient condition forQ. If the propositionsare equivalen® U Q, thenW
is a necessary and sufficient condition@ron the contrar{ is a necessary andfsu
ficient condtion for W.

A 2QPERATIONS ON SETS
2.1.. Intersection of sets
Let there arewio setsh andl . The set ofall memberss, belongingat the same
timeto AandB, makes new sdét whichis referredo asintersection of A and B and
it is written down:
F=A&ZB={R|x/ Adx/B} (fig.1.1)

Sign £ - is a symbol ofintersection
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V7 - F = A&B 77 -C=ACB
Fig. 1.1 Fig.1.2

Operation of crossing possesses the following properties:
1A £B =B £A - operationZ is commutative
2.(A/EB) £u = ¢ £( A4) -itis associative;
3AED = ¢, AEA=A;
41f ¢ £1,thenAZ&B = ¢.

If sets have h@ommon members.e. they are nointersectedthenA 4

B=A.
2.2.Sum of sets

Let there are two se#s andB. The setC, consisting ofmemberdelongingto
Aor B, i.e. belonging oA or B, or A andB at the same times referredto assum A
and B andit is designated

4 =ACB={x|x A orx/B,or x/ ¢ andx/ B}. (fig.1.2).
SignC - a symbol of sum.
The basic properties of summing operation are as follows:

1A CB =B CA -operation icommutative
2(ACB)Ca=6¢0C( Cu) -itisassociative
3ACO =ACA=¢;

41f ¢ £1 thenACB = ] .

2.3.Set difference

Let there are two sesandB. The setD consisting oimembersn of thesetA
and not belonging tthe setB, is referred to as setdifferenceof A and B andit is

desgnated:

D =2 ¢2[5/¢ nifl} (fig.1.3).

/fffff
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4 -D Al ¢ -1 R 4 -Go A )
J

Fig. 1.3 Fig. 1.4 Fig. 1.5

The basic properties

1.6\ , 1\ —operation is nocommutativgfig.1.3and1.4);

2. (6, ¢\ \&) —it is notassociative

3If ¢ £1,thend\ = A, butl\dp makes the set namedmplement of setA
relative to Band it is designate(% ¢=I\p={n/n/1 andr/ ¢, ¢ £1} (fig. 1.5).

We have AC éigaBAgz B q’AAEé%;BAgz/i .

2.4 Product of sets
Let there are two sesandl And let® ¢, b/ ). L e tconsider the orderetbuple
(a, b), andccouples(a, b) and (b are consideretb bedistinct even if¢p = ISet of
the every possible ordereduples(a, b makes the new set nampobduct A and B
and is designate¢l®] . Elementsa andb refer toascomponents or coordnatesof
the couple(a, b).
As an example product of twmoint ses A andB of the geometical spaces is

consideredn fig. 1.6

|
Ty B b

Fromfig. 1.6 we @an seethat¢p sl , 1 3¢ and, hence, product of sé&ssnotcommut-
tive.

When setB is identical to sefA( 1 = ¢), then$?d represents set of the-o
deredcouples(Q & ), wherea and aj belong to the same sét( & ¢ and §/ ¢ ).
Such sets referredto asthe Cartesian squareBut also in this cas@ Q) , (Q;,0).
L e tillbstrate it by the example g@ointsets (fig. 1.7).
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The set of points of the shaded partltiplane makethesetd ?¢p - the Care-
sian square

\

Fig. 1.7

In general lethere isaggregate of set;, ¢,, ¢ . . . ¢, NOt necessarilgis-
tinct, we shall namasproduct and designate through

Q
OA=01%022037. .. %,
i=1
the ®t of the ordered systef®, @ Q . . . @ wherei- memberbelongs to se&};.
SymbolP signify a signof product:

Q
QOaj=a,@,Q @,
i=1
The indexi is referred to asan operational index. It can be replaced with any
other letter

n n
Oai =0ax

i=1 k=1

Definition. The element of product of infinite number of the setsch is
equal tothe setR of real numberss referredto asnumber sequence.
(b, b, bs, ... by ...) R3R3R%...3R3. ...
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CHAPTER 2

FUNCTIONS, MAPPINGS
Al. FUNCTI ONS

Let there ighe setD nameda definitional domain And let there ighe sety named
range of values

Definition. Conformity whichrefers each elemerft/ D to some eémentlz/ [,
is calleda mappingD into [ .

The elemenE/ D (a prototypeof B is referred to asvariablesor argument
the ebmentlz/ [ is referredto asvalueor directimage

Mappingis calledalso a function, it is usuallydesignatd by lettersf, y, j
andit is writtendownlz= f(=). Designatiork- f(=) also is usedwhich is readas the
elementa correspads totheelementf (= .)There is also designatiorf:D- [, which
is read:f is amappingof the setD into the set[ . Also we can saythatf is a furc-
tion of variablen with values inf or thatlz =(k) is adirectimage ofthe element at
mapping f (or by means of).

It is necessary to distinguish precisétg variabler which is amemberof the
setD, value of functiorf (= which is amemberof the set[, and operatior which
represents a category which is distinct from two prevames In the given defirtion
of a function, two aspects are essentifitst, indication ofthe setD for membes -
(i.e. afunction domaii and, second, an establishment of a rule or the lagoé-
spondencé betweenmembes ~/ D u I/ [ . Therangeof valuespossssedby func-
tion f (= ,)which isusually a subset of the sgt of function domain, usually is not
indicated as the law otorrespondencalready defines this subset. Titmngeof va-
uespossessely function orf (D), or [ (f) is designated

fO)=r(M={f(¥)/~/D} EE

and itis referredto asimage of seD atthe mapping or simplyimageof mapping f.
So, atthe mapping: D- E not allmembesy/ [ should bémagesof anyni D.

1.1. Identicalmapping

If = D, then f definesthe mappind into (or orto) itself.

Definition. Mappingwhich putsanymember=/ D in conformitywith the same
membey is a mappingD onto D, namedidentical mapping and deginatedy, i.e. J:
D- Dandj(rR) =R" A/ D.

1.2.Function (mapping) graph
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Definition. Let f there is amappingof the £t D into the sef . The set of the
orderedcouples(r, f (7)) wherer/ D, andf(7)/ [, which area subset ofhe product
D31 is referredto asthe graph of function f.

L e tconsider it by the example pbintsets (fig. 1.8)

X

The set of points of the shaded part of a plane makes tB€setA line /7 \/
is a subset otouples(r, f (= ))- thegraphof functionf. L e tnétesthateach value of
argumengt correspondsnly one point(x, f (x)),belorging to thegraphof function f.

1.3. Sequence of sehembers

Let ' Dthdset/NVd matural numbers, arab| - any set.

Definition 1. Mappingf of theset/V into the set is referredto assequence
of memberdromy .

Thus, the sequendecomects each natural humberwith somememberkz
from [, whichis usually designatey, or f,, , instead off (n), andn is calledan n-
dex. The sequence will be frequently designated f,, f,, . . .f,, . . .or in abridged
formf = {f.}, , andthe nemberf,= Iz, from [ we shall name a member with angéx
n (or n-th member)of thesequencé.

The mapping(sequencej can not be unequivocal: the samemberfrom [
can serve as image of many various numbers #omhereforewe should noton-
fuseexpe ssi on “f=dfg dwite @ x @ r e sangeal sequéncd " The
rangeof the sequencdf,} can consisbnly of onememberiz= Ofrom [ at = and,
such sequencesfer to asconstant sequencesndtheseare designatefid, i.e. f, =
Q " n/N.

Definition 2. Two sequenceff,} and { Y,} from [ {:,} are equal, iff,= Y,
at alln/ N.

We should notonfuseequality of two sequencasith equality ofrangesof
these sequences. So, we shall consider seq{ighcaletermined by means K= 0,
fae1=1, Wherete/ N, i.e. f,= 0,, if n —is even and f, =1, if n —is odd and gquence
{ Y.}, determinedas Y, = 1, Y41 = 0.. These sequences represemwtppingof the
setN into [ = Zy; rangeof these two sequencesthe samgit consiss of two mem-
bers- 0 andl; thesequence§f,} and{ Y,} are not equal.

Using concept of function for numerical sequencbgpterl , , ifem 2.4),
we can give following definition
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Definition 3. Mappingf of thesetN of natural numbers to the set
R of real numberss referredto asnumerical sequence
For examplethe mapping

2n? - 17
f:n- f,= :
" Un+3
o . L _ 2n%-17
Wheren/ N is a numerical sequenamd it is written dowrf,} = s
n-+

The given numerical sequencesisgquencetdh such a manner thatith index
of the n-th member of sequenfg} we candefine also numerical valud, of this
member. For example;th member of the specified sequence is etpual

_2397-17 162-17 _145

f = =
° 2/9+3 9 9

We also shaltonsider suclpreset numerical sequencdselow.

Definition 4. Numerical sequence: n - a,= Q+ (n-1)d, where@/ R andis
referred to asan arithmetical progression The numbed is referred to asa differ-
enceof an arithmetial progression.

Definition 5. Numerical sequende: n - a,= & g”‘l, wherea,;/ Randg/ R is
referred to asa geomaetical progression The numbeg is referred to asa denoni
nator of a g@metrical progression.

A2. TYPES OF MAPPI NGS

Let s’ c ons i de theseth iato theasseEp Setrofgall magesf (= ,)
wherer/ D at the mapping: D - [ forms a sibset in the sqt and as noted above,
this sibsetis designate(D). Thenf(D)={f(r)/~/ D} £ .

Definition 1. If f (D) = i.e. when anymemberfrom [ serves as image eveh
onememberfrom D, mappingis referred to assuperposition(surjective) , andwe
can saythatf isthe mappind onto .

And so, if " y/ [ Y y = f(7), wherer/ D thenf —is superpositionand[ = f

(D).
Definition 2. Mappingat which differentnembes of setD have various img-
es,is referredto asa nesting(injective), i.e. ifmy, o, then (=), f(=).
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2.1.Biunique mapping

Definition. Mappingwhich issurjective and injectives referredto asbiunique
mapping In other words: anynembera/ D hasasthe image some uniqueembe y
= f(r)/ r, and anymembery/ [ has gprototype some uniquaembern/ D.

For biuniquemapping theoperationwhich is inverseo f, is mapping; oto D
as for”y/ [ theimage is the uniqumembern/ D. Suchmappingis referredo asan
inverse mappingto f andit is designatedf ™.

Thus, the distinctive feature of biuniquenappingis existenceof an inverse
mapping for it

For examplemappingf: f: A - y= R, wheren/ R is mappingR onto R andit
is biuniquemapping Inverse mappingdor it will be f :y- 7= 3/, wherey/R
Mappingn - = is mappingR into R andit is not biunique. As not anmembery/ R
is animage of somenembera/ R, and thatmembery/ R which isanimage, isthe
imageof not a uniquemembera/ R y = -5 is notan image” A/ R, andy = 4is an
image form = 2 andr =-2. Therefore operatior- ~=°./z, which is inverse to nz

ping m- y= =, is not a mapping

2.2. Countable sets

Definition 1. If for setsD and[ there is even one biuniqureappingD onto [
so we can saythatD and[ hawe identical potencyand #so, that such setare equv-
alent

The potencyconceptserves as generalization of usual concept ottheting.
Actually, the countingconsiss in an establishment of biunique conformitgtleen
set of dpjects and someriite set ofsuccessivéntegersstarting with one
The potencyconcept allows to givéhe exact meaninfpr the concept of the set ka
ing infinite number ofmembersSuch set will be determined by means of the ¥ollo
ing propertythere is even one subset drsti from all set and having with itident-
cal potency So, letN therebea set of natural numbers; the set of even nuniurs
stitute apart ofthe setN which is distinct fromN. But conformityn - 2nis biu-
nique; so, these two sets have identuzdkrcy, so N is infinite.

Definition 2. Sety is referredto ascountableset if it has the samepotency as
thesetN has

It means, that there is a biuniqoeppingf of the setN onto [, i.e. anyone
n/ N canbe put in conformitywith one and only one suanembera/ [, thatn =
f(n), andn = f “(7). Usually thememberfrom [, correspondindo n, is desgnated
throughn,, andn is referred as an index. So, theountableset isthe set allmembers
of which can begiven natural indexes. We shall notice, however, that thesifis
not true; thememberset ofthe sequence can not loeuntablebut it can beihite. So,
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the sequence determined by means 1 at anyn, forms the set consisting of a
uniqguememberl so, this seis finite andthereby itcannot be set of the sarpetency
with N.

An example ofcountableset. SeN’ of even numberss countableactually map-
pingn - 2n is biuniquemappingN onto N’

The theorem.Product of finte number of firte or countablesetsis finite or
countable

L e taccapt this theorem withoutdlproving
Corollary fact. Set Q of all rational numbeis countableSetR of all real numbers-
is uncountable

2.3. Finite set permutation

Definition 1. Any biuniquemappingof the setD onto itselfis referredto as
permutation of thesetD.
Let D be a finiteset fromn memberd = {Q. . .Q} = {a}, wherei = 1, 2,

. n. Mappingf is permutatiorfor thesetD, if f( &) = &, wherea;/ D and aj-/'D, i
=1,2,...nj=12,...nlfi=j,thenf(a) =g and there isdentical mapping (f
= J). Thus, identicamapping is always permutation

Number of varioupermutation®f thesetD from n membergs equalton/ (n

factorial).n/= 1 A 2 A is3theproductof n.successivanatural nunbers,
starting withone

Definition 2 .Permutation in which places only twanembes of set are
changedis referredo as transposition

B, 8, B B
[”:
al;az;---;@s---a’---yan

Any permutationcan beobtainedfrom the basigermutationby successive
transpositionsThe choice of the basmermutationis completelyarbitrary.For def-
niteness we shall name the bgs&emutationa,, a,,. . .,a, andwe shall considear-
bitrary permutabn f this setQj=f(g),i =1, 2,...n, but Qi is one ofmembers

ay, ay,. . .,a, and soQ; = ay , Where my m, . .. ,m, - values of somset permu-

tion 1, 2... n,the firstn natural numbers. Thus, the following tywermutationsare
equivaentto:

38, ap,2 ap
23%12
%

2,
f=

I OOOz

I oo

aL, 2,
" By 2

my >
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If into the permutationm, m, there will be suctcouple( m, m),, thati> |,
and>j, Om< m, we can say thasuch coupldormsan inversion

Definition 3. The generahumber of the inversions formdu every
possiblecoupleof permutatiormy, my, . . m,, is referredto asnumber of invesions

of thispermutation
Permutation f is referred to as even permutation, if number of its

inversiongA f) is evenotherwiseit is referredto asoddpermutation
For example, ithe permutation

_ 81234567 §

- 8%156472 8
number d inversions is equal tq2); (0); (2); (2); (1); (1) - general number of
inversions r( f) =8. The permutationf is even

The theorem At transposition the permutati@vennesghanges, i.etransyo-
sition - is anoddpermutation
The proof

&22.i2,i3n35
“®22,j2.i.2 .n8

ti, j)
n(t(i,j)=G-i)+G-i-1)=2(-i)-1-odd number.

Here (j - i ) -is number of inversions for numbgafter itwas permuted( - i
- 1) - isnumber of inversions for all numbers located gfndbeforei. For all oh-
er numbers the number of inversions has not changed.

A BOMPLEX FUNCTION. INVERSE MAPPING

Definition 1. Let f there is anapping & the setD onto the sety (i.e.f (D) =
[ ), andg - mappingof theset [ into thesetG. And letn/ D, theny = f(R)/ [, also it
is possible to considenemberz = g [z Which belongdo G. Thus,eachi/ D corre-
spondswith z = g/ f(r)/ from G andtherdy mappingof the setD into G is dete-
mined,which isnamedcomplex function or a composition(superposition)of map-
ping f onto g andit is designatedyf (here it is read from right to leftpstead offrom
left to right sinceg, f is g/ f(~)/), g - is referredto asexternalfunction, andf i inter-
nal function.
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Example.Let there bef: 7 - k= f(7) = 2", where?/ R & R". In this casd
is amappingof thesetR onto thesetR" and letg: y - z=g(y) =5 - Elz’ wherez/ R,

and, henceg is mapping ofR" into R Thengy f: 7 - z= =¢[f(R)] =5 -
2%:5_ 3@*ngyf:R- R

Operationof composition ofmappings(p) is generallynoncommutative gy f, fo g
andfy g can notmakesenseasf is a mappingof D onto [, andg —is a mapping of
into G.

Contrariwise it is associative: ih is a mapping ofG into1 , then hy (gof) =
(hog)of. Letf(r) = 2 9(B) = z, h(2) = wthen(gof) (7) = 9(B) = = zand/ho(gof)/ (r)
= h(2) = w; just as(hog)of (m) = f(h09) (¥)/= h(2) = w

Now with the help of a composition afappingsve shall definenversemap-
pingf ! to the mappind.

Definition 2. Let mappingd begiven f: D - ( andy . - D.. Mapping y is
refered to as thénverse mappindp f andit is designated = f ™, if yof=foy = J,
wherej - isidenticalmapping j (= ¥ n.

As it was mentioned aboy@versemappingexists, iff T is abiuniquemap-
ping. Theinverse propositioris true- if f hasinverse mappind ™, sothis is biu-
niquemapping

A MAPPINGS OF SETSR, R3R d RARAR ONTO
POINT SETSOF THE GEOMETRICAL
SPACE

4.1Biunigue mapping of theset R of real numbers
onto set of points ofthe coardinate axis

Let's take astraightline andset on ita positive direction (usually it ishown
with an arrowy. Then the opposite direction will be negative. Suitlealed straight
line is referred to asan axis. If we choseon the axis any reference poinf and
scalesegment] [, such axigs referredto as coordinateor number axis The point
[ isreferredto as theorigin of coordinates. Coordinate axes usualtg designated
asx,y,zor[ 70z Oz

Let's choose on an axs~ a pointM and defindts position. For this purpose
letd sneasure théength of segmen®M by scalesegment[ . The length of a scale
segments acceptedsequalto onef [ =. We shallobtain amabstract numbea/ R;
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which will be rational if scale unit and the giveagmentare commensurddy, andak
will be irrational if they are incommensurable.

Definition. Coordinate of a point M. on a number axis is the numben/ R
and equal to length of @egmenf[ [ ~= 4, if the point M is located in a pasve
direction from theorigin of coordinate and negativ8 = -a, if the point is bcated in
a negative direction from therigin of coordinatesThe coordinate of therigin of
coordinateds considered to be zerdhat fact, that is coordinate of pointM, is
written downM (- .)

In this casdetween seR of real numbers and set of points of a coordinate axis
[ Atis possible to establish conformitys - [ (R) —it is a conformityf will be biu-
nique mapping Each point M of a coordinate axi©x correspondgo a unique real
number- from Rand on the contrary, each real numb&om R correspondsaonly
one certain pointM on a coordinate axi®h. Thus, the setR and point set of a
straight line have identicglotencyand, hencetheyare equivalentMappingf here is
understood as a wayf definition of coordinate of a poimf M on a @ordinate axis
Ox.

4.2 Biunique mapping of seR | Rnto set of points of the coordinate
plane

Let twointersecteadoordinate axebegivenon a planend theirsequencen a
planebe spetfied, for exanple, the first axis,, and the secondy. Such axes refer to
as orderedaxes Theintersectionpoint of axeg0 is taken as origirof both axes of
coordinates. Scalegmentat these axes can be various.

An angletwo ordered axe8 andy is an angleat which it is necesary to turn
an axis~ to y so that directions of both axesoincide If turn is made counter
clockwisethe angleis consideredo bepositive and ifturn is madeclockwise— the
angle is considered to lmegative. Thangle between axes is defined amimgsly.
If we designat¢éhe leastanglebetween axes through then the anglg +2&, where
¢/ Z, also will bean anglebetween these axes. If it is necessargid@termine andra
gle unambiguouslyve bring restrictions, considering, fok@mple,0¢; <2p or -p

<jep.

Definition 1. Two ordered coordinate ax@&stersected with an angle in a
point accepteas origin ofboth axes, make the gene@drtesian coordinate sfem
on a plane(fig. 1.9,0.

The first axisOx is referredo asan abscissa ag, the second Iz an ordinate
axis. The planas referredo ascoordinateplane andit is designate@ [.kz
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Definition 2. The ordered set of two mutually perpendicular axes of coord
nates(/ = ° g2 ) with equal scalsegmentpieces (.= [ .= { [ and with the
generalorigin of coordinateOt on each axiss referred to asthe Cartesian recta-
gular system of coordinates on a plane

If / =+ p/2,the system of coordinatesreferredo asright (fig. 1.9,b) if / =
-2 the systenis referredto asleft (fig. 1.9,c¢).

y
Y b) )
E\j =+p/2 j :-plz/.
. e
X ol E X X E 1o
Fig. 1.9

Further we shall use only the righta@iesian rectangular system of cobrd
nates.

We shall take in a coordinate plargé yan any pointM and we shaldraw
through at two straight lingsarallel to axe§ xand[ y(fig. 1.10). Such operatiois
referredto asparallel projection Intersection pints of thesestraight lineswith coar-
dinateaxes we shall designafte; and{ ,, and their coordinatesaccodingly through
~ andy. Points[ i(r) andf ,( refer to projectionsof a point M to coresponding
coadinate axes (fig. 1.10).

11

Fig. 1. 10.
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As a result ofprojectionoperationthe point M is put into conformity witkthe
orderedcouple ofnumbers(r, ), wherer/ R and iz R, hence,(RBD)/ R3R.. These
numbersare located irsequenc®f coordinate axesndrefer toasthe Cartesianco-
ordinates of pointM on a planeandthesearewritten downM (r, B).

It is easy to see, thaach pointM located in a coordinate plang Yy corre-
sponds tathe unique orderedouple ofnumbers(n,)/ R3R.. On the contrary, each
set orderedouple ofnumbergn,B)/ R3R correspondso unique pointv in a coordk
nate planexOy.To define it,it is necessaryo draw straight linesthrough point§ 1(~)

n [ ,(B which are parallel to coordinate axes. Tirgersectionpoint is the desired
point M (r, B.

Thus, betweenhe setR?R of the orderedouples of real numbers angdoint set of
the coordinate plan&Qyit is setup abiunique conformity~,B - [ (7B, so,theset
R?R and set of points of a plane are equivalent sets

4.3.Biunique mappingof set R R 1 &hto set of points of geometrical space in
chosen sgtem of coordinates

Let's take three ordered coordinateesn, y, zwhich do not lay in one plane
and arantersectedn the pointO. Letstake thispoint as the origin foall three coo
dinate axes. Such ordered set of coordinate mxeferredto asthe generalCarte-
sian sygtem of coordinatesn geometri@al space

Definition. The ordered threm pairs perpendicular axes of coordtes with
the generabrigin of coordinateO on each of them and with same sca¢gment
[ [ =fbr each coordinate axis referredto as
The Cartesian rectangular system a@foordinates in geometrical spa¢gg. 1.11).

y VA
Z / M(X,y,z)
M3(z)
EF E
E EZ My .
e, 0

0 E M(X) X y
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Fig.1.11a Fig.1.11p

The first axisis referredto as an axi®x, or anabscissa axisthe second axis kzor
anordinate axis, the third- axis Oz,or anapplicate axis The plane whik is passimg
through twoout of threeaxesOh, [ [z Ozis referredto asa coordinate plangthere
are threeoordnate planesthey are designatexk -~ [, ¥OzandzOx.

The orderedriple of coordinate axes which are not laying in one plasmee-
ferredto right if from the end of a positive direction of axds the shortest turn from
theaxis{ ,, totheaxis v is seen countetlockwise (fig. 1.11Q). Otherwise the B¢
tem of coordinates referredto left (fig. 1.11,b). We shall use only the right stgm
of coordinates.

Let M —beany point of spacd. e t ' sthralghat the planes parallel toe coord-
nate planes (fig. 1.11). Intersection pints of planes with correspondingardinate
axes we shall designate through M, M3, and their coorhates- -, iz z. . Such -
derednumber triple(n, y, z) / R’R?R is namedhe Cartesiancoardinates of a point
M in geometricalspace and pointd;(r) Mx(B) Ms(2) - are named thprojections of
a point M to coordinate axes airidis write downas M (X, y, z).

It is obviouslythateach point of geometrical spaisecorrespondent in thea
tesian system of coordinatasthe unique orderedumber triple It is valid alsothe
converseoroposition each orderediumber triple in the @rtesian system afoord-
nateds correspondent to thenique point of space. To fing we need to draw planes
through pointsMy(r) Mx(B). M3(z) which areparallel to corresponding coordinate
planes.Straight intersectionf these planes arstersected in a point whidk the ce-
siredM (X, y, z)

Thus, in the @rtesian system of coordinatiéss esthlished thebiuniquemapping
of setR3R?R of the orderedriple of real number®snto the set of points of geonte
rical space(r, Iz z) - M(x,y,z), i.e. we can saythatthe setR’R’R and theset of
points of geometrical space are equivalent. Thagping is made by means of the
Cartesian system of coordinates and a way of definitiothefpointcoardinates.

In case of produdR?R?R? . . .°R,, with number of factore >3 pointsets in
the geometrical spacehich areequivalent to these seto not exist, in view ofact
that we have nantuition of space with number of measurementsye thanthree.
However,if we wantto distribute geometrical methodsso ontoproducts of setR,
by numberwhich is more thanrée,we introduce theonceptn - dimensionalarith-
metic spac&k"” and ain >3
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CHAPTER 3

ARITHMETICAL SPACE R"

A point M of arithmetic space is the ordered set froneal numberg qy, m, . . .mn),
which are calledhe coordinates dhepoint M,i.,e.M=[ = (;, o, ...m) (U N 1A
(m1, 7, . . .m)). The arithmetic space makesset of all conceivable pointd. The
numbern of coordnates of thgoint M, determined by quantity of factors in prat
R-R-R=. . AR, is referredto as dimension of arithmetic spacdt is desgnatedasn
- dimensionahrithmetic spac&'.

For exampleone-dimensionalarithmetic spac®’. A point M of this space is the
number/ R, i.e. M = (7 .)In geometrical spagéhespaceR.!is mappeddy a stright
line; bidimentional spaceR’. A point M of this space is the ordereduple ofnum-
bers(fu, )/ R3R i.e.f = (R, ). In geometrical spacehespaceR’ is mappedby
a planethree-dimensionalspaceR’ is mappedn all geomeical space angoint
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= (A1, Mo, me)/ RARAR. The further conformity of arithmetic spa&8, which can not
havedimensionn >3 with geometrcal spacealso these spacésive nageometric
zualization

A 1EUCLIDEAN SPACE

In arithmetic spac®' by analogywith geometical spacit is introducedthe

concept of "distance" between poitfts = (r,, - . . ,m) andf > = (g, . . . &),
designated ([ 4, f ,). If this "Qistance" Is definelly the formula
d(f 1. 2)=0im)+(Bim)+.. . (&in), (3.1)

so such arithmetic spacds referred to as Euclidean spaceln this case fon ¢ 3
"distance"between points in arithmetic space coincides with distance betp@nts
in geometical space.

In n—dimensional Euclideaarithmetic space, as well as inogeetrical space,

we can introduce theoncepts of "line", "figure"”, "body", etc.

For example. 1. Set of poindd =(qy,r, . . . ,m), Which coordinates inel
pendently one from another satisfy to inequalities
Qélm Co, 208G ¢, . ,¢mC8, O

is refered to as closedn - dimensionalrectangular "parallelepiped" and it is dgsi
natedas following

[Q, 192 200 . o n]l&8{M(1, = O,).[i¢&re,i=2,2,...1

If therethe strict inequality® <~ <g;,, "parallelepiped'is referred to open

At n ¢ 3 n-dimensional rectangular "parallelepiped” has real geometripal re
resentations. If n = 1 a@r©¢ ~ ¢ 9, such closed onrdimensional rectangular "pardHe
epiped"is referredto asa segmentit is designatefl Q 9] and it isgeometricallyrep-
resented by @egment Open onalimensional "parallelepiped® <=~ <9), , is re-
ferred to asan interval and it is designate(@ o).

In thecase n = 2 closed bidimentional rectangular "parallelepiped"
(O¢r o, ceyed) itis geometricallyrepresented by a rectangular with the smlés
aandd-c.
Threedimensional (n=3) closed rectangulaatallelepiped'©¢ - ¢o,c¢y ¢d, f ¢z
¢ | is geometricallyrepresented by an ordinary rectangular parallelepiped with the
sideso- O,d7 c and | - f.

2. Set of pointM = ( Ay, - - . ), determined by an inequality

( 1)+ §i o2+ . W B er*orkr?y,
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wheref o= (&° &° ... ,&°) is a constant point, andis the positive constant
number, formsclosed(or opered) n - dimensional'sphere"with radiusr, with the
center in pait{ . In other words"sphere" isa set of pointdM, which dstance from
some constant poifity does not surpass (or legs)t is clear that this "sphereif n
=1 is correspondent to segment,nf=2 - a circle, andf n =3 - an adinary sphere.

Open "sphere" of any radius 0 with the center in poirft o (2°, 2°, . . . ,&°) can
be consideed also aghe vicinity of radiusr or r - vicinity of this point. At n=1 the
vicinity of a pointx, of radiusr represents an interval with the centetthis point
andit is designate@xy-r, xot+r).

All stated in this paragrapthouldbe considered as an estalurent only the
certain geometrical language; it is not connectedhxa8) with any real geometrical
representations, therefore all geometriams which were used in the sense which is
distinct from usual, we placedsoa | | e d : "di stancleél, egi me
"sphere". Henceforth weill do it any more.

A 2THE BASIC PROPERTIES OF THE ARITHMETIC SPACE R*

That fact, that betwanthe setR of real numbers (spad&l)andthe point set of
coordinate axis is established biunique conforntitigpter2, 84, theaite
bles with sufficient presentation to illustrate the basic properties of redlerset

2.1.0rderliness property

For any two real numbels; andr, there is one, and only one 1attios

1 = rp - PoOIntsf 1(m1) andf o(~) coincideon a coordhate axis
B) m1 >rp - POINtf 1(~)is located to the right gboints [ (=) on a coordinate
axis,
9) m <m —point [ () is located to théeft of pointsf ,(~,) on a coordinate
axis

Signs> (greater thanaind < ( less thar) havetranstive property It follows
from m >mp p >rg, thatm > andfromem <mp, 2 <og Y A1 <rs.

2.2.Density property

Howeverwhatmay betwo real nunbers ~ andm,, at that-, >~ therealways
will be a numberrs  putbetween thents, >~ >my.

There is aruncountableset of umbers<;, moreover, among thethere isalso
anuncountable set of rational numbekstually, points (=) andf ,(~,) are the
segmenends| ;[ ,,, which lengthd(f ;[ ,) is distinct from zero, andccording to
the formula (3.1.)t is equako ~, - m;. L e tcliogse on a coordinate axis any pigt
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which coordinate we shall designateWe shall demand thgoint{ 3(~s) not toco-
incide with pointf (=) and we shall agsider theratio

d(M1M3) Xt X

d( Mst) Xy = X3

(3.2)

If this ratio equal to any positive numbérfrom R, then it followsfrom orderliness
property ofthe setR, that pointf 3(~g) is insidethe segmenf ,f , and, means,
~<m<rp (provided that,> ~)).

Thus, for all/ / R, thepointf ; with coordirate

n /5,
:3 = ? (33)
is insidethe segmentt f », i.e m<m<m (if > m) piecel 1 [,2e.r <- <= Aif=>
~ ) andthere is anuncountable setf such pointssince - is any number fronR".
The formula (3.3) which isbtainedfrom (3.2.) provided thaf:% =/,Is
referredto asthe formula ofsegmentdivision in thegiven ratio

2.3.Continuity property

L e tpatite thesetR into twonorempty set$ , andi * and let the fowing
conditionsbe satisfied:

1. Each real number getgdrone and only in one dhesetst ,t .

2. Each numbea of thesett is less than each numbetof thesett .

Suchpartition is referredo assection Set{ is referredto asthe lower class
of asection, set * - the upperclassof a section. The section is designated *. For
section in the field of real numbers the following theorernaigl.

The theoremFor any section £ *in the field of real numbers ¢he is real
numberbh, which makes this section. This numlgerwill be:
1) either the greatest ifower classt (and therthere is no the least onmeupper
classt ! there is no the least),
2)or the least in top clags" (thenthere is no the greatest oinebottom class

[)

Really, sincés- M(=) is abiuniquemapping andthere is spacbetween the
pointson a coordinate axis which ameages of real numbers atitisthe section la
ways falls at a point of a coordinate axis which serves as image olreberb
which ismakinga section otthe setR.

2.4.Absolute value

Let = besome number froR. Forit only one casexestsfrom three ases-
<0, =,06> 0. Now!| e tefiremapping~- f(x), as follows. We shall pu{x)=r,
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if x20 and f(X)= -, if ~< 0. Thenmapping(function)~- f(x), is referedto asab-
lute valueor the moduleof number= andf (x) it is designated||, i.e. f(x) = |~ |.
Geometrically an absolute valoéthereal numbeF is equal to distance from the
origin of coordinate® up to the pointM mappingthe given numbek on a coord
nate axis, i.eln|=0f (Chapter2 Aditem.4.1).

Absolute valuéhasthe following three propertiebowever that numbers
bl R @ R, may be, it always is

16|20 ulb|=00 b=0;

2.16g1=16]lgl;
3.|6+gl ¢ 6] #1491

Last inequalityis referredo as an inequality of a triangle.

A3.MAPPING R"INTO R;
NUMERICAL FUNCTIONS OF REAL VAR IABLES

L e tconsiderthesetD of pointsf = (7, m, . . .,m) from R". If on this setD func-
tion f with value inR is determinedi.e. “ M/ D is put in conformitysome number
y/ R, such functionis referred to asumerical function of real variablesandit is
designateq = f(ry, r, - - .rm)-
If D £ R, functionf, determinecbn D, is referrecto asnumerical function of onere-
al variable In this casehevariable~ andthevaluey = f (x) of functionf belongsto
same spacB". Thegraphof such function- is aset of points in spade® with coa-
dinates(r, f (). In geometrical spacé is a linein coordinateplaner [ .z

Let's note also, that the sequence of real numirapter2, A litem.1.3) is a
sequence of values of numerical function determinedherset N, and, hence, at
which the roleof performs anatural numben, takenincreasing ader.

WhenD £ R, functionf, deerminedon D, is referred toas numerical function of
two real variables In this case variable is a point frdR, i.e. the orderedouple(r,
), and valuez = f (x, ypf functionsf —is number fromR. Thegraphof such furction
—is aset of points from spade® with coordinate§;, Iz f(=, B): in geometrical space

2 2

- it is a suface. For example = ax + by + c-a plane;z:X— +yF , Wherea>0 andb
a

>0 - an elliptic paraboloid (fig. 1.12).

S

N
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Fig.1.12

Functionf, determined o> £R"(n2 2), is referredto asnumerical function of
manyreal variables In this case value of functignfrom R, it is desgnated:iz= (x4,
Xp, . . .,m). FOrexamplef(xy, %, . . . ,m) =Qm + +Qnot ...+ Qm—alinear
function.

The descriptive graphn geometrical space at such functions (n> 2) does not
exist.

EXERCISES
1. Represent on a plarfe 4l , if:

8 0={f (RB|P+2el, 1=l B r2 2}
b o={f RB|FE+Ze2s 1 ={f CB|[Fec7/Hec4)

Prove that opetion of intersection of sets is associative one.

2. Define allmemberof set¢?l, if ¢ =1 = {Qo}.

3. What from the following coformity aremappingd:R - R?
©) - #; b) - Agx, o -nmsinx
4. DefinesetD £ R, so that the following conformityare mappingsf:D- R: a)
1

f(r)==; bf(m)=Inx; c)f(r) = b:, b>0nb, 1

5. Let's consider system of coordinates on a pl&aeh point of a plane we shall
put in confamity with its projectiononto axis [ ,. Say, wether thismappingis: ©)
mapping oito axis On; b) biuniquemapping?

6. Definef(R), if : _

a )f(x) =%, " x/R; b)f(x) = (0,3, " x/R; ¢)f(x)=cosx, " x/R.

7. Make all mappingsetA = {a, b, c}into itself and choose among thgrarnu-
tationsof the set
8. Define thelength of a bisector of anglein a triangle withvertexes¢(2, -1), 1 (5,

3), (-6, 5)

9. Definethe number of inversions ithe permutation
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al23456784
5;%5216478_'

10.Say,whether the sef={ % |m/ N, n/ N} is countable
11.Define all points on a nuber axis, coordinate& which satisfy to an inequal
ty:a) | Z&7|<5 b)|R-4n-5|>% - 4a-5.
12.Under what conditioran mappingé x- k= V7 and g:y- z= 5 forma
complex functiong, f : x- z= 5%,
13.Define thesetsD and( for whichthe following numerical functions of omeal
variable have inverse functiang) z= 7% b)z= @, &0 n 0O, 1;c) z=sinx.
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BOOK 2
LINEAR ALGEBRA
CHAPTER 1
LAWS OF THE COMPOSITION
A1l . | NTERNAL L AWS OGIFION HE COMP

Definition. The internal law of a compositior the algebraic operatiomgiv-
enon the sek, is referred to as mapping of the prodsits (Cartesian square) into
K. In other wordsalgebraic operation is a rule, according which, titkeied cople
m, 2).-wherem/ K (= 1= ) and m/ K, is compared téthe membek; from the same
setK.

Instead of writing down a rule, by means of a functional syrhbal,x,
) - = Orf( X,%) 5 somne special symbols are used, namely: + for addittexy

s,rsymbol § for multiplication m Gh= 3, dJasignation.'Z'i"'2 = 3 dor power, etc.

To have an opportunity to study the general propertiegenbén all these laws, we
shall wuse a wuniform ssyp=0 §nthgt verballg id e-we
pressedx;i n a compogi vgenxwith x

1.1. Properties of internal laws of the composition.

Commutativity The i nternal | acemmptativesf forrasy e r r
andm~ the condition satisfies

:lT :2: 21'% :1 (11)

Examples Lets Z Operations of addition and multiplication of integers
are commutative, and exponentiation and subtraetene not commutative:

L L] nry " ] - X n N
l-ll 5 |-|2 rl 2 5 rm rl.
AssociativtyThe i nternal | @ssocigtivef fer any a,bee 4 & €
froms , the condition satisfies
(z fr:)Tzszzfr(: Z'r:) (1.2)

Here it is important to observe the order of roens.
Examples Addition and multiplication of integers are associative, and-exp
nentiation and subtractionare not associative(3-5)-2 . 3-(5-2); ($*=64

3
but 2(2) = 256,.
Neutral elementlf there is such elemegf K, tha
) JT:ZHTJzz, (13)
whatever-/ K may be so J is referred tasa neutral elementconcerning opetion
T .



42

If the neutral elemenj exists, it will be unique. Since, if we can have other
elementj ' we would havej Tk =rjk iFanyz Then, haing takenc+J4 = =
asn, an elemeny ', we shall obtaiy ' dj = j . Having takenj 1z =as fzan &
ementj, we shall also obtaiy +4 = Hgncej=j"

Examples If s =, aditition has no a neutral element, andelital element
of multiplication. Ifs =, ba@haddition and multiplication have neutral elertgen
accordingly 0 and .1For the law of a composition of mappingsf, the identical
mappinge-f = f-e = fserves as a neutral element.

Symmetric elemets.L et —+ be an i nter nad,wlichw ¢
hasa neutral elementVVe can saythat the elemeng from s ~ s symmetricto an
elementsfromKconceminppper ati on -, I f

nTR 47 (1.4.).

If == J,itserves as a symmetric element of itself, sjhggj = J.
If the elements has the symmetric elemert, and the elemenE, has the
symmetric nemberni.e. when the condition is satisfied,
:T:=HT:: J (15)
we can saythat the elemeritis reversiblec oncer ni ng operati on
If each elemen&/ K is convertible concerning opéra o n T aiamorh o
this setK is referred as teeversible

Examples.If = is a real number, s is symmetric to it concerning adidn,

1

and operation of addition is reversible on the Retf, besidess , 0, then= is

]

symmedric to » concerning multiplication, and operation of multiplication alsoets r
versible on the saR, but without== 0.

Distributivity. If on the seK two laws of a composition is defined which are
designated ag= an,d t hen t he | adistributve tohcerming the r
law” , if for any x, y, zZfrom K we have

~T( "2) =7ET (R T=) (1.6)

Examples Multiplication of numbers is distributiveoncerning addion, snce
n A( zlk ) =) 5Ahut addition is not distributiveoncerning multiplication, as
equalityn + ( ZAz) =2)is(nét vat)for d{ ,AfrotlA R Z

Operations of association and intersection of sets also are the laws of @ comp
sition andas it is easy to show, foragy, 1 ,

0 EBCw) SEB@AAY) .C(BAY) LBAACH) ;

Hence, each of these laws is distributive concerning another.

1.2. The basic algebraic formations: groups, rings, fields

Group.Wecan saythatthesek, whi ch have the inte:]
the | aw 4+ possesses the following thre



43

O )he law is associative;

b) there is a neutral element;

c) any elemeng/ K has symmetric.

If these three properties aaelded the fourth property of commutativity, then
the group is referred to ammutativeor Abelian group

Examples.If s =, tiénaddition does not transforid into group since the
last two conditions are not satisfiedslf =, th#naddition transfams Z into Abel-
angroup.

Ring. Nonempty setK , on which two algebraic operatichs n d aregped-
fied, is named a ring if the sé&t relative to™ forms the Abeliargroup, and thees
cond | aw T K and distrilsutvedlaave to'v e 0 n

Ifthesecond | aw -+ i saringdcaied B eommaiive , t
ring.

Example. The £tZ is a commutative ring: the law of group (Abelianis ad-
dition, the second lawis multiplication.

Field. The ringK, possessing the same property, that the seteofibers from
K, having no a neutral element of the first law, forms Abefjeoup concering the
second law,and it is referred tasa field.

It follows from definition of a field that it contains, at least, two neutral el
ments (but they belong to thiéferent laws).

Example. The ®tR of real numbers is a fieldaw ~ - is addition,* —s mult-
plication).

A2 . EXTERNAL LAWS GSHIONHE COlI

Definition. Let there be two sets andL; mapping of the produc 4 L into s
is referred taasthe external law of a compositioon K.

An example of the set of such typelhe vector spacelV chapter of the gi-
en bookis devotedto its gudy

A3 . | SOMORPHI SM

Definition. Let there be two various or coinciding s&sndL; and letK be
given the i nt-ethenntefnal lava. \somprphism ofdhe sét ontoL
is referred to as such biunique mappira the set;we can saythatK and L are is-
morphic concening the laws a™Mm d

Examplesl.s = thAe | aw - L+istheaset of humbecs mof;tia
kind (wherem/ 2), and the law® -is multiplication. Mappingf: m - 2™ is an i®-
morphism sincen + mj- 2"*™ = 2"A "2ije.fm+m) = f (jnpndA f

the mapping isibinique, since2®= 29 result in te= g.
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2. Lets =", &®1d the |l aw T+ is haRandfhé i ca
law ™ is addtion. Mapping=- Inx,ief ( =~ X,)isisomdrphism, ak n n, L
| n 1§ ard bdsides this, mapping is biunique sifca = Inv Y u =v.

Isomorphism allows to replace operati®q- © in the set K with following
operations: we form membe@' =and o( ' a ) =of the(etsl), and inL it is appl-
cable to them the operatidn i.e. we form membe® ' o ' ; at lai},' we shall lo»-
tainOT o L ( f fijThis pracess is of interest in that case whenatjper” in L is
more simple, than operatiop is .n"We do so whemeplecing by means of laay
rithms multipication by addition.

When there is an isomorphism between two sets, each of them is given one c
the several internal laws corresponding to each other at this isomorphism, these se
are oftenidentified, i.e. for a desigation of their members and symbols of therinte
nal laws corresponding to each other at isomorphism, the same symbols are used. V
shall meet an example of such identificatiwhen studying complex numbers and
vector spaces.
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CHAPTER 2
COMPLEX NUMBERS

We shall consider the equati@nz 1 = 0. It is obvious, that any real number
~/ R is not the solution of this equation. We shall draw such fldontaning R as
a subfield(R £ #),0n which the given equation can be solvEdis field is the field
of complex numbers.

Al. THE CPBFHEE DBOMPLEX NUMBERS

Definition. The ordered coupley(s) of two real numbersY Rands/ Ris re-
ferred toascomplex numberHence,z = (a, 9) is a member of the produBt] Rr a
point of aithmetic spacé¥.

We shall define on sé&® | Rwo internal laws- addition and multiplietion -
by means of the following rules:

z+2= ( 1)@ +2 )9 G +(,,000.p
2A= QA ) O S0, (0B, 1910,0) 9 (2.1)

Forz =z, it is necessary and sufficiently, tl@t= , &ndo, = ,.9

We shall show now, that the set of complex numbers on which thesgtwo o
erations are given, thefield C.

Addition on the seC:

1. is assoative: zi+ (2o + z3) = (zs + 2 )+ Z3;

2. is commutativez, + z, = 7, +z;;

3. has a neutral elemept (0, 0);
4. is invertible, i.e. each complex numligare) has a symmetric enent
(-Q-9)

(0, ®)p)+=C (0, 0) = |

Hence, for adidion the setC is Abeliangroup.
Multiplication on seCC: i i
1. is associativeA {AZx= (21A22 A z

2. is commutative, A , =zz, A ;; Z
3. has a neutral elemept (1, 0) i
(O,A ) 04)-oA, A(+DA ) = (0O, o) ;

4. Without a neutral elemept= (0, 0) for addition- it is invertible

(Qa)é © -9 g_é 0] .\ o° ©o 6)98”__(10)
CO+92 '@F+9°T CcF+o2 F+o2' OF+92 F+o2+ 7
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Thus, the se€ withoutj = (0, 0) for operation of multiplication i&belian group.
Multiplication is distribuive concerning addition
[(as, by) + (82, b2)] Aas, bs) = (au, by) Aas, bs) + (az, by) Aag, bs)
So, all conditions are satisfied, and the set of complex numbers makes
field C.
We shall prove that the plotted field meetsdlesiredrequirements
1. We shall designate throudhthe set of couples ofa, 0) kind , where
a/ R, and DEC. We shall define how the operations (2.1) determine,oon the
setD function

(a]_, O) + (a.z, O) = (a]_+ dp, O),
(al, O) A(az, O) = (al Aaz- 0 AO, a1 AO + a AO) = (a]_ Aaz, O)

Hence, if each numbey Ris put in conformitywith (a, 0)/ D, thesetD of complex
numbers ofa, 0)kind is isomorphic concerning addition and multiplication of eerr
sponding numbera from R. Therefore setB andR can be identified. Thus, the first
condtion is satisfiedR £ C.

1. In field R the equationé+ 1 = 0 has no solutionWe search for the o
tion of this equation in a fiel@. The real numbet - (Z, 0); 0- (0 0),;x
- (u,v), and the equan in it become

(u, v)*+ (1, 0) = (0, 0).

When weexecuted operation of multiplicatigu, v) A(u, v) and adétion
with(Z, 0), , weobtain
(U?iv?+1, 2uv) = (0, 0).

By definition of couple equality we hawiv*+1= 0 and2uv = 0. From
hereu=0 (or v=0) and v = Nl (or u*= i1, has no solution). Hence, we obtain two
solutions

~=(0,1)and == (0,-1).
Couples which are solutions of the equafidr 1 = 0, we designatd0, 1) =i, a (0,
-1) =-i, andi is calledimaginary unit.
In this case any complex number can be written down as

z=( 0, 90 )= {0, o) =1iQ + (@ 2)1) (o
Wherea andb — are real numbers, antl= (-i)* = -1. Such form of record of ¢o-
plex number is referred to adgebraic
The number is referred to agalid, andb - asimaginary part d numberz. We des-
ignateO=Rez , Ilmz If=0 =nuber0 +io=i9is referred to asmaginary.
Hence,in any operation of addition and multiplication it is possible to replaoce co
plex numbers z with the su@ i# and to make operations as with raainbers; it
is sufficientto replace® with -1 i2 every time when appears with a power not less
than 2, for examplé = i*Ai = -i,i"=1,i°=i etc.
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Example

( Oiod= *® 300 +ROH(iod)= *®i3 ®-3 Goig®= (i3 B)s

+ i(3a%0-9°).

A 2COMPLEX CONJUGATE NUMBERS

Since(-i )* = -1, the numbeii hasproperty of number, namely, its square is

equalto -1.
Definition. The complex numbez= Q9 is referred to asomplexconju-
gate numberwith numberz = igQ.e. the number distinct from only by sign of

an imaginary part.
Mappingz - Z is biunique mapping of the set of complex numbers onto itself, i.e.

permutationof this set, sinceif = 9@ = O the conditiorz = z' resuls
in® =andd' 5 ,and, hencg=2z"

Letz = @ndiz'i &= Q@ehave i 9" ;

(z+z ) =i(( @ +HBt'Z7')) =

Thesamg A z-:9 92 )((@O' ZAZD' o) =
So, mappin@ - Z is isomorphism concerning addition and multigiion.
The following properties also oar:
l..z+z2= 2R e .Hence th&2s@m of complex number withdsju-
gatenumber is always a real number;
2.z21z2= 21 | nHemce the difdreace of complex number with its
conjugatenumberis always an imaginary number;
3.zz= %@ “eaHence, product of complex number and itonjugate
number is always a real number, whicl?i9);
4.if z=2z,then z-s areal number.
Let's consider thequation@&+ o7 + f = O
where @ R,9/ R, and ff R. (2.3)
Solutions of such equation are numbers:

L - 9++/9%- 40f n - 9-+97-40f

20 and. 20
n _-9+49%- 401 n - 9-497-40f
ny = 0 and =7, = 0 :

If discriminantisD =1 4 0f) the $blutonsof the equation (2.3) will be two
various real number Under condition thab =0 7 =7, =- 230 it also belongs té:.
If D <0, theequation (2.3) has no solutionsthe field R. We shall defie them in

thefield C of complex numbers. With th purpose we shall transfordscriminantD
= %7 4 Ofrp( 4 Odn = i*(4ace’), where 4 Oifp”>0; Then we have:
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/ 2 / 2
- +iLﬁ]9:a+ib and Xzz_i_iLﬁ]a
20 20 20 20

Hence, the equation (2.3.) whdde<0, has two roots othefield C. complex
numberm &+ b and itscomplexconjugatenumberX= aiib.

A3. THE MODULE OF A COMPLEX NUMBEF
TWO COMPLEX NUMBERS

Definition. The module of complex numbeis referred to and designatg|
mappingz - |z| of the setsC into the set ohonrnegative numbers frofR, dete-
mined as |z =Vz& =+a?+9?.

The module is an absolute value. Actually:

1.]z|? 0,alz| = Oresult in z = 0and vice versa

1. |2az| = |z|¢zl. Indeed, )
|22°=(2n) %) = 23,02 Q, =(22)@2,2,) = |z/°Fz)".

3.1zt | ¢|zl|+| z|.

Except for these three propertmse more property is added:

4lz|=1z].

Introduction of the module allows immediately to write down the real amd i
aginary parts for quotient of two complex numlei@End z.

2_2G _(a+iYa-ih_QQ+es Q- Qs
z, 3G (Q+i 23(@'i2$ q"'azz q+9§

(2.4)

A 4GEOMETRICAL INTERPRETATION OF
COMPLEX NUMBERS

Geometrically complex number = a + i9 as the member of the sSBkR,is
represented by a poiri¥l on a coordinate plan€ywith coordinatega, 9). And this
mapping, as we saw (the book 1, Chagtek 4item 4.2), is biunique.

We shall consider a segmer@M and angle/, which it forms with axis [ x

(fig. 2.1). We shall define length of the segm@&. From rectangular triangl@g.
2.1) by Pythagorean theorem

d(OM) =& +9?,

hence, the length of the segmé& corresponds to the module of complexminer
z:d (OM) = |z |.

Angle j , if (OM) is given,unambiguouslydefines the position of a point on
the coordinate plane, and, hence, a complex number. This angle isacglletentof
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complex number and it is designatdy z The argument of complex number ifeo
sidered to be pdasve if it is counted from positive direction of axjs xcounter
clockwise, and negativeat the opposite direction of counting. It is obvious, thiat a

gument/ for given complex number is defined not unequivocally, but accurake wit
in an item, which is divisible bg ;i.e.

= Ar g z = wharemz0,+1 22 . m,
argz—values of argument of complex number determined by inequaitéargz <

2 "or % ¢argz <%) and which is callegrincipal argumentof complex numbe.

y
M, M(a, zB)
[ ]
B
0 () M,
a i X
@
-B
M(asB } -z M( aB,} Z
Fig 2.1

If -% ¢carg z<% and the point of M is in the coordinate half plane of the-pos
tive values of axig x thé&arg z =aic tg% , Iifitis in the half plane of reg
ative vdues( O <the@ayg z=p+ arc tg?D If ©O=0:

arg z——%, if b>0, andarg z:-'%, if b<0. For definitionof arg zwe canto use also the

following system of the egtions
a A

) S |1 =

coy =

Whence, provided th&éx¢ /< 2 -~

arccosL, if b2 0;

argz = Va' +b’

20 - alrccosL if b<O.

Jaz+b?’

— (:

—_——) —
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Thus, we understandl r gasatl set of the angles adequate to numband,
apparently from fig. 2.1, we havep rzgc-¢ r gdoegg) = ~ + ¢rg. z.
The set of real numbers is characterized by cond{@or) and, hence, they
lay on axis{ x Set of imaginary numbers is characterized by cond{iom®) and
theylay on axisOy. Therefore axi©xis referred aseal, and axi€ - imaginary ax-
is. Wholeplane is referred tasa complexplane.

A5. THE TRI GONOMETRI CAL FORM OF A- COM
VRE FORMULA. EXTRACTION OF THE ROOT

We shall consider a complex number whisHdistinct from zer&a = @ +
and we shall write down it, using valle| = d (OM)andld ¢ r guUsing fig. 2.1,
we canwritedowi® = |/ B$ = oJs ZHersfor somplex number wéfain:

z = | z| ( coozs (= +ri (scionbigier =+|z|. s i n G )2,5)

This record is referred tasthe trigonometrical formof complex number. Fa =0
trigonometrical form is not determined, and for argument we can to take any real
number.

Use of the trigonometrical form of complex number considerably giegl
operations of multiplication, division and extraction of a root.

Multiplication. Let z A, ,z0
andz, =r,(codl; + i g,andzii=r,( c @il g.iThen
zA, Zrir( cqsilil fi(mdes G iEni
=1 (e Gi Bl d+ dc(osstindiss MG&E
=r[ co @i + b+ gl n(d
Thus, product of two complex numbers walhiare distinct from zero, is 0B
plex number which module is equal to product of modules of these numbers, and th
argument is equal to the sum of arguments of the multiplied numbers. The obtaine:

result is easy for transferring on prodaatf numbers, 2, . . ., z. In partialar if z
=z=...%= zZ = T ( dhers G +1i sindG),
Z'=r"(cos nd.+i sin ni() (2.6.)

This equality is referred tasMoivre formula. From here
12"l =|z|", Arg2 =n Argz.
Division.

%: r(cog +isinj)Y z =zr(cog +isinj)=r,r[cosq,+/)+ising,+/)]

r(coy , +isiny ;) =rr[cos , +/ ) +isinG , +/)]
Equality is possible, if

/.1:/.2+/.Y/. :/.1'/.2
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The quotient of two complex numbers which are distinct from zero, is aleemp
number which module is equal to the quotient of modules of the givabers, and
argument-is equal to a difference of numerator and denatairarguments.

Extraction of a root.The root ofthe n-th power of a omplex numbee is re-
ferred to asany number z/4  which nth power is equal to z Thus

Vz= 2, Y z7 =z.From the last equation we have:

n
‘z{(“:\zk\ =|Z and Argz =nArgz =Argz. Thus, \zk\:f\l/ﬁ and

Ar _ Argz
Hence,‘zk‘:r\l/aand 9% n .

If z =0, thenit is indispensable that = O that is, zero has i@ only one roof the
n - th power, namely a zero.

Now | et’ s za DsAsrg zit ig detarinined accurate withp,
and therefore the argument of numbgrcantaken, and onlyn values deteamined
accuratavithin 2p, namely:

argz 2k
argz, =29+ 4 wherec = 0, nd41, 2,
n n
Hence,Q/E has on the se€ { various valuegy, z, . . . ,z.1, which {f-th poweris

equaltoz: z; =z,¢ 0:1,2,..n-1.

e dargz+20kp . . dargz+20Kka
Z, :1n/\4éc0$8978+|3m3897%. (2.7.)
€ ¢ n + C n U
It is obvious that the pointsvhich aremappingthe numbersz; on a complex plane,

n/
lay on a aicle with the cente© and radius ‘Z‘ and represdrvertexes of regulan-
square.

We shall consider a special case, whenl; then|z | =1, 0 r zg= 0,
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Argz=0+2pom, m =1, R, .N.and, then, rth roots of one have the modulg 1

and the argumer%zﬁ + 2pm8where ¢ =1,2...n-1 So,roots of one on set

cn
C will be numbers: z, = CO?Slezﬂ + 2pmg+ i singezﬂ + 2pm8
¢cn - ¢cn -

Wherek=0,1,2..n1, m=0, .1, 2
Points, mapping the numbezson a complex plane in the casenif= 6, are
shown on fig. 2.2.

y/1
12 L1
13 Lo
=1 0 1 X
i =p/
Ly 3 Ls
Fig.22

A6. COMPLEX FUNCTI ONS
1 Complex functions of one real variable

Definition. Complex function of one reaVariableis referred to asmappingR
(or some sbiset fromR) into C.

Let -~ belongs to some sgtfrom R, andF is a complex function frorR, de-
termined onP. Value offunctionF in the point=is a complex numbefF (= ,)which
real and imaginary parerethe essence real numbers which value dependsi.e.
these are numerical functions of real variable. Th#g, = )y( =) +wherg/ = ) ,
andg — are numerical functions of real variable, determine®ArR.
It follows from definition of seC, that it is identical to the s&. Therefore canplex
function F of onerealvariable can be considered as mapping of the s&b R or if
t =R, then F:R- R or as the ordered couple of two numerical functions of one
realvarableF( =) y= & ), g( =~ ) ).

6.2.Complex functions of one complex variable
Definition. Complex function of one complex variabie referred toas mgp-
ping C (or some sbisd from#) into C.
Lett be some set from C. If each complex numb&t at mappingF is put
in conformity with complex numbéd¥ (z),then realand imaginary parts (z) are the
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essence real numbers which values deperzgdso these will be values ofio nume-
ical functions ofcomplex variablez/ R Thus

F(z) = ¥(2) +i9(2).
But C is identified withR %, i.e. each complex number = & u s idenffied
with point( 7 / R lthprefore we can considg andg to benumerical fumtions of
two realvariables- andy. Hence, we can write

F@Q=y( =n,ig(z ~prF=zy)+ig.
Then functionF acts as mapping’ into R, or as the ordered coupdé two numer-
cal functons of tworealvariables:

Fo)=0v(~, k), 9( =, 2 )) .

6.3. Exponential function z- e with complex factor and its properties

Numerical exponential functioc G ( © > 0 1) df th®realvariabler/ R
makes the biunique mappingf the seR of real numbers onto the g8t of positive
real numbers; this mapping transfers addition into multiplication, i.e. this function

puts the sunk; + , Ain conformity with the produclO:l (D2 images of items

a’t %2 =a*X1 "2 |5 thee a complex functiofi of complex variable, determined
onC and such, so that amy/ & and z,l C,

f(z+2)=1(z) f(B)
It is determined, that such functibexists also it is furtonz- j*, which vdues for
anyz = x + iy/ ¢ are defined as follows

fz)=&™= Y(jmssy + i siny).
Actually, it is not difficult to show, that for this function we have

42 =4 (%2,
Except for thé feature the exponent functiffz) = € hasas well the following fa-
tures:

Z

1 ezl_ ZZ - e_l .

: 2

2.( ) =e™? wherem—is an integer number
3.e ex+'y‘ =e*, (e* @ =e*¥)

e

4, e**12PM = \wherem—an integer numer.
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On the basis of feature 4 it follows, that exponential fungjidis a periodic funtion
with the perio®pi.

6.4. Euler's formulas.
6.5. The exponential form of the complex nunber

If we putr = 0into z = x + iy, thenfor j “we shall obtain
J'Y= cosy +isiny (2.8)
It is Euler's formula expressing the exponential function with an imaginary gt@ram
through trigonometrical functions. Replacing in Euler's formulaith -z we shall
obtain:
Y= cosy -isiny.
Now, combiningj 'Y andj 'Y, we have:

cosy = e +e¥ ; sSiny= e - e
2 ’ 2
These formulas also referred to as Euler's formulas.
We shall represent the colap numberz= a + i9 in the trigonometcal form

z=r(cos/ +isin/ ), wherer =|7 = a’+b%;j =argz +2om,m=0,°1, °2, ... ;

argz:arcth, if ©>0 argzzp+arcth if O<O0 argz=p/2 or-pl2
a a

Bpl2)if©G = 0. N
By Euler's formulacog +isin/ =e'/ and, hence, any complex number can fge pr
sented in the soalledexponentialform:

z=|z| €/ =re'/ =re'@9z*m

CHAPTER 3
MULTINOMIALS

Definition. Let{ — be the given fieldR or &), andr - some formal symbol.
Expression of a kind:

ak+ ac, B+ +an ay™® where anindef/ Zy ao, a, . . . ,ad R
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is referred taasa multinomial from variable or (unknown} abovethefield P. Un-
der the agreement it is written down &5=1, and a multinomial is written down as

acm+ ag w4 +ain ap (3.1)

Membersao, a1, . . . ,ac/ R are referred tasfactors d a multinomial; factora, is
referred toasa free term.If all factors are equal to zero the correspondmgtino-
mial is referred to zero multinomial and it is designated with zero.
Maximum indexk at whichac, 0, is referred taasa degregor orde’) of a multi-
nomial, andac — is the leading coefficient of enultinomial Zeromultinomialhas no
a cegree.

If ~/ R andt{ =R, themultinomialrepresents numerical function of oree r
al variable. Such function is referredasa polynomial or integer rational function.

Multinomials of the variable we shall designate ai(x), g (x) etc, and set of
multinomials above the fielfd - { [X].

Let's consider two multinomials from the $efx]

fX) = acm+...+ain apand g(X) = buX"+ ...+ bix + by

to be equal andve write downf (x) = g (x),if m = k(an identical degree) arli= b
i, for i=0, 1, . . C C .
The multinomial can be written dovaisoin the increasing order ofidexes

A+ aim  + A ml+ act+ (3.2)

We shall note, that a multinomigl(x) of the degreen always can be replaced with a
multinomial which is equal to it with an indéx>m, addingto g (x) a multinomal
b cyX™ D+ bpax ™ whereb g = bz = .. .= Bns g =0, i€,
gX) =+ bm  + bpRT+ O™ d0E . S . 0 A

So, any multinomial can be considered as sequebgeb, . . .b, 0,0 ...} from
t which all members with some index are equal to zero.

Al1. A RI NG OF MULTI NOMI ALS

Let 60s ionthe setdvithanaltinomigl [x] two internal laws of a auo-
position - addition and multiplication of multinomials, distributive cenging add
tion of multinomiak.

Addition. Sum oftwo multinomialsf (x) andg (x)is referred tas multinomal
h(X)=yi X *....4+ Y1 X + Yo, Wherey, = a; +b;, i=0,1,2..... t,

the degree of a multinomialis equal to the greatest of twogiees if these degrees
are not equal; if they are equal, it can occur, that the degree appears to benless (at
k, ax= - by) and, hence, always we have
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gmh(x) ¢ max[Cmf(x), Cmg(x)].

It is clear, that operation of addition is associative and commutative.

There is a neutral member, namely a multinomial designatéd as  +Q . .k
+ O which all factors are zero.

At last any multinomial hasymmetric, designated as
f(X) = -@ch-aci A - .. .-a, M- &, itis a multinomial which all fetors are
opposite to factors of aultinomialf (x).

Hence, the set afhultinomiak provided with this law forms Abelian (comm

tative) group.

Multiplication. By virtue of distributivity of multiplication concerning addition
it is sufficient to determinet for multinomials of a kinda ;='. Fora,/ R b,/ R~
we shallsuppose

(@iR)(bR) = a; byx™ (3.3)
In other words we multjply variables as though their indexes were exponents of
power. If

fX)=ao+ aim + an,. . BEtAY..=bn
thenby virtue of distributivity,

f(x) Mg+ (ot E=ail) =~ +ahi+aba+.+. Habk) '#. ..

This operation is commutativend distributiveconcerning addion. With the help of
rather long, but not complicated calculation we ascertain that it is apseci
We shall note the following important feature:

g it (x )] AG(e))H+ Cm g(x). (3.4)
Thus, the seP [x] is a commutativering. A multinomial u(x)= A, + h;x + ..... +
x' is a neutral elememoncerning multiplication, it ( x ) Af afymult- = f

nomialf (). In particular, it should be fulfilled ( x Y=x “Aand, then,

hoX+ Apx KA = x K
that gives u8y =1, h; =hy=....=h=0. So u(x) = ¥ = 1; it enables us to
identify a multinomiak’ with number 1.
The multinomialf (x) has no multinomial symmetric toagbncerningmultipli-
cation.

Corollary fact. Equalityf ( x ) Ag (yx(}) atf¥x), @ implyjedA g(x) =y
(x). Indeed equality is written down also as
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f(X) [ 9(x)- ¥ (X)] =0 and f(x), g then ,g(x)- y (x) =0 and g(x)= y (X).

A2 . DI VI SI ON OF MNDECRBM\SING DEGSEES

If two multinomialsf (x) andg (x) are given, we can natlwaysdefine such
multinomial h (x), thaf (x) = g (X) h (xX).If h (x) exists we shall say, thdt(x) is d-
vided byg (x) orthatg (x) dividesf (x), and also, that the multinomi&lx) is divis-
ble by g (x).So, themultinomialQ is divisible by @y multinomialo= g ( x) A

The theorem (of division of a multinomial with a remainder).et there be
two multinomialsf (x) andg (x) oftheringt [~ ] There are such unique multinals
h (xX) andr (x), thatf (x) =g (X) h (X}t r (X) wherea nt (X) <&t ng (x). h (X)is called
aquotient andr (x) - a remainder of divisioh(x) by g (x).

Remark.If 4 mg (X)> f (x),h (x) = 0,andr (x) = f (x). Thereforeh(x), O,
whend ng (X)<dam f ( x)

The proof of the theorem is omitted.

Corollary fact. To divide themultinomialf (x) by a multinomialg (x), it is neceasary
and sufficient that the remainder of divisibfx) byg (x)is equalo zero.

Practical calculation.

Arrangement of operations is the same as at division of integers, andomult
mials are written down in decreasing order of the variable degrees. Therefore suc
division also is referred to as division by decreasing degrees.

Example f(x) =°+15§x %+ m2na + 1

f) Z2+52+0Mn *+080n 07 £+1 25 gl =
vahg(x) S+5P0R5 R 5%10% Tr52:0n + 2

f5( — -1 05:54: +1 y4:4+y3:3+y2:2+y1: Vo
yamAg(X) = -1 0R20'R1 0°n

fa( A = *+10n +1 15nA
Vot Ag(X) = 15'%36#& P¥5n

fa(X) = 207157 +1
vin gA = 2074 %R0 A

f,(X) = 4200 |+1

YoAg(X) = 258507 +25

f1(x) = -3 01r24

Herewe havef(x) = g(x) &x) + r(x), whereh(x) ='i1 5@&% ZTBZOrn +
25,
r(x)=30x24 mr(g = Inyx) <@ngx)=2.

A3 . MUTUALLY DI STI NCT AND | RREDLI
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MULTINOMIALS. THE EUCLIDEAN THEOREM AND ALGORITHM

Let two fixed multinomiald (x) andg (x) be given if even one of them is not equal
to zero. The multinomial (= )s referred tasthe common divisof (x) andg (x)if it
divides these multinomials without the remainder. The multinomial @jeed zero,
I.e. constantg,, 0, is always the common divisors.

Definition 1. The multinomial of the greatest degree whiglaicommon div
sor ofmultinomiak f (x) andg (x),is referred tasthe greatest common divisor
(GCD) of multinomiakf (x) andg (x).

If h (= )s GCD of multinomialsf (x) andg (x),thenGCD of multinomials
f(x) y(r) andg(x) y(m) is h ( ¥(3) for any multinomial y(~). Besides GClare &-
cordingly multinomials/ h ( &/ h ( R )where// R and it is not equal toez
ro. Therefore furthewe shall understand GCD as that G@Dich highest coef€ient
is equal to 1.

Any common divisot (= df themultinomialsf (x) andg (x)dividesGCDh (= and
any GCDh (= Wividesf (x) andg (x); so, the set of the common divisors of mudtin
mialsf (X) andg (x) coincideswith the set of divisors of theultinomialh (= .)

Definition 2. Two multinomiak f (x) andg (x) arereferred to asmutually dis-
tinct if their GCD has zero degree (i.e. is not a zero constant).

If f (x)andg (x)i aremutually diginct two multinomiak from{ =~ , there

m

are uniguemultinomiak v (x) andw (x) fromt =~ , which have the following
propertyv (X) f (x) + w (X) g (X) = 1andCm v (X) <Cm g (x), Cm ) <Cm f (x).
This equality is referred tas Bezoutidentity equatia.

Euclidean theoremlf f (x) dividesthe productg (x) ¢ (x)andif f (x) andg (x)
are mutually distinctf (x) dividesc (x).

The proof.Indeed GCD of multinomialsf (x) andg (X) is anonzero castant/
and, then, GCD oamultinomiak f (x) ¢ (X)and g(x) c(x) is / c(x). But f (x) dividesf
(x) ¢ (x)and by the data, divideg (x) c(x), and, hence, divides them GGihich is
equal to/ c(x), and, sof (x) dividesc (x).

Definition 3. The multinomialp(x) is referred to asdlistinct or irreducible if it
has no other divisors, except for itself and nonzenstemts.

We shall take now anmultinomialf (x) andGCD h (x) of multinomialsf (x)
andp (x), sincep (x)is irreducible, them (x)is equalto eitherp (x),or a castant; in
the first case f (x) is divided byp (x),and in the second caééx) is mutually distint
with p(x). Thus, anymultinomial either is divided by (x), or it is mutually dstinct
with it. It can be the proof of the following theorem for factorizatiomaftinomiak.

The theorem 2Each multinomiaf (x) from thering P [X] of thedegree$ 1, is
factorized in the product of irreducible multinomipl$éx) andc accurate within the
sequence order, this factorization is unique
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f(X) = LY P2 () O By () = O 15 (X). 3.5)

i=1

It should be mentioned, that the multinomial irreducibility concept sigmifica
ly depends on a field of factoR® so, the multinomial® - 4 is not irreduéble in the
field Q of rational numbers as it is divided By 2 and byr + 2; a multinomial? - 2

is irreduciblein Q, but not inR since it is divided bym + ¥2 and by v2; themul-
tinomial 2 + 1 is irreduciblein R, and, then, and i@, but not inC as it is diviled by

X + 1 and byx - .

We should mention that the multinomial of the first degree is irreducible for any field
{ sinceits any divisor is either a constant, itself and it is a unique irreducibieul-
tinomial above the fieldC of complex numbers. Above a field of real numbess, e
cept of a multinomial of the first degree also all multinomials of the secemeel
which have negive discriminant will be irreducible.

Determining GCD: Euclidean algorithmLet f (x) andg (x)- two multinom-
alsandCm f (xp Cm g (x);| e tivddef (x) by g (x) bydecreasing ejrees:

f(X) = gOho( = Jro( & )Cmro( <)Cmg(X).
Then we shall dividg(x) by ro( = ) ,
g = ro( Ad = Jra( & )Cmry( <)CmMry(X).

L e tdivide agairo( oy ri( ~wWe,obtain the remaindeg( ~ Yvhich degree
is less than degreeref = Then we shall divide;( ~by ro( =~ 8tc,; degrees of the
consecutive remainders strictly decrease; hence, there will comeothentinwhen
some remainder, ( ~ Will be divided by the remainder( -and, so, we shallls
tain

r2( A naGEHX Fdn( = Emry( K)Cmr,1(X),
Fna( = n( A (7)) .

Any common divisor of multinomials(x) andg (x)dividesry( ~and, then, it tvides
ri( ~ejc., at last, it divides,( ~ )nyersely any divisor of the remaindef( -~ di-
videsryi( ~ yo,thenr,,( = gtc., and, hence, dividégx) andg (x); thus,ry( ~ i
GCD of multinomalsf (x) andg (x).

This method of determination of GCD hdsetnhameEuclidean algorithm
where a word algorithm means process of calculation.

A4. ZERO (ROOTS) OF THE MULTI NOMI AL.
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MULTINOMIAL EXPANSION IN THE PRODUCT OF IRREDUCIBLE
MULTINOMIALS ABOVE FIELD CAND R

If we substitute vaable n in amultinomial f(x)/ A=/ for the numbew/ R we shall
obtain the number which we refer to as value of a multinomial Wher= and it is
designated

(D)= achb*+ ac b+ ... +aib+ b

Definition. Number/ from field { is referred to as zero (or a root) of the
multinomial f(x)/ AR/, if f(/) = 0.

Bezout theoremFor / / R to bea root of amultinomialf(x)/ A=/, it is neces-
sary and sufficient that thaultinomialf (x) is divided by a multinomial x - /. Fur-
ther we shall designatenaultinomialx-/ astg( ) .

The proof. Necessity/ - a root and(/)) = 0. We shall dividef (x) bytg (= )in
descending poweréstg (= )has a power 1 the remainder hasegrde equal to zero
so, is a constarth, which can be equaled to zero, and we h&vé x )= HX) fis b.
We shall takd(/) . Astg (/) =0, then f(/) = b. Hence, if/ there is a root of a nhu
tinomial f (x), thenf(/) =0; so,6 =0 andf (isdivided bytg(= ) .

Sufficiency. Iff (x) is divided bytg (= ,) then the remainder i =0, and then
f(/)= R({) fi(xX) =0, sincetg (/) = 0.

Multiplicity of zero.Let// R to be a zero of enultinomialf(x)/ A=/ then, if
tg(= ) -# theénf(x) =tg = )u(X).flt may be thatf,(x) had as zeo, and ther f;(x)
=tg (= )2(x)fandf ( x J/ (7 H(x) B

Definition 2. Multiplicity of zero (root)/ is referred to as the greatesteqgral
exponent for whichf ( x ") @ Wo®fand f,(x) has no/ as zero, i.ef,(/), O.

If h=1, then/ is referred to asimple zeraf h = n, then/ is called azero of
multiplicity n, orn - th (double, triple, etc.) zero.

Let/,, /5, ...,/ ,—Dbe avarious zero ofraultinomialf (x), and lethy,h,, . . .

, h — be their multiplicity. Then,f(X) = ts?i(x) b(x) = ts?g (m) c(X). Multinomial

tG/1 (=) has a power 1 and therefore it is irreducible for any fieldnd, hence, it is

mutually simple withtg, (X), if /2, /1.. So, tQ/h-l(x) and tGl,/E (r) are also mutda
2

ly simple.

But tsf'g( ~djvides the producttslhi(x)b(:), and, hence, according to Euclidea

theorem , t(;?g (~) divides b(7), and we have
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b (A 1@72 E)b (X)., so, f(X) = tf%(x) Os?g & (5). Continuing this reasoning in
sequence for all muItinomiaIi;s?i (x), 1=12,...,n,, we finally obtain the formula

for multinomial eyansion product of irreduciblaultinomiak.
h -+ h = . h v a
F9 =P (92 (0@ P (¥ (9 = (x- /)™ Q.- /)™y (),

f()=p,3 (92 (9@ B (X (9 =(x- /) Q.- /)"y (¥,

and this form of representation makes obvious that fact, thest,zero of amultino-
mial f (= and that its multiplicity is equal taq.

Let k bea powerof amultinomialf (= ;)thelast expression fdr(= ¥hows, that
C = am +x))..+h, + Emy(x), whence
hy+h,+...+h, ¢¢ = Cm f ( x) .

It follows thatthe multinomial of a degred cannot have more thanof various roots
— Lagrange heorem.If they are equal to k, so all of them armgie.

Let’' s a sit yastfied of eommex nuiberednd(x)/ u/m/.
In this case the theorem which has the nénie A | e theoeem Or the fundamen-
tal theorem of algebra)s valid. Any multinomial f (X) of 4 = power whichis
greater than or equal to one, has in a field C of complex numbers and, at least, or
root.

Corollary fact. 1. Any multinomialf (x) ofed =~ powerk has all its roots in
a field C of complex numbers andheir quantity in accuracy is equilif to count
each root as many times as it has its multiplicity.

2. Thus, iff(x)/ 4 /5/ and Cm f(x) = k, then h+ h,+ ... +h,= SandCm
y ( x ) headgy ( xiga constant which is distinct from zero and axgion f (x) is
represented as

F)=ai(x- /)M Ax- /5)2 O0.4x- /)™M, 3

wherea, —is the highest coefficieritx), h, . . ., b/ N,/; ..././ & the famula is
referred taascanonical expansiorf (x) above a field Wf complex nubers.

2. Letf (x) T be amultinomialwith a real coefficient from the fiel®, then if among
zeros/; .. ./nthereis zerd;/ 4 of multiplicity /77 so there should ba complex
conjugate root/_i of same multiplicityrmamong rootsReal irreduciblemultinomials,
above the fieldR of the power more than one, arailtinomiak a, P+ oan ap
which has negative discriminant; suctultinomiak in a field of complex mabers
have as roots two compleonjugate numbersand . (Book2, Chapte2, § 2) .
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Now, after we combine in couples a multiplig¢- /i)h A@x- / j)hj ,where a

i=/;,h=h;= ;in canonical expansion ofraultinomialf (x) under thefield, C we
shall obtain

e S e ey .
f(0)=a, §@rayxrags ~ 0.&C +ayy+aoms " Qx- 1)L 0.Qx- /t)et, (3.7)

Kk
&, 2 & . t I. arerealzerad(x), ay/R, o;/ R j=1,...,m, () R[X],
gmf (x)+ z+e2 (. &) .ot +§ . mulitnomails§ *4 4@ +
Lh;) conform to zero aaples a-andg = /j.

The obtained expansionis referred tacasonical expansiorof a multinomi-
al f (x) above thefield R of real.

EXERCISES

1. Prove that multinomial intersection operation is dictnlmtelative operation
of set summing.

2. Is the setQ of rational numbers, on which operation of multiplication ss a
signed, a group?

3. Is setQa field, if :
O pn this set the law of multiplication is assigned as the first law, and asctivalse
the law ¢ addtion?
b) the first law—is the addition, the secords multiplication?

J3+i
2- i3

5) Define the real valuesf ~andy from the equation
(L+D)x+2+i)x-(1-i)y=7(1+i).

6) What geometricasense has the difference magnitude of two complew-nu

bers? To define this magnitude for= 3 + i2 and z=3- i2. Represent these

points on a complex plane.

3/3 i 6/

7) Define all roots and to plot them on a complex pla FLY- 3.
8) Solve the equations:

a)x-3x+7=0, bcosx=3, c)sinx=2.

4) Calculate z=

9) Define roots of the equatian®- 2+/37'+ 4= 0 and plot them on a complex
plane.
10) Represent in the indicative form the complex numbers:
1+, -1+1i, -5, V3 +1.

11) Divide amultinomial 3% + 22° i 2n+ 5 by amultinomial 2% + 3 in de-
scending powers
12) Define the multiplicity of zere: = 1 for amultinomial
f(x)= 31 87" +47 + 671 Tm 2+
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and the expansion of thimultinomial in product of irredaible multinomiak on the
field RandC.

CHAPTER 4

VECTOR SPACES
On some seK, which hasthe internal law of a commutativgroup, can be dete
mined also by means of some otherlsethe external law of aomposition- magp-

ping K? L into s . The most important set of such typeaisector spacdor linear
space).

Definition. The sek is referred toasa vector(linear) space above the fiedif it
has the internal la#) - addition and the external lafv L= inultiplication by an ad-
ment from the fieldf , having the following properties:

1. Addition on setk hasthe internal law of the commutatiggoup..” =/ K, ”

/' Kand” z/ K we have:

~ + E = BE + a;
~n + (2 + z) = (s + E) + 1z;
$i/f K,so, that x(aneatralelereentyt x = X

$x1 K,so thatx+x=e(a symmetric element).

2. The external law of multiplication, so th&tn/ K,” &/ Kand” // R " mi
R
/@& + ) /4
(V +m@ /G+m
I ) 1 &@a(

e@ =wh&reeis a neutral element of multiplication in the field
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Elements from vector spat¢e are referred to avectors and they are usually
designated by lower case Latin letters with arrows above (RN etc.)or by low-

er case in thick pnt. Elements of the fieltd more oftenare designated by lower case
Greek letterga, b,g,/ etc.) The neutral element of additipnn s is referred to as a

zero vector and it is designated\)'aihe neutral element of addition inis design&
ed by 0 (zero), and multiplicatiom- by 1 (one). The elemert symmetrica is re-
ferred to as opgsite to a vecto&’ and it is designated?,i.e. a=-1.

Corollary fact from definition.1) In vector space it can be only one zero-ve
tor and for each vector can be only o
two zero vectors,,and 0,,then it follows from definition, that their sum should be
equal to each of them, i.6, +0, =0., or 0, +0, =0, and, henceg, =0,. Similarly if

A [
any vector~ has two opposité = and ~ "2the sum(- ) + %+ (- &%) should be equal
both - & and- &, hence- & =-&.

2) If / ﬁ": 0,then eithet , or k-0,

3) Equality / == min is executed for any & = - _ 0, then after we
add both parts of equality 77~ we shall obtain / S =i mi=0 thais
(/ - n)f.":E, but i", 0, hencd -m=0ul =m

4) Equality/ 7=/ & is executed for anyrand Eif | = 0.If | _ 0, then

Y/ E=0or /(%- B=0.Sincel , 0,then’- ¥=0 whenceX=b.

[ | @
I'I2. If m

Al. VECTOR ®BIAGIEMIAFS ABOVE FIELD P FACTORS

As know (Book 26 dz. 38 1) a d dmultinomial sebabove tiediel(l
has the internal law of commtative group. Now we shall define on thefset-~ of
multinomiak by means of the field the external law of a compdisn.

Multiplication by an element from R. Let |it; we shall put

1f(x)=/ ax" +..+/ gx+/ @, /1(7)is amultinomial which all coefficiens is
essence of element producby coefficientsof amultinomialf (= .)
It is obviously that" f (X) | P[x], "g(x) | P[x] n"/i pP"m Pwe hae:

/£ () +g()] =7 () +/g(X);
(/+mt(x) =/ T (X)+ mf(X);
Imt ()= ¥t (9;
e f(x) = f(x), wheree = 1 —is a neutral element of multiplication in
{.
Thus, operations of addition afiultinomiak and its multiplication by a mo-
ber fromt transform set [:] of multinomiak into vector space above the figlaf
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coefficients, and thenultinomialin relation to this set is a vector and it can beglesi

natedas f (x).

A2. VECTOR|{ SABAVEFIELD t

Any field { (field R of realor C of complex numbers) is a vector space abogelf
with addition as the internal law and multiplication as external law [(K=1 ).
Product of any finite numberof setst is also vector space abotreefield P.

A
This vector space is designated &' = PxPx.xP=0 R. Elements (vectors) of

i=1
this space are the ordered sets fronumberga,, a,, . . .,a,), hamedcomponents
. C
or coordinates of a vector: o= (@, ax . . ., a,), where Xl P" and

aj [ P,i=12,...,n. Internal and external laws of a composition in this space are as
follows:

X+YY (@, ap,...a0) + (b1, by,....bn) =(@y + by,a, + by,....an + by);
IXY I(ay,ap,..an)=(/ &/ &,..] &), (4.1)

herexi P",yi P",/1 P,a;i P,b1 P,i=12...n.
Theoretically theeomponents of a vector can arrangpt only in row

[N

1-00: O: O: OO

: C
X=(ay,a,...,45), but also in column<'=

BB & BY

n

Depending on an arrangement these spaces are referred to asfspacé
vectors of lengthn, or columni vectorsof heightn.

Let’' s consi dRRaadvectar spaceP" wR" are realIf n =
1,2,3 then,how we have already defined, between point set of aglthrspaceR’
and point set of oriented geometrical space it is possible to determineuthgub
mapping which has presentatidR:- point setof the coorthate axis;R® - point
set of the coordinate planB’- point setof oriented geometrical space. ppéng here
is understood as a way of definition of point coordinates of space.
By analogy it reasonable to assume, that in geometrical spaeeati@ealso edent
vector spaces which can be put in biunique conformity with vector spicabove
the fieldRwheren =1, 2, 3L e tset dpsuch conformity.
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A3. VECTORS I N GEOMETRI CAL SPA

Definition. In geometrical spacd¢ directed segment I, which is set by the
ordered couple of pointa andB, is referred toas a vecto(d. The first point is &-

ferred to as origin of the directed segmentard the second gat B - its extrenity,

and: &= ¢ I1.In a designation of the directed segmept the order of points ised
fined by the order of their representatién: the first point,B - the second. If pats

A and B are distinct, the directed segmentl is referred to as nonzero (or

nondegeneratgand if pointsA and B coincide the directed segmet! is referred
to aszero (ordegeneratg and it is designateas 0.

The length of the directed segment describing the numerical value of a vector
is referred to ashe modulusor absolute value of a vectaand it is designatedas

‘q) J‘ or \ o] \ . The directimm of a segment determines a straight line on which the ve

tor is located. If vectors are located on one straight line, or on parallel straight lines
such vectors are referred toamlinear vectorsi.e. there is a straight line which they
are parHel to. If there is a plane relating which the vectors are parallel such vectors
are referred to asoplanarvectors
The zero vector is considered to be collinmaany vector, since it has no thetee
direction. The length of it is equal to zero.

Equality of vectors.Two vectors are considered to be equal if their directed
segments are equal. For equality of the directed segments it is possible to give thre
various defimtions. Depending on this vector they are subdivided into three types.

3.1. Types of vectors in geometrical space

Definition 1. Two directed segments are equal, if the following cools are
satisfied:
1. The origin of segments is in the same point;

2. Lengths of segments are equal;
3. Segments belong to one straight line;
4, The directed segments have identical directions.

If for determination of vector equality we base on the given definition then any vector
represented by the directed segment will be equal to the vector which is repr

sented byhe same directed segmept. Vectors, satisfying this rule, are referred to
asthe bound vectorsBound vectors are mapped with the unique directgohaet,
and there is no other directed segment equal to this vector.
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Definition 2. Two directed segments are equal, if the following conditions are
satisfied:
1) Lengths of segments are equal,
2) Segments belong to one straight line;
3) The directed segments have identical directions.

If for determination of vector emlity we base on the given definition then a
set of the directed segments located on one straight line having buotibatiEength
and direction (they can be lay off from any point of this straight line) map the equal
vectors, and, hence, the same ggcsuch set of equal among mheelves (in sense of
definition 2) directed segments is referrecsa sliding vetor.

Definition 3. Two directed segments are equal, if the following conditions are
satisfied:

1) Lengths of segments are equal;
2) The directed segments have identical directions;
3) The directed segments are collinear.

If for determination of vector equality we base on the given definition then a
set of the directed segments located on one straight line or on parailghtslines,
having identical length and direction, map the equal vectors. Such set equal amont
themselves (in sense of definition 3) directed segments is referasd foee vetor.

A free vectoiS is designated and represented vétty of the directed segmends!
of that directed segment set which is the vetdn each point of the spade' it is

always possible to plot the directed segment, which belongs to aet of directed

segments of the given vectd(i.e. ¢il i= ¢ 1) and this directed segment for aesp
cific point A" will be unique. This operation is made by means of lehsdift.

Further we shaconsider only free vectors, and we shall name them, as far as
possible, simply vectors. It is closely related with that fact that free vectormare i
posed constraints on, and all other vectors represent a special case of free vecitc
which are mposed dditional constraints.

3.2. Vector space of free vectors above field R

On set of free vectors in geometrical space we shall set two operatddgion of
vectors and multiplication by the number from the fiRld L et ’ show,
vecbr set forms a vector space above the fieldith these operations.

Addition of free vectorsLet two free vectorsands’be gi ven. Let

directed segments land I & which are equal to them (it can be made for any point

of B space). Then the directed segmend, which belong to_a set of directedgse
ments of a vectoff, is referred to as the sum of vectétand® and it is designated
8 + 8. We shall notice, that all three vectos, 8 and & + s=fj, belongto the
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same set of free vectors, i.e. addition is the internal law of a composition. We shal
find out its properties.

1. Addition of vectors is commutative , i.8.+ §= 5+ &. Really, we shall lay d¢f a
vector @ from an any poinA: ¢ 1= &, and from a poinB we shall lay off a vetor

5 1 uw= 5. Thend+ &= ¢ u. Now, first we shall lay off from a poir a vectors”

¢ C= &. Then by virtueof equality ¢ C=J & (quadrangled | u -Bis a parallebgram)

we haveDC=AB=4, , i.e. DC is a vectorSlaid off from the poinD. Thus,5+ & =

¢ C+DC= ¢ u and therefore
Sy o543

2. Addition of vectors is associative, i.e. for any vectars 8 and fij it is exe-
cuted
(O+8] +fi= O+ (9+ 1.
The proof. Let A — be an any point, and, B, D — are such points, that
o 1=§ 1 u=5.cD=¢ then
g+(s():+1% =¢ I+(] &+CD)=AB+BD=AD,

(a+s% f%—(q) J+J b)+u D=AC+CD AD
2. a+O a |e 0- is a neutral element.
3. a+ (- 5‘) =0, - a- is a symmetric element.
Last two properties are obvious. Thus, addition on a set of free vectors makies Abel
an group.
Multiplication of a free vector by the number from R Product/&of the
numberl | R on a free vectorS in a case o3, 0, | . 0O, is referred toas vector

5

which is collinear to the vectdy, which absolute value is equal \/HQ andwhich

is drected to the same direction as the veétoif | > 00, and in opposite direction,
if | <0.1f 1 =0or &= §,then according to theefinition /&= ¢.

The following condition of vector collinearity follows from: if two vectorsGand &
are related by the rati@ = /&, these of a vector are collinear. Such vectorsare r
ferred toproportiond vectors.

Thus, multiplication of a vector by the numbdr R represents the external
law of composit on. Let ' s define i1its propertie
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1. For any numbersi Rand 77 Rand any vector® / (nd = (/ 6n6.
2 . 0=13; e= 1—is a neutral element of multiplication R.
3. Forany numbes | i Rands7 Rand any vector®
(/ + mB=1+m.
4. For any vectorsiand s and any numbet | R

[(O+8)=/0+/8

First three properties are obvioV8e s h a | | pr ovseasspmeo p e r |
that vectors and® are not collinear. The case of vector coIIineaﬁtynd8 IS re-

duced to properties 3 and 2. We shall lay off a ve&ldrom the pointA: ¢ 1= 8 and
the vectorsfrom the pointl :J u= § Le t\/ecssorsﬂ;JIi@/t& and
dai=/ (8+z-%(fig. 2.3).1t follows from similarity of triangle$ | @andAB' C'
(both in caséf | >0, and in casé | <0), thatl -iu i = /g.

But q;J i+,|-iHi: (])-H i, hence/ (O+8)=/5+/8.

B'
.,

A(a+ B'
Fig. 2.3

«
e
S o
O\

The following condition vector coplanarityfollows from the proof of property
4. For three vector§, sandff, to be coplanaiit is necessg and sufficient that they
satsfy the ratidi=/O+ 179, where/ / Rand 77 R.. This ratio is read as: the vector

fis a linear combinationof vectors® and?..
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Thus, the set of freeectors on which the given operations of vector addition
and vector multiplication by number froR are set, forms vector space above the
field R.

Now | et’s consider, how it i s possi
sian rectangular systemofcoa i nat es, and | ets’ diasf i n
from the spac&’.

3.3.Theassignment of free vectors by means of system of coordtes and
their conformity with vectors from vector spaceR®

Let’'s choose i n spacecmofCoardnaesy, anlLeeéect

consider an any vectéwhich is assigned by the directed segment We shall e-
mind, that the poinA can be any point of a space. In the chosen system ofi€oord
nates we shall defineoordinates of the vector origipoints A and the end of this
vector - point B (fig. 2.4).

Let coordinates of a poi# bethe triple of number§ w 1, &), of the pointl
- ( a» 2, B). Then coordinates of a vect@ris namedhe ordered triple of mabers
( =, whichiszaJcylated by formulas:

n T-em = Mzl 7= z- 7, (fig. 2.9

It is written & follows &( = , ofzd( ©z,)®.0

If the origin of the directed segmentl coincides with the origin of coord
natesp (,~1, ) = [ ( tBe diredted s€gment,is referred oaaradius vec-
tor of a pointB. In this case coordinatgs,y, z)of the vectorGc coincide with coo
dinates~,, ,, ZofthepointB:r 35 n &£z=2 &

Wy Yy 7]
L\ —
/Y, a
B(
Zz:;. \yﬁ(h) e
Y
) /Ay,)/ | MYy
A(zl_) X=X2-X1 .
0 A(xq) B(x2) X
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Thus, having chosen in space the Cartesian system of coordinates, we can establi

conformity with its help between any vectdset by the directed segmefit! and
the vectord, from vector spac&, which coordinates are determined by the ordered
triple of numbergr, y, z).If the specified conformity which represents a way oéa d
fining of coordinates by a method of mapping we designate thripuitjien

f:6- G=f(O)=, )k, z

Let's show, thief is biunique mapping. For this purpose we shall consider tloeetime
of vector equality.

The theorem.Two vectors are equal only in the case when their coordinates
are equal.

For the proof of this theorem, firstly we shall show, how it issfle D set a
vectord by means of its lengtfis] and anglesvhich it subtends with cooidate axes.

Let's consider any directed segment which belong to a set of the aterd.

We shall plot on¢ I, as on a diagonal, a rectangular parallelepiped (fig. 2.5) with
sidesp ¢=r Fi = 50 L Oz LTdZ=E,0 HF=g=21T2= ,0

It should be noticed, that all points laying on a plane, parallahy coord
nate plane, have equal coordinates of that axis to which this plane is peuf@@ndic
points are located on a straight line parallel to any of coordinate axes, then for thes
points only the coordinate of that axis, which this straight Is\garallel to, is
changed. Two other cadinates are identical. For example, poiatandd, (fig. 2.5)
lay on a straight line parallel to an afg, hence, for these points only cdmaten
changes

Y
Z, A By, Y7.2
a,
Ay(Xq,¥2:24)
/
AslkyfV1,23)
g
b
a)
A(Xllyllzl) Al(XZ'yl’Zl) S
0 X
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Fig. 2.5.

Now we shall designate through b andg the anglesvhich the directed sp

ment ¢ Jsubtendswith axes of coordinates, y, zaccordingly or with the sidesf

parallelepipedd) ¢, H ¢ i(fiy. 2.5). From rectangular tmgles¢ ¢l , lpamd
¢ ¢l we find

n 3= -6 | cos,
3 B2z =6 )| cosb (4.2)
Z=2-z=a,= |0 I|cog

where [§ J]= 8] =06 - x)? +(¥,- ¥)* +(2,- 2)° =X* +y* +2° = [ +al +a?
cosa, cosb andcogyis referred tairection cosineand for them the ratio takes place
cosa + cosb+ cosg= 1 (4.3)

Now on the basis of the obtained formulas we shall prove the theorems-of ve
tor equality. We shall consider two vectaisand s° with coordinates,, yi, z and
X2, Y2, Zzaccodingly.

NecessityL e tsldow, thatif vectors are equdl®= ¢), also their coordinates
are equalxy = X Y1 =V 2z = 2). It follows from vector equality, thd@| = |9,
and also, thatosa; = cosa,, cod;= cod,, cogy = co%p, since vectors are cath
earand are equally directed. If vectors are collirzealr are oppositelyigectedcosa,
=-C0Sa,, C0D, = -cod,, cogy =-cogp. Now it follows from formulas (4.2):

X;=|8| cosa; =|9|coa, = ,,X

y]_:lél COS)]_ = |5| COsz = 2Y

z,=|8| cogy = |9 cosp = 2,
that was to be proved.

SufficiencySince coordinates of vectot&nd s are equal, then

|8 =|9|n @08, codb;=cod, COF\=COIp.

The second condition means, that vect®rand 8" are collinearand directed to one
direction, and taking into accounity| = || such a vector are consred to be equal,
ie.0=9.

Theorem of vector equality implyies, that mappig & = (X, y, z)is biunique. R-

ally, each vector from the vector space of free vectors can be put in conformity
with unique vetor &= (x, y, z)from the vector spac® and on the contrary, each
ordered triple of numberg, y, z),i.e. a vector fronR®, can be put in conformity
with unique vectoi from vector space of free vectoFor construction of this e

tor it is sufficient to construct a radiusrector of the poinB (X, y, z)in the chosen
system of coordinates. Then the set of all directed segments equal to the directe
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segment[ I is the vectorS with coordinates, y, z It should be noticed that thisreo
formity depends on a choice of system of coordinates.
If the vectord is located in one of coordinate planes, then one of coordinates is equal
to zero, forexample, if this plane is ,, thecoordinatez = 0. Such vector can be
represented by the directed segment laying in any of the planes, which is parallel t
the plang , In this case each vect@focated in a coordinate plane can be put in
conformity with he ordered couple of numbeEs I§), representing a vector fromare
tor spaceR? and this confomity is biunique.
If the vector® is located on one of coordinate axes, then other bwodnates
are equal to zero and thus each vecdidocated on a coordinate axis can be put in
conformity with a vector which has coordind&drom the vector spacB" and this
conformity is biunique. Such vector can be represented by the directed segment |
cated on any straight lingvhich is parallel to the corresponding coordinate axis.
Let's show now, that operations of free vectors addition and their muaiigfic
by the number from fieldR are in full conformity with similar operations on thecve
tors fromR’, i.e. relating toltie given operations these spaces are isonim We list
these opattions without the proof since all of them are proved in the course of high
school.
The sum of free vectorgCoordinates of the sum of two free vectors are equal
to the sums of correspomdj summand coordinates.
On a coordinate axig3( ¥ and 5( ;
O J+5(J=C( x+ 2)x
Onacoordinateplane &( x 1) @nd §( % 2);y
O % )¥5( X 2)FC( X+ 2X14 2y
In space G( % 1,31 ands ( X 2, 2);
O X 1.30) +5 ( X 2 3)=C ( X+ 2X 14 21+ Z5) — conformity (seethe for-
mula(4.1)).
Multiplication of a free vector by a number fromdid R.Coordnates of the product
/ 3 of the vectord(x, y, 3 and thenumberl are equal to the products of this number
and caresponding coordinates of the vector
/& /3,/z/2) - conformity (see the formula (4.1)).

Corollary fact For two vectors3(r, iz, z:) ands'(=, I, z,) to be collhear, i.e.
8'=/0, itis necessary and sufficient that corresponding doatds of the vectors to
be proportional=2 = 2 =2 =/
Y 4

In addition to these two operatis we shall introduce one more aper
tion on free vectors which you met in a course of high school but which sense we
shall cansider later.

3.4. Scalar product of two free vectors

Definition. Scalar productiOs’ of two free vectorss and ¢, if these vectors
are not equal to zero, is referred to as a number which is equal to the product of the
magnitudes and cosine of angkvieeen them
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305= |65|Q9’|cog (4.4)

If &= 0or & = 0(or &= & = 0), the scalar produad®¥ , by definition, is co-
sidered to be equal to zero.

Corollary facts

1. If two vectors are perpendicular, their scalar product is equal to zero.

2. S@lar product of two vectors is expressed by the maximal number if vectors
are collineaiand have the identical directiofy (= 0), and it is expressed by themmi
imal number, if they are collinear, but oppositely direc{ed=p ).

3. Scalar product of theector @ and & is equal to the square of the vector
magnituded: &@= |8F, hence|d| = V&a.

Scalar product of two vectors set by their coordinates is equal to the sum of
products of their corresponding coordinates:

G( X 123),5( X 23); 0@= X2 X 11y¥y+21°2, (4.5)

EXERCISES

1. With the given vector§ands’, construct the vecto35 - " ands- &/2.

2. Define, at what values andb , thevectors&(2, a, 1) ands'(3, -6, b) are
collinear.

3. Ascertain that pointg 8,-1, 2 , 1, 2,{1) , -1,&;8), D(3,-5, 3 serve as
vertexes of a trapeze.

4. The vecto® makes with axes of coordinates the acute arigles ,fand,Uo
= 45° B its cdb@ihates, f3k=t3e r mi ne

5. Determine the direction cosines of the directigisetby the directed sp

ment ¢ I, where$ {,0;-1) andl 8,1:3).

6. Define, whether points , 1 , ke jnbDne plane:

a l) 1!2’3 ) 71313( , _31Q16 andD(912149;

b) 1413 , 532, -84,0 andD(9,2,9;

c) 1,33 , -21,1 ,-43,2 andD(3,4,3)

7. The height lowered from the vert&of thetriangle¢ 1 gdivides the opp-
site side in the ratio 3:1. Define the coordinates ofAap 1 {1,1) , 3,5, tha (
length of height is equal to 2.

8. Vectors®(1,-1,2) n 5(2,-2,1) are given. Define a projection of the vectr
=30-9 onto the direction of a vectar.

A4 . VECTOR SUBSPACE
Definition. Let therebe a vector spade above the field , and letG bea sib-
setK which with laws induced fronK, makes a vector space abqvethenG is re-
ferred to as vector subspacef the spac& or alinear varietyin K.
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It follows from the definition that the sunt any vectors fronG is a vector b-
longing to the same s&, and product of a number from the figldanda vector
from G, belongs to same s@&.

Thus, every vector subspace is a vector space in itself and on the contrary, an
vector space can be consigéras a vector subspace. For examRlI&, is a vector
subspace of the spaBe for any m <nand, in its turnR" is a subspack "*.

4.1.Subspacegenerated by the linear combination of vectors

Definition. Let any systenm of the vectorsq,éz,..ﬁ}n be given which b-
long to vector spack above the field>. Let 6 s eagh vEctoﬁIi K by the

number/ i P, i=1,2,...m and add the results. The obtained esgion
m
/1‘%"'/25(3:2 +---+/mgm:é-/i‘%
i=1

is referred to aa linear combinationof vectors with coefficientsy, /5, .. ./ .

As the coefficientd 4, /,, . . ./, are numbers from fielgl, which are picked
out arbitrarily (there may be also zeros amahg then the linear combinations
formed bysystem of vectora\’l,é’z,...,é'mwill be an infinite set. Each linear comb
nation of vectors determines a certain vector

8=/, +/,& +..+/ @, (4.6)

which belongs to the same vector spKc&uch vectors” is referred to as linear
combination of the given vectorsr also we can say, that the vectoris separated

into vectorsa\ﬁ,é’z,...,é’m, and that infinite seG which is formed by these of we
tors,will be the vector subspace \Pf Hle sp\BJ(cé' his subspace is referred toabne-
ar hull of the system of vectorsy, a,,...,an,, or subspacegenerated by a linear

. . o O 4
combinationof vectorsay, as,...,am, froms.
Really, let

8 =/, +/,8 +..+/ a, and 8, = md + mG, +...+ ma,, be two any
vectors fromG. We have,
o+ =(/1+ MY + (/3 +mp)S +..+ (/ y + my)an | G,
a neutral elemer® = 0a; + 085 +...+ 0,1 G,
a symmetric element 8; = (- /)G + (- /)& +...+ (- / )am | G.
On the other part, for any / Rwe have,

b =(b/1)+ (b1 )G +..+ (D] )&l G,
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Hence,GE s hasproperties of a vector space and consequently it is a vedter su
space of the spa¢é

We shall consider now the basic properties of vector system and a subspac
generated by them.

4.2. Linear dependence and independence of vectors

Definition 1. The system of vectoré’i, a‘@,...,é’m froms (wheremfi is finite)
is referred to asinearly dependentand the vectors are referred toliagarly de-

pendentif there will be even one sét, | 5, . . ., | i, of such numbers in fielg, but
not these numbers are equal to zero, that
cam a
/1€i+/z& +ot oy =0 @ /& =0f (@)
l —_

Definition 2. The system of vectoral a2, é’ml' K is referred to anear-
ly independentand the vectors are referred tollaearly independentf the Ilnear
combmaton from these vectord,d +/,a, +2 +/ ndy is equal to zero \aor 0

@/@1 08

~onlyinthatcase,if{ =/, =...=/,=0.

The remark One vectod | K is linearly independent, Nb 5 and on the

contrary, the vectod| S - is linearly dependent.
We shall give to presentation of linear dependence and independencee of ve
tors. We shall consider system of free vectors.

The theorem 1For two freevectorsé’land é’z to belinearly dependent, it is

necessary and sufficient that they are collinear.
. - - .
The proof Necessity Vectors ajand a, are linearly dependent. Hence

1@1 + /252 =0, wherel ; andl , are not equal to zero at the same time. Let, for
example| 1, O, then 8 =- /—82 this implyies thataland a2 are collinear
1
- X x . q = /Q
Sufficiency.Vectors %and  are collinear Hence , from here,

. M o o
l@q ) /bZ =Oput since =1 0, means vector@land ®2are linearly dependent.

The remark.If two vectors are linearly independent, they are not collinear and
vice versa.
The theorem 2For three free vectora, ,a,and & to be linearly dependent, it

Is necessary and sufficient that they are coplanar.
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The proof of this theorem (See. Boo
The remark.If three vectors are linearly independent, they rave coplanar.
The converse proposition is also fair.

4.3.Theorems about linearly dependent and linearly independent ators

The theorem 1If the system of vectors\l’l,a\fz,...,é'ml' K is linearly deped-
ent, then after adding to it any number of nexetors fromK, we will have again a
linearly dependent stem.

The proof.lIt follows from equality .

11 +1 58 + .4 ] @+ @y oot @i =0,
in which among /4,/5,....,/ , are nonzero, but all ;41,7 142:---/ Mk are equal
to zero.

Let the system of vectors be séi,, 5'2,...,5'”] from s. Any part of this vector s

tem we shall namis subsystemThen the theorem 1 can be formulated Hs\s.
If any subsystem of the given vector system is linearly dependent, alssthe sy
tem is linearly dependent.
For system of linearly independent t@s the following statement is fair.
If the system consists of linearly independent vectors its any subsystem alsc
consists of linearly independent vectors.
Corollary facts
O )f there is a vectoD in the set zii,zi},...,é’m , then the seﬁi,é’z,...,é'm IS
linearly dependent; it is equivalent to the statement, that if the set is linealy ind
pendent, then eachater , 0.
b) If there are two proportional vectors in some set, efmample,éf = mé’l

where /71 P, then theset is linearly dependent, since those is the partieﬁi's&'- ;
really, m@-j + (- 1)5.,-’ =0,and/; =-1, O.

The theorem 2The system of vectoré{, Qqn froms will be linearly de-

pendent in only a case when one of these vectors can be presented as a linear corn
nation of other vectors of this system.
The proof NecessityLet q @Qn - be alinearly dependent systeof vec-

tors. Then there will be a set of numbers, /73,....,/m, 1 P, which not all are equal
to zero, and such, thaqz\i’l+....+ n}né’m =0.Let’ s as s ueness, thai r
m , 0, then
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& =113 +/ 585 +...+ [ @, where/ j =- ,j=1,2,....,.m, and

3/3

j, I

Sufficiency
a =/jat+/a,+...+/i_18_.1+/{ 184 +...+/ 1@y - is a linear combia-
tion. Let’' s mul #1i)playndt Hied ' sq sallbitdiosd-clt y
1)@}, we shallobtain

118 +7,8 +.+ (- DG+t @ =0

For coefficients we have nenvial combination/; =-1, O, hence, the system is
linearly dependent.

4.4.Base and rank of vector system. Basis and dimension ofcter
subspacegenerated by vector sstem

Definition 1. In any system of vectoré’l,é'z,....,am from s , containing no-
zero vectors, always it is possible to choose a subsyﬁeﬁ'}z ,..o@p ,Wherer ¢m,
which consists of the maximal number of linearly independent vectors so, thag addi
of any vector from this system to the specified subsysteakes it linearly depen
ent; really, since there is a n@anishing vector in system, and it is always linearly
independent, then2 1. Such subsystem of linearly independent vectors is referred
to asbaseof initial system, and numberof vectors inbase- a rank of this vector
system.

The remark.The base of system is defined ambiguously, but numberaf ve
tors in base (rank) is always equal. For example, one of three v@t&rﬁg,@, is

Iinearlé dependent, it is possible to construtiree bases of two wvwrs:
4.9; ¢.8; 4.9

Properties of a base.

1. All vectors of system can be presented as a linear combinatiomtof vef
a base. (see the previous item 4.3, the theorem 2).

2. Any vector of subspace, generated by mesystem, can be ggented as a
linear combination only the vectors forming its base and this decomposition it is
unique.

The proof. Let G — be a subspace, generated byctoes
o o \J | . .
&,a,...,ay and letay,a,,....,a, r <m (for r = m the statement is obvious) be a
o o \J o o
base of systenay, as,...,ay. Then the rest of system vecto@s,q,...,8, can be
presented as a linear combination of base vectors
_ |
A+ = b1y + b8y +...+ by ay,
(4.8)
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am = O(m r)1a\-ll + Dm r)25-J2 tot Dmeryr a .

Now |l et’'s comé$iGder any vector
8=/ +/,G +...4+/ & +/ q@ g ..+ @,
Subsituting this equality of a vect(ﬁ}ﬂ,...,é'm for (4.8), we obtain

o o o
o=|/1+/ ialbry+ .+ b )|a +o [ + by ot B )| &
|\ \J - o
oro=ma + ma, +...+ ma,.
Definition 2. For vector subspace, generated by system aoftoke
a\fl, 52,...,§m, the base of this vector system is referred ta basis and the rank of

vecbr system is referred to adimensionof its subspace.
As a striking example we shall consider a subspace, generatedtém sf
free vectors.

4.5. Basis and dimension of vector subspace,
generated by system of free \ators

We shall consider a baspacewvhich element is therlear combination of three
free vectors/;{J +/,8 +/3%. Let ' s assume, that this

dependent. The case of linearly independent vectors will be described further. We
have already determined, thathe linear combination of three free vectors is lmea

ly dependent, it means, that these of vectors are coplanar, i.e. there is a plane whi
they are parallel to. Obviously, that also any vegtaiill be coplanar, which isa
linear combination of these vectors. Therefore a subspace, generated by system
such three linearly dependent vectors, represents a set of all vectors, whichare copl
nar to the given ones. Such system of vectors is represented by the directed segme
laying in one plane, or in planes parallel to it. Further, since the system of tliree ve
tors QGZQ is linearly dependent, then one of these vectors is a linear cambin

tion of two other vectors. Let this vector be

&: & = 5 + 5,8, where by =- j—l,bz =- j—z Let's consider a condition
3 3

when the rest of vectors are linearly independent, i.e. it means, that they ark not co
linear. Then these two ordered vectors will make basis of subspace of co@anar
tors and dimension of itsubspace is equal to two.Hence, the basis of two
dimensional subspace ofoplanar free vectors represents any two ordered ndaco
linear vectors.Usually as basic vectors of twtbmensional space we choose vectors
which are represented by the directed segmehich are parallel to coordinate axes
[ mand [, on a plane and which are by absolute value to a scale segment of coord
nate axes. The first vector directed parallel to an fxis designated as: its coa-
dinates are (1,0), artie seond vector directed parallel to axjsYis designated; :

its coordinages are (0,1)The choice of such basis is caused by that if we represent
any vectors with coordinatesH, 2 of two-dimensional sulgcethrough basishe
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i ,],in this case coefficients of a Iinear combination of basic vectors will beieoord

natesh and y of the vecto®, i.e =" + yj , and as we already saw, this deto

position is unique.
Now we shall consider a case, when vect(\){gand CSZ (one of which is not equal

) are collineari.e. they are linearly dependdor Q ZQQ). Naturally any vetor

being a linear combination of these vectors will be collinear to them. Therefope a su
space, generated by system of vectors only one of which is linearly irtiepefit is
the vector which is not equal t\i)) represents a set of collineagctors. The &sis of
such subspace consists of one nonzero vector, and dimension of such sigspace
equal to one. Ondimensional subspace is represented by a set of the diregted se
ments located on @nstraight line or on straight lines parallel to it.

Now we shall generalize a concept of basis for a set of the vectors forming all
the vector spaceK.

A5. BASIS AND DI MENSI ON OF VECTOR

Definition. Let K — be a vector space above the fiptd e aséusne that there
is a finite numben of such linearly independent vecto?i 5,..-2 2n 1N this space,

that every vector onéJfrom 5 o linearly depends or?l, 25,.. ,’?n Then we shall

speak, that the se’fl, ?5,..., ?n forms a basisof the spac&k and, that the vector

spaceK has finitedimensionn, and it is written down agimK = n.

The remark.There are the vector spaces which do not have finiterdiime,; it
is said, thathey have infinite dimension; there are arbitrarily big sets of linearly i
dependent vectors in such vector spaces. For example, vector spackiredmiak.
Consideration of such spaces is beyond the course of linear algebra.

There is no basis also rero space as the system consisting of one ze&torye
is linearly dependent. Dimension of zero space is not determined and it idecedsi
to be equal to zero.

Corollary factsfrom definition.

1. In n—dimensional vector spa¢€ the set consistingf more thann-vectors

is always linearly dependent.
If K has some bases, these bases contain identical number of vectors, and this numk
is equal to dimensiol; hencedimK does not depend on a choice of baReally, if

K has the basis which is distinct frol, ?»,...,?,,, thelast will haven ' vectors, and

n' ¢ n. Just asn K no more thann' linearly independent vectors can exasid son
¢ n', and, hencey=n'.

5.1.Basis construction

Let there ben — dimensional vector spadg€ i.e. there is even one basis of n
vectors in it. We shall choose K an any vectorq . 0. If K does not contain the
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vectors linearly independent ond, then for any vetor 0 s we have

of! (- /)q =Oor &= / Gand { forms abasis of the spadé which has dimesion

1.L e t $sieme that dimension n> 1. We shall designate throdglvecor from K
which islinearly independentof.Let ' s suppose thatein
pendent vectorﬂ,@z,....,é are gradually obtained. i < n, thens contains the
vectors lirearly independent otf,&,.....&, otherwisethese vectors would from the
basisK, caontainingr < n = dimK vectors what is impossible. So, there will be such
vectoré’rﬂl' K, thatq, CSZ Cj ,é’rﬂ are linearly independent. This way we can

obtain n linearly independent vectors which will form a basis of the spacehat

fact, that vetors for construction of basis have been chosen arbitrarily, proves that
always there is an infinite set of van® bases of spad€ (but all of them contain
identical number of vectors = dimK). Thus we can consider to be proved also the
theorem of incompleteasis and a lemma of replacement.

The theorem of incomplete basiginy linearly independent set of vectors
d,8....81 s wherer <n=dimK always can be added with-r other vetors from
K so that the obtained systenof vectors forms a basis of the sp#ce

A lemma about replacementet ?1, ?,...,7, be a basis of the spae Then ay

vector ?,i =12,...., n from this basis can be replacegith other vectorafrom s,
which is not a linear combination of other vectors in basis:

L’ v v v v

a, /1?1 +""+/i-1?i-l + /i+1?i+l +----+/n?n- Then
N\ N\ v bv . B

?1, ?2,....,’?i_1,a, ?i+11----'?n -1Sa ba3|$ .

5.2 The basic properties of basis

Let @ be any vector fronK of thedimension n; sice it linearly depends on
the tesis 7, ?5,...,7,,then there will be such numbers /. . .,/, which are not

all equal to zero it that / G+ [1?1+15?5+...+/,7,=0. And| , 0, as othe-
-1 . R , .
wise ‘1“2 ‘nwould be linearly dependent. As is a field, then/il { exists.

o U VR -1 -1
After multiplication by/1 we shall obtain: a= 6,7 + b,?, +....+ b,?,, where

= li=12.0n.
/

Thus, the vector spad€is generated by the bas®, ?»,...,?,, and the givene
pression is referred to aslecompositionof the vectord in terms of the basis
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?1,?2,...,?n.Numbersbl,bz, ., b, are referred toascomponents (cordinates)
of the vectord in basis?l 25, ,?.

The theorem( Basic property of a bas)Q?epresentation of any vectdifrom
the spac& through its baS|s’)1, ?5,..., 2 IS UNique, or in other words, in the set

basis the veor components are deflned unecpaslly.
The proof L e tagsame, that the theorem is not true and the véctor the

. | O o . C — v ~
ba3|s 2120y has various component&i=/1?1+/5, .+/1,?, and
a= /9171 + 192 bn’7n Then sulractlng these equalltles we shabtain

vv

0= (/1 - bl)’? +(/2 - bz)’? +.+(/4- b )’? . As vectors ?1, ?5,.. ,’7nare
linearly  independent, then (/1- 6;)=0.,....(/n- b,)=0 and hence
[1=01,/2=0p,.../ z=bn
The remark.The same vector in various bases has different comggnen
As a striking example we shall consider the space of free vectors.

5.3. Basis and dimension of free vector space
Let's choose the system consisting of three ordered free vé@tcﬁi_s, Q The

case when this vector system is linearlpe&l®dent, is already considered by us in the
previous paragraph, item 4.5. Now we shall consider a condition when the system o
three vectorsﬁ{,@,@ is linearly independent, i.e. it is the ordered triple of menc

planar vectors.
The theorem Adding of any free vectoff to the system of three noncapér
vectorsq,@b@ makesit linearly dependent, or in other words: any freetoed

is a linear combination of three ordered ogplanarvectors and this represetion is
unique. Thus we shall establish, that set of three ordered v&ﬁtgfﬁg@ IS basis
of free vector space and his dinsen is equal to three.

The proof We Iay off all vectorsa q Q Q;, from the same point :

ABl—al ABz —az ABs —a3 AB4 a Let F —be a projection of the poiit, on-
to the plan® Ll , parallel to the straight lingg k andQ - a projection of the poirf
onto the straight line¢ L parallel to the straight line¢ L. Then

&= ABs = AO+OF +FBa. Vectors AQ,QF,FBa  are collinear to vectors
A0 oF  FB,

&, &, &. accordingly. If we supposﬁzll,gzlz,—é:/B, we shall dtain
& % 43

—_— - - g \ 4 o > .

AQ=/1a1,QF:/2a2 FB4 = /3 5 and, henca=/q1a +/,a, +/3a3 , ie.

vectorsa QGZQ are linearly @pendent.
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Thus, the basis of free vector space consists of three ordered noncoplanar
vectors If as basic vetors we choose three ordered vectors which are represented by
the directed segments parallel accordingly todlaees of rectangular Cartesias-sy
tem of coordinates, y, zand the absolute value of each vector is equal to a scale
segment of these axes such basis is referredddlanormal basis. First two basic

vectors, as well as on a plane, are designa'\\feﬁ, and the third basic vector parallel

to the axi€,, , Is designatedz ., and thEse vectors \fwe referreg to as a vecter
Coordinates of these vectors will bé:=(1,0,0), | = (O,ZLO), k = (0,0,l). Such
choice of basic ectors is caused that in decomposition of any vedtaty, z)on a-
thonormal baSISI j K coefficientsof decomposition are coordinatesy, zof the

vectord : & =xi +yj i+ 2K

L e tconsider exprssion of scalar product of two vectomand 9, WhICh are
o

C C_
located onorthonormal basis, i.ea = Xi +y1j +21k n 9=Xxol +y21 +22k
Then

=i+ vy +le2XX2| +y,] +25K)=

= X1X2i\2 + Y1Y2lkﬁ + 2122'242 + (X1Y2)'J + (Y122 Yo 21)1 k+(z% + ZZXl)k| but
smcelb Tk‘ are mutuallyperpendicular (orthogonal) vectors and thelatas of

them is equal to one, then
. \ N O il 7 e
|k2 = JkQ :E? =1 1g=i1Gx=j&=0, then T = xpxo + yiys + 212,
Thus, scalar product of two vectors is equal to sum of products thea- corr

sponding coordinates in the coordinates only in that case if vectors are set by the
coordinates in orthonormaésis.

A6 . | SOMORPHI S M1 BIMENSORA VECTOR
SPACESK AND t "ABOVE FIELD t

LetK - be a vector space of finite dimensioabove the field . And let

N s

n
2, 22,...?2,-basis of this space.P"E@R" whichisc on :

i=1
productn of vector spacesa b o v e f | QU'[ aived?orx'_l_(/el 1/2' S’ /n)
fromt " in conformity with vetor = /1 + /2’?2 +...+ /,n’Pn fromK This
mapping f : X- Xiis biunique mpping since decomposmon of a vector @siB is
possible only in the unique way. Let furthef s and

V=012 + b2, + ..t by 2.
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Let's put in conformity the vectoyi = (bq, b5....,b,)fromt " with a vector
7 s
Since

X+Y=(/1+b) 2+ (/2 + 0p) %+t (I + by) 2,

that is clear, that the vector+ y corresponds theector Xj + yifromt ", hence
i(>\<l+3\/7_ f (X + f(i’)

Further, sincea X=a [{?1+al,?»+...+a /n’?n, then thevector a Xcorresponds

to the vectora Xj fromt ", hencef(a X) = a f(X). Thus (see book 2, Chaptkr

§ 3) , iikle toimake the fellswing conclusion.

The vector spacK of finite dimension n above the fiefdis isomorphic tq ". Iso-
morphism betweeK andt "depends on basis choserkinand spaces onlyf iden-
tical dmension can be isomorphic.

VV N\

Images ofvectorsofbasl% 22 2?7 in ¢ " will be

2 =(100,..0), 2 =(010...0)..., % =(0,0,..) or 2 =(dy,dui,...dn),
wheredj =0, if i, j, and gy =1; valuesdj; are referred to asronecker gmbols.

Really, smce
= aj ’?1 + ds; ? +...+dy ’?n, then?j =(ady,d5,...,di), wherei=1,2,...n.
From the mentioned above it follows, that for vecto7§ )‘(’2>\<’r from s to belin-
A\ A\

A 4
early indegndent, it is necessary and sufficient thattoes X1 X2+ X4 fromt "
hasthis property which arecorrespondent to them in the case of the alstatd
|somorph|sm In particular we shall show, that vectors

’?1 (1,0,0....0), ’?Q (040...0)... ?h:(0,0,...;L), are a bass of the pacg "
which isnamedcanonical
The proot
1) Let's prove that vectoré\’?l,>?/i2,...,>?lj1 are linearly independent. For this pu
pose it is necessary to prove, that the vector equation

~

/1>?Ji +, /2>?ij +..+/ n>?/,i1 =0 has only the trivial  solution

/1=15=...=/,=0. The given equation is equivalent to the system af sc
lar equationd ;64X =0, /,1=0, ..., /, A =0, which has unique solutioh; =
[ =..= 1,=0..

2) It is obviously, that any vear a= (/71/7@/7?,) from P" is a linear combia-
tion of vectors>?/i, gggh with coefficients

nz,n;,...ng]:b: /71’?1+ ”b)?liz +...t m,)?lhl. Hence, the systent?li,r?liz,...,)?lh is
the basiP ™.

Thus, the significace of the isomorphism theorem | consist in the foilhg.
Vector spaces can consist of everythingolumns, multinomialk, physical values:
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speed, force, intesity of an electric field etc. the nature of their elements is of no
importance, when only tiveproperties connected to operations of addition antd mu
tiplication by number are studied. All these properties of isomorphic spaceshare co
pletely identical. From the algebraic point of view the isomorphic spaces are ident
cal. If we shall agree to notstinguish among themselves isomorphic spaces by vi
tue of the isomorphism theorem, there will be only one vector space for eact dime
sion andP " can serves this space

A7. VECTOR FUNCTI ONS OF ONE REAL
MAPPINGS RINTO R"
Vector functionsof one real variable put an element of vector space i co
formity with a real number. Let this space be a vector sRdcabove the fieldR.
Definition. Let P —be some numerical set froRand let any numbet/ R be
put in conformity withthe elemengvector) fromR". In this case we can say, that a

function of real variablé/ R with vector values ilR", or in short, a vector fuation
fromtis determined.
A vector function is designated through(or by the bold loweraselL atin let-

ter), and its value fortthrough f (t); f(t) is an element of vector spaRé. Expres-

sion «the vectf #withfaluesinR"> bas thd saneersense, as the
following expressions: a vectorrfction determined of, or mapping in R".

We shall designatdements of canonical basis of sp&® through 7?4, ?iz,...f?/h If

f - is the vector function determined prand possessing ks inR ", then f (t) is
an element fronR" and, then , it represents a set n of real numbers which value d
pends on t and which we shall designate thrqugl),/ >(t),.../ 4 (t); it will be co-

ordinates or comments of the vectof (ty on canorial. Thus,(/ 1(t),../ »(t)).

- C C C

0=/ 1024/ 207+ t/ 0?0 = /20 n0))

Hence, for any/ R n numerical functiongy, j », ...j » of one real variable areed
termined and, sofv is the ordered set of n numerical functipng »,..J , of one real
variable which are determined on the BeFunctiong ; are referred to asoordinate
functions.
Let’s suppo sfe mapping ,of thg Hran R " f- exists inverse mapping

f =1 it means, that for any vectog(l R", which is vdue of furction F the set of

those numbers/ R for which >(<:: f(t), itis reduced to one number. Then™L:

will be numerical functio n of the real variables (Book 1, Cha@er 8 3 ) .

Let’s note, that complex functions
book 2, Chaptee8 6, item 6.1, can be presented
able, or as mappinginto R, sinceC as the vector space is identified with
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In conclusion we shall consider a vector function of one real vatiatidch value is

- R —

a radius- vectorr =OM of the pointM in geometrical space. As it has bedready

mentioned (Chaptet, 8 3 , i It- dsma véctoranhich origin coincides with the
origin of coordinates O, and the end is some pdbf geometrical space. Coord

nates of a vector in orthonormal basié,],ii and coordinates of the poiri coin-
cide in the Cartesian rectangular system of coordinates, i.81, &, y, z)then
r=OM =xi+y]j +zk. Let coordinates of the vectar, and, hence, of poif¥l be
the function esence of somparametet, with domain of variatioP E R

ex=/4(t)

1y=/ ().

tz=/ (1)
Thenr(t)=j ,(t)i+j ,(t)]+] 3(t)R represents a vector function of one realafale
t or mapping into R®.. When t change, als®, y, zchange, and the poir - the
end of a vector - will circumscribe some line in the space which is narhedo-
graph of vectorr =r (t), and which an be considered as the graph of the vector
function r (t).

Thus, the vector function of one real variable with valug®®iis grapfically

represented by a line in geometrical space.

A8 . LI NEAR MAPPI NGS OF VECTOR S

Definition 1. Let there be two vector spacksandL abovethe same fieldP.
Linear mapping of the spada s into L is referred mappin§ K- L ,possessinghe
following properties:

(4 +%)=

f
f(/X)=/£(x); " xI K;"/

()" X\l K%l K;

It should be emphasized, that adufitin in the right and left parts of first of
formulas designate, generally speaking, two various operations: addition in the spac
K and in spacé. The similar remark concerns also the second formula.

Definition 2. If L = P, thenvalue of amapping is nmber fromP; in this case
we can say, thdtis a linear form.

So, the orthogonal projection of a free vector onto a plaadingar mapping
of the spac® ®into R%
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PG+ 4 %) =118 00) +/ 2f (R) +..+/, T () =0,

Corollary fact from definition 1.L e tcd@nsider the sdt(K), i.e. a set of @-
ments fromL which serve at mappinfgas images , at leastf one eémenth] s . f
(K) is the vector space which is a vector subspace of the s@amedmension of
the spacé (K) does not surpaskedimensionK. If )?1)?’2% are linearly @-

pendent irK, thenthere are sucll{,/»,...,/, int which are not alequal to zero,
that /X +/ ,Xo +...+ /X, =0, but then

(/% 4t ] X )= 115 () +/ o F (%) +..t 1, F(X) =0,

and so element$ ()?1) f ()‘(’r ) are also linearly dependent. Generally speaking,
the opposite is not fair. Here we take into account, fr@— 0 . It follows from
mapping linearity: f(x +5)‘ f )k()+ f(f)) and, then f(j 0. It should be p-

ticed, however, tha in f((\)) andO differ in the right parof equality, since these
are the neutral elementslbnging to different sets.

8.1. A rank of linear mapping

Definition. A rankr of linear mapping : K - L is referred to agdimension of ve-
tor space (K). If K has dimensin n, then sincadimension of the spadeg(K) cannot
supassn, we find, thar O n .

VV

If e )?/ is a basis of the spac&, then >\<’=/1’?1 +..+/ ’?n and
)%) / f(>51)+ AL (’?n). Thus, the vector spadg(K) is generated by e
tors f( ) ( ) and, hencer is a maximal number of linearly independent
vectors f (’? ) L (’?n ) i.e. a rank of the given system ofci@rs.

If all vectors f(\’?Jl)f (\’5”) are linearly independent and form the bdsis

(K), andf (K) exhausts all spade (i.e.f (K) = L), then mappingf will be biunique.
Hence, for Inear mappind to bebiunique, it is necessary and sufficient thah K =
dim L = n and it is eqaled to a rank of mappings. Thus, biunique mappings are
possible only between spaces of identical dimension.

We shall notice, that if linear mappifgis biunique, it will be isomorphism.

8.2.Coordinate notation of linear mappings

We shall cosider two vector spacés andL of various dimensions above the

same fieldP. Let in the spac& of dimensionm be choserthe basis L' 72+7m,
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and in spacé of dimensionh - the basisé’l,é’z,...,é'h. Let f be alinear maoping K
into L; it converts/ K B = f(x)/ L. After we decomposeectors and & on
bases of asesponding spaces, we shall receive

X=/12,+ /020 4.t [ 2, = b8 + boby +..bpen, /1 Pub i P
or subject to a linear mapping, we have
C C C C m C
V= (=118 (F) +/ 1 (%) +.t I E ()= &/ 1(%)).
j=1
Sinceelementsf (5j )I' L, thenby means of basié’l,é’z,...,s\)?, thee can be presen
ed as

=4 o O .
f(?))=a1jor +as;oy +...+andp, j =12,....m

c _h c.
or f(?j):aaijai,|212,...,h.
i=1
Hence,
c m C m_ h ¢ ham gc o |
y=a/jf(?))=a/;aajg=a % i/ | 88i or coordinatewise, subject to,
j=1 j=1 "i=1 i=1C7=1 s
h
thatgzabizgi:
i=1
bi=an/1+ an/+...¥amln
022321/14' 322/2+...+32m/m (49)

bpn=am/1+ anp/2+...*amm/nm

It should be noticed, that the given system contains elemngbisanda;;, which ke-
long only to the fieldP. It allows to consider the specified system also as the chara
teristic of linear mapping of the spaPe" into P ". Elements of the spade@™ are
vectors Xi=(/1,/2,..../ m), and spaceB " - vectors yi=(by, bs,...b,,). Thus,
any linear mappingof thevector spac& into L can be compared to linear mapping
of the spacd® ™in P ", which will be determined by the identical expressiores, d
scribing the mpping.

The received system of expressions to the full charaetehzear mapping
vector spac&oin L. In turn this system is set, if the rectangular table of facfors
which are written down as follows known;

The obtained system of expressions in full characterizes linear mdpgifiriige vec-
tor spaceK in L. In its turn this system is assigned, if the rectangular table of factors
aj is known ,which is wrtten down as follows;
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andi...a1m i=1,2,...,h,

b=| anazxn...amm |=(aj),
Andn2- .- ahm

Such rectangular table of numbers is referred @ @mstrix, and numbers;; arere-

ferred to as itsnembers..

A set of the members wth have identical first indexes, is referred toaas
row, and a set of the members which have identical second indexeferied to ag
column. So,a;; is a member of the-irow and the } column.

With the help of a matrid system of the expssions (4.9) describing linear
mappingf of the vector spadé in L (orP™in P") is written down in the follwving
way I = ¢(R}), where

C . C .
Xi=(/1,0 0y )i P™ Vi=(by, bs,....00) 1 P,

j=1,2,...m

The matrix can be also considered irrespective of spaeesiL. It can be assocta
ed with the assignment of vector system in the space of vaetors, or in the space
of column- vectors. Really, let members of the row of the matrix(ai,, ap, . . .
aim ) represent congnents of the rowvectoréf in the spaceP ™, then

dynndi . . - dim =)
0= andxp...am | = of (4.10)
dmdn2 - - - dhm q

And, hence, the assiment of the matriXA means the assignment of the system from
h of row vectors a¢, ay,...,a, in the spacg¢ h Similarly,

ajj ai1dp . . .dim
o O \

g] = | ay | Rh, thend) = 401 a22...42m (91’92,...,gm) (411)

Hence, the assignment of the matAix means the assignment ofsegm
from m column- vectorsin the spac®".
Members of a matrix in these cases are components of vectors.
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If we consider ratrix A in expression (4.9) as the assigned system of the co
umn — vectors in the spade ", then formulas (4.9) can be written down in the fo
lowing equialent form:

Yi=/101 +/ 205 *+ ...t/ ;mGm,
bl’ o aj_j’
hereZi= b, i|P, di= |ay [ P, j=1,2,..., m

bh J L nj)
This expreSS|on means that the vectqd PNis a linear combination of the column
—vector systemgl, g2,...grn from P ", assigned by the matrik with coefficients

/4, ..,/n Itfollows from abovestated, that the matrix cdoe considered sepagat
ly as independent value, and on a set of matrixes, as well as on any set, introduce t|
internal and external laws of a composition.

EXERCISES
1. prove:©) lindar dependence of vectoqc(z -1, 2), @(3 1;2),
Q(6 -3, 6);b) alinear independence of vecto?:s(z -1,-2), 92(3 1, 1), 83(4 2, 1).

2. Prove, that vectorg(z -1-1), é52(2 -3, 0), ot (1, 1;1) form the basis of ge
metrical space and deflne coordlnates of the VER:([{B -4.-2) in this lasis.

3 Prove thatvectora 2 - j+2k b=i +2j - 3k
=3 - 4 "+ 7K are coplanar

4. Determine the components and write down decomposition of the gictor
orthonormal basns j  If \aT 2 ard this vector forms with axes the abscssl

ordinates angles ethe-miter on45 .

5. Find out, whether the given set of vectord/-timensionalector spac&
above field{ is a vector subspace and deternmiselimension© jhe set of ve-
tors, which all coordinates are equal among thevasdb) set of vetors, which sum
of coordinates it is equal to 0) theset of vectors, which sum of coordinates it is
equal to 1.
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CHAPTER 5
MATRIXES

Definition 1. The matrixA above the fielq , consisting ok - rows andm -
columns is the rectangular table of elementsaj| P, where

1=12,....k; ] =12,....m
Definition 2. Product ofk- row number andm- columns of thematrix k T ik
by m), which is equal to number of matrix membej; , is referred to athe sizeof a

matrix.
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It should be noticed, that matrixes with identical number of members can have
different dimension. For example, dimensions of matrixes froarows andn - col-
umns( m landbdthnrowsandmcolumns( n | arg notidentical

A 1. MATRI X RANK. ELEMENTARY
MATRIX TRANSFORMATIONS

As it has been already mentioned, the matixf the sizek T an be considedeas
the assignment of system fram column- vectors in the spade® or fromk row -
vectors in the spade™. It is possible to show (the proof of this theorem istted),
that ranks of systems of coluamectors and rowvectors are iddtical.

Definition. The general value of a rank of columrvector systenf{or row —
vector sptem), assigned by the matAx is referred to aa rank of this matrix and it
is designated asr (A).

Being based on conclusions of theorems of linearly dependent and limearly i

dependent vectors, it is possible to establish, it min (k, m) and also the fo
lowing elementary transformations of a matrix which do not change its{her} rank.

Elementary matrix transformations:

1. Multiplication of a row (column) of a matrix by the number which sirict
from zero;

2. Addition of one row (domn) of a matrix to another row (columof this
matrix;

3. Permutation of two rows (columnef the given ratrix.

Combining elementary transformations, we can add any row (cdlman
trixes to a linear combination of other rows (colujnasd thus a matrixank also
does not change. By means of elementary transformations any matrix

13 2---Hm
_ dr1a99...do
¢ =
18k 2--- Bm
can be transformed intothe form
910007 1...0...! 0 )
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Whereg; , 0, i =1,2,.r, r ¢ min( k,m ).It is clear, that number of nonzero
members is equal to a matrix ramks r (A) =r (B) =r (E). In such a way it is poss
ble to define a rank of any matrix.

Now we shall consider a matrix of the sizek® m as the baracteristic of linear npa

ping m-  ®(H), where S t ™ and A()‘Z)I' PK. In this case a matrix rank is equal

to a rank of this linear mapping. Really, the system from coluwattorsof a natrix

A consists of m gctors belongingp t ¢, and the set of mappingg?) is a linear hull
of column—vector system of the matriXA. Thus dimension of subspace risapped
®(R) (a rank of linear mapping) is equal to a rank of colurwector (a matrix

rank), generting this subspace.

As we already have determined, mappifigP" - P will be biunique if
and only if dimensions of spaces coincide k = m and are equal to a rank pf r ma
ping, i.e. r = k = m. Hence, the matrix detemmg biuniqgue mapping should have the
sizem x nfsquare)and its rank (¢ Yoeequal tom.

A2 . AL GEGHAERATIONS ON MATRIXES. VECTOR
SPACE OF MATRIXES

Since the matrix is associated with vector system s, and operations of ompar
son and addition anatroduced only for vectors belonging to a single spaceether
fore we can compare and add only matrixes of the identical sizes.

Equality. Two matrixes of the identical sizes, which corresponding members
are equal among themselves, are referred to as.equal

Addition. Sum of two matrixe®\ andB of the identical sizes is referred
to as matrixC of the same size which members are equal to the sums of comlespon
ing members of addedatnixes.

181 2---Hm 11912--- 01

(I) _ dy1a99...dom 991922...97m

= @), 1= = (&)

192 - Am 9¢19¢2---9¢ ny

Q1+9817 Q2 +912...Gm +O

At 921=022 +822...m + 92

g4 = ¢ J () = (a+9y),

Qi +8ki Q2 +9k2-+-Gm* Okm
wherei = 1,2,....5, ] =1,2,..m.

Addition is associative and commutatige exists for additiog; + j g ; there is a
neutral element a zero matrix, designated O or (0), which all members are zeros,
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and [ (ﬁ') :6i i ¢ whatever '(.-."I t ™ may be. Each matriA from membersy; has
opposite (symmetric), designated\ which all elenents are ssence-a; n ¢ +-¢) =

O. Thus, operation of addition on set of matrixes of the identical sizes forms Abelian
group.

Multiplication of a matrix by a number from P. Productof a matrix by a number

(or numbers by a matrix) is referred to as armavhich members are products of
members of the given matrix by this number:

1Q1/Qz.../Qn

layy/ays.../a
JA=Al =/ (@)= (/ay)= =~ 21 22T

/akl /akz.../ak

where 1 = 1,2, ..., K; j = 1
We can seethat muliplication by numbeis commutative and the obtained matrix
has the same dimsion, as multiplied matrix. Besides

/@ +1) ¢=1 since/( @ g)=/Q+/8;

(/+mé Fo wp since(/+m) 0O Q+mQ;

/(my) 17 ¢(sincel/ (mQ)=(/ MQ;

edp =sinpee@ = G, wheree= 1/ t —is a neutral element of rhu
tiplication in{ , whatever matrixesp andl may be, from € rows andm columns,
and whatever / t andn t may be.

Thus, the set of matrixes consisting ok rows andm columns forms a ve-
tor space above the fiefd

We shall designate through; a matrix ofk rows andm columns,which all
elements are zero, except for a member-efdw and j- that column- equalto e =
1; =1;i.e.we shall put
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Quantity of such matrixes is equal to number of members in a matrix, i.e.dacpro
kK Am.
Then any matrixp  =jj ) (consisting ok rowsandm columns takes fon of:

kgm 0
A=a i ailig
|:1QJ:1 =
And this representation is unique. Hence, matrikesform a basis of matrix vector
space ofk rows and m columnsthat is, this vector space has the finite dimension
which is equal to produdt A that forms the genal number of eéments in a matrix.
Multiplication of two matrixes.Product of two matrixe#, with the sizem| k
andB, with the sizek | ,ns referred to as the matr& with the sizen| nwhich d-

ementfry is equal to the sum of member produictsrow of the matrixA by corre-

sponding ementsof the j - column of the matriB.
Let be given matrixes

18 2--- Ak 911912..-91p
ar1@s5... a4 951995...9

b= 2182282k | 4 21922...92 |
Am8m2---8m 9¢19¢2--.-9¢/

then, their product

C1G12---Cin

£r1Cos...C
g o= o %'122= 2N

= (Gjj)

CrmCmZ san Cmn

k
Wherecij = i1,(:)1j 8] iQSZQi' ...t ikakﬁt a aigag- ,
o=l

i=12,..m, j=1,2,...n.

The remark. Two matrixesA andB, taken in the certain order, can be mult
plied only if column number of thierst matrix is equal to row number of the second
matrix, i.e. they have the size$ k andk® n. Such matrixes are referred to a®-
sistent

For multiplication of matrixes the following properties are fair:

1. Product of any matrix by consistent wittzero matrix is equal to zeroam
trix.
2. Product of matrixes is not commutative, i.e. generglly I ¢ .

Thus it is supposed, théd andl & make sense. HA =1 A thenmatrixes ared-
ferred to ascommutative(permutable)
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3. LetA, BandC bematrixes which can be added or multiplied, &ndsome
number fromP

(06Al)Aw = O0A(IAw)
10®) 19W =Qa)
Q1 +8)0 =& ¢

A3 . | SOMORPHI SM BETWEEN VECTOR
MATRIXES AND VECTOR SPACE t Y ABOVE FIELD t

As we already mentited, the matri¥A with the sizek T kan put in conforma
ty the ordered system af column vectors(éi, 5’2,...,5’m) in the spacg ™, or of k

row - vectors (51,52,...,%53) in the space ™ Both ordered systems of sters

o o o o o \—
(81,82,---,8m) gng (81, 92,-9¢) _ are elements of same vector sphce wheren

= kwhieh is isomorphic for vector space of matrixes with the lsizenReally,

m . K )
&5, 5 ORK =Pk —pn ong (§ . &) OR™=p™® —pn
1, A2 m I 91,9 C [
i=1 i=1

C_ i on
We shall consider now the system consgbf one vector® = (@1,82,.an)l P

. It is obvious, that this vector through the components in matrix space will bé& assoc

ated with matrixes of the siZén,orn* 1. X- M= (@1,a5,..-,4,) a matrix of the
aa1 o
. _ _a&820 : : . .
size Bn; X- M=4"5 matrix d the sizen®1. 1t is clear, that mappin&- m

8

Is isomaphism, since

+5- m+m, and /5=/m,
%i P", %_,l P, /I P

Using the specified isomorphism, we shall show, how mapfErgd(F) is presetr
edin the matix spacewhere."-."l t m,f/’l =13
Let the mappind of thespacg "intot ¢ is determined by formulas:
bi=ayl1+apl ,+. .. +aiml m

b2: a21| 1+ azzl 2+, .. +a2m| m
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Let ' s p wWwith comporentgby, by, . . .b) fromt ¢ in conformity with a
matrix:

abi @
&0
Yy = a6 : . :
= 0 f t hel and zeetorswith components I( | . . . || m) matrix
%, 0
G¥k ~
O/ ~
X =2 2 gof the size 1. Then mappingiz= ¢(=), determined by matrix
& 8
¢'m=
1842+ Hm
ar18r9... 8
¢ |= 21722:52M  of the sizekxm in the matrix space is determined
Y19 2- -+ A

by the same matrig and it is represented in the form
ab, o a1 6
a1 g A 192+ Sm 1

&' o
5 |apagy...a ;
b= 0%y fzgz 21802-8om | #2 0\, _ Ay

O0: O

&
E%k+ Q18 2- - Ak (%m

Finally we shall consider, howthe scalar product of twdors from spaceRn
is mapped in the matrix space.

A4 . SCALAR PRODUCT OF TWO VECTC
FROM SPACE R"
Definition. We shall consider mapping of the vector spaceR"?R" into R
whereinthe following conformity is established

(- j (A=A ab =apb,+a,b,+.+ab,
i=1

Here xi R, ?1 R": the ordered coupléX,y) is an element of the vectspace
RRY (/1 /s .. /) and (by, By, . . . , b, are components of e®rs
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.-.'c':dI% gai b; is number fromR.. Such mapping is referred to ascalar praluct
i=1

of two vectorsiand from the spac® and it is designate&(E.

Mappingj is not a linear mapping. Really, sin€2R" is a vector space,
(50 + 06, Y2) = (X5, i + ¥a), Wherex, = (@ @y )
Xo =(@21,:822:--,82n); Y1 = (D11, D12, 010 ) Y2 = (021, 022,-.62n0) |4 s
easy to show, that
FIOYD (V) =/ (X +%.%; + V2. / (X.¥0)+/ (X,¥;) and, hence, mapping is
not linear mapping.

We define nav how scalar product is represented in matrix space. Let tatorgde
given X=(a,a,....a,)| R andy’=(b,b,,...6)1 R.Now!| et 6 s veptorK intcdm-e

formity with a matrix X =(a4,85,...,4,) of the sizel*n, and the vectollz - with

Qo
&)

i
i

a matrixy =222 of the sizen® 1. Then productC¥ in the matrix space is equiv

BB R
IOOOOOO

lent to the product

[N

X & =(a,,a,,..a,) _a1b1+a2b2+ ..+ anb,.

B8 R8T
-00: O: '\5 oo

=]

We ca see, that in vector space of matrixes thepmgp is not linear mp-
ping

ab,,+b,, 0 ab,, o ab,. o

11 b21o £110 z:)210

+ o -

/12 220 21,0 220

(311+321a12+322---‘91n +a2n) 0> (allialzv--’aln)f o+(32113221 @5 )ae o
g 8 e 8 o 8

gyln +b2n+ é%ln+ @ln+

A5 . SQUARE MATRI XES
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Definition. A matrix which row number is equal to column numbeisired
to assquare the equal number of n rows andlumnsis referred to ashe orderof
matrix.

The set of elements; is referred to asnain diagonal and a ratrix which all

members are located outside of the main diagonal isggroO, ifi , |, itis re-
ferred to asdiagonal

ad11.-0..0 @
511 0

A :ai')...aii .0 g., If all elements of a diagonal matrare equalajj = |,
0]
0]
a%)....O...avnn_

such matrix is referred to asalar.

The diagonal matrix, which all members are equal to one, is referred to as
identity matrix and it is designated, (or I).

&..0..09
& 0

?.5

E, = ? 1..09 orE = (dj ), wherei = 1,2,..n; j = 12,..n; djj T is Kronecker

¢0..0..1%
symbol.
Identity matrixE, represents a neutral element concerning multiplicationatfixas
Aofordern:¢ E=Ed = ¢ .

The sum and product of two matrixesrof order are always determined and
the result will be maixes of n order However product of square matrixes is not
commutativep A 1l A.¢ror example,

a230 20 a270o and &l26 .3 30 &4 30
H094 %28 %18% 08" Ho!

Square matrixes of orderdetermine linear mappings" intot ", and identity ra-
trix E, Is associated with system of vectors ofanonical basis
=(10....0), 2> =(010...0)...72, =(0,0....1) of the spac¢ "
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5.1. Inverse matrix

We shall consider a matri& which sets the mappin§- ®¢(=J. Inversemapping

exists, if this is biuniget mapping " ontot ". But for this purpose it is nesgary
and sufficient that the matrik be square one of the ordarand which rank (A) is
equal ton. Therefore the inverse matrix exists only for square matwhich rankr
(A) and the order are identical.

Definition. The square matrix representing inverse mapping for matng
referred to as inverse matrix for a matfxand it is designated™; matrix ¢ is a
symmetric member for matrik concerning multiplication.

Really, letbiunique mapping‘:- o(5) of spacef "ontot " be given Inverse mp-

ping for it will be ¢(i‘)- ¢'1[¢(b]: .'(-." therefored™d = §: just asd ¢'= [y,
and, hencep ¢'= o = . If ¢ exists, we can say, that the mathixs invertible.
Inversely if A- is an invertible matrix, the mappifg- ®&(= is biunique.

Let A andB - two invertible matrixes of the order n; by virtue of assowityti

o1 toT= oO)E= @r'= (b= Fb o

Hence,( A B J)A™B=[, so, product of two invertible matrixess invertible natrix
and(® 1= L.

5.2. The transposed square matrix.
Symmetric matrixes

Definition 1. We can saythat matrix¢™ of elementsa i Is transposedn rela-
tion to a square matriX of membersai] ,If aj = ai Jfori=1,2...,n;j=1,2...,n.

/allalz...aln\ %11321..3,—]1 g
o _A421427.--47n s _ 9812822.-4n2 0
B ’ e o
GnlanZ---ann/ C%1n don--Anpn+

Members 6the matrix¢p® are symmetric to members of a matdixoncening
the main diagonal. The operation converting a square matrix into transposed one, |
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referred to asransposition.For this purpose members of every row of magiare
set down inthe sameorder into the columns of the matrig”, and number of a ¢o
umn coincides with number of a row. It is clear, that thusow ¢° consists of the
same members, in the same order,-alumn of a matriA.

Matrixes¢ and ¢° have an identical rank(A) = r (Au ) and also
(¢ J=1A% = "$H: 1) OF=1% ¢if A isinvertible then
(¢-1) =@ v).

Definition 2. The square matriA of members; is referred to asymmeric, if
b =A".If ajj = ajj i.e. members of matriA which aresymmetric relative to its main

diagonal are equal each other. All diagonal matrixes are symmetrixdmpée,E =
E'.

EXERCISES

1. Define ranks of mairixes with the help of elementary transformations:

8201145

84124625 & o
N o 412204
p=8 41220 | g 31,0
_%'2 3'135 _32 222§
(0]

6 2319 y

¢ ' ?11132

2. Prove, that for any matri, thematrix S=A+Au - is symmetric.
Show, that product of matrid by transposed matrix is always a symmetric

matrix.
a1l 2§ a2 -4p .
3. Let ¢=§ | = Det = R
et ¢ §3_4§ %-6@ etermined ¢ ¢

: 2 10 413 @
4. Are these matrixe$ :% 28andj :%2308 transposed?.
CT e+ (o -
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CHAPTER 6
DETERMINANTS

A1l . DEFI NI TI ON AND THE PROPERTI ES- OF
LOWING FROM DEFINITION

Definition. L e tcdnsider a vector space of square matrikes the ordem
above the field?. We shall set such mappifyof space of these matrixes in the field
{ , wherein each square matrix

aa11 2.8 Q
5511 %12 %n 8
_a821822..-82n 0

A=z & 1S put inconformitywith numberD(A) from P by law
é%nl An2---8nn 8
1 312...
p(a)= 2182 Am s (P (Day, Gy, Gy O,
an1 An2---Ann f :%”Zlmznmng

(6.1)

This number is referred to asdeterminant of matrix A. DesignatiorD (A) or |A |.
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It follows from the given definition, that mappirig represents the numeal
function prescribed on a set of square matrixes and consequently the squaré matrix
acts as a variable in .iThus a determinant.e. valueD (A) of numerical functiorD
can be considered as the numerical characteristic of the square Walfiatrix or-
deris referred also to ake order of a determinant which it cesponds to.

The sum of the right part of equality is takem toanspositions of the send
indexes of matrix memberg;, wherej=1, 2.... n.It means, that each trgpostion of
the second indexeg, wherej=1, 2,....n., or f :%2"” " % is conformed to a

my,.M, =
summand. Every summand consists of produat memberdaken on one and only
to one member from each row and each column. Products are added withesigns d

termined by number of inversionsAf) of corresponding transpid®ns

O

f =
% mo,...,M
Number of such summand is equal to number of tramspos
tions1,2,.. n.. e.
Examples.
CICP: 2\
1. = (-1) a,, =a,a,,- .
a,,, a alml 2m, a,,8,, - 3,8,

f:%ZS
¢cmy,m, =
Really, there are only two  trgoositions m,m,  from 1,2

f, = é%jén( f)=0andf, = gé“ién( £)=1
& 13928 3 3
2. [apidp3 =  a (- 1) Gy G, Bgmg = QO
831832833 g%qmzrrgg

- Q0:1Q3+ 1 T QQQ; + 1412 TQ1Q4Q,. There areonly 3 transpas
tionsmg, m, my from1, 2,31 =6.

81235 21235 21236
fi)= fo = fo)= f fa)=
fy = %3 n(fy)=0, f, %13@”(2) 1 f3= é% 9/7(3)
al23p al23p al23p
fe = f :2f f =1
fa =810 n 5 =8 8V(15)=2 16 =% 8 7 (s)

The properties of a determinant following from definition:
1. The determinant of the transposed matrix is equal to imgal) = D(A).
It follows from equality of rows and aminns in relation to aeterminant.
2. If we transpose two columns (rows) of a determinant, the determinant will reverse
a sign. Really, itolumns(rows) are interchanged, it result inrpritation
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al, 2,...n 9§ . _ _
= § and transpositionas we have detmined, results in
ULy my,..My=
change of permutation parity (book 1, Chajter 8 2, I tem 2.
summands of a determinant reverse a sign.

2. Determinant which two rows (columns) are identical, is equal to zero. Really,
if we permute in a determinant twdentical rows (column), then, on the one hand,
we shall change nothing, and on the other hand, according to item 2, we shia# reve
a sign of a determinant, i.B.(A) =- D (A), henceD (A) =0.

3. If we multiply all elements of a column (row ) of a datgrant by the same
number, then the determinant also will be multiplied by this number.

2. f

all.../alj ...aln all...alj ...aln

ail..../aij..ain =/ ail....aij...ain .

am.../anj...amn anl...anj...ann

Thus, if all elements of some row (column) contain common multiplier it carkbe ta
en out a sign of the detainant.

3. If each element of any column (row) is the sum of two summands, then the
determinant is equal to the sum of two determinants which col(nows) are coe-
sponding summands, and the others coincide with colynomss) of the given e+
terminant:

anl---anJ +an ...ann anl ...anj ...a.nn a.nl..an ...ann

Properties 4 and 5 result from distributivity of multiplication concerning addition.
Property 5 can be considered as a rule for addition of detants.

Corollary facts.1. The value of a determinant will not change, if elemert
any column (row) are added the corresponding elements of other column (rbw) mu
tiplied by the same number.

2. If And—is a matrix of ordem, D(/A)=/"D(A)..

3.D( A) AD( B)Eved {f/A ABB B Ahei\nevertheless
D(A A B)= D(BAAA. D(B) = D
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A2. DECOMPOSI TI ON OF A DETERMI NANMT ON
MENTS. THE THEOREM OF ANOTHER'S A DDITIONS

Definition 1. Complementary minoof some membe@; of thesquare retrix

A of ordern, is referred to asleterminanDjj of a matrix of ordein-1 which results
from deletion of i - rows and - column (intersected on this member).

i 29,9.Q, 8 s,
o= @10226339 D;, = a
% 0,0 0 &y, Ay3 _
Example. Gror2es - complementary minor of the miber

Qu.

Definition 2. Algebraical complement;; of the membec is referred to as
its additional minob;; multiplied by ¢1)™
¢ = (-1)" Dy

It is valid the following statement which we shall postulate: if we multiply members
of some row (column) by their algebraical complements, and we add these products
then we will have the value of @@ rminant.

D(A) =a,A; ta,A, +...ta,A, = an, aijAj - decomposionin i-row.
j=1

D(A) =a,A; +a, A, +...+a A, = g A -decomposibnin j-column,

i=1
The given decomposition allow us reduce the calculation a determinant of the
n —order to the calculation n determinants of the ordef nin addition to these fo
mulas frequently also the folving theorem can be useful.
The theorem (about another's complementk)we multiply elements of some
row (column) by algebraical complements of corresponding members of other row
(cdumn) and then we add these products, the sum will be equal to zero.
n
ai1A t a2 Ao Tt ajn Akn = _éllaij Aqj =0.
J:
ajj , Wherej = 1,2,...,n— members of + row, andg y wherej = 1,2,...,n algebraical
complements of krow members
The proof We shall consider a determinant of the ma&which results fom
a matrixA by substitutingk — row members fori — row members. As it is a detern
nant with two equal rows, it is equal to zero

n
D(B) = a bkj Bkj =0.
=1
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n n
Let's notice, thade = ;O I @af ¢¢jthen & byBy; = & & A; =0, s was to be
ot

=1 J
proved.
32-
1 1 11 .
Example 1 12/= -2 1- =3GB+20+6=35
401 -2 4 4-2

Now we shdlgive geometrical interpretation to a determinant.

A3 . GEOMETRI CAL REPRESENTATI ON OF A

We shall consider the ordered triple of noncopldres vectorsds, i and we

shall put it in conformity with the ordered tripté the directed segmentsA DB, DC

originated fromone point in the oriented space. On these directed segments as on th
sides, we shall construct a parallelepiped (fig. 2.6).

v

Fig.2.6
There is an infinite set of oriented parallelepipeds, each of them is put4in co
formity the same ordered triple thréss;fij of vectors. These pallelepipeds turn out

carryovers of any of them and have on this the same volgmi vectors are cofal-

nar, the volume of sudtegeneratgarallelepiped is assumed to be equal to zero.
Let’ s det eVYyofithe paralletepipedmestructed on \eors s,

in coordinates. For this purpose we shall choose in space an orthonesisal k.

andconnect with it system of coordinates X, vy, z (fig. 2.6). And let three vectars spe
ified by their coadinates be given concerning this basis:



C v T G - i VR “ -
a=Xl +y,] +z1K; 9=Xo1 +yo] +25K; C=Xgl +Yy3] +z3K.
We shall introduce two operations on free vectors.

3.1. Vector product of two free vectors

Definition. Vectorproductof two vectorsSands’ is referred to asector & so,
that© ) =|Jefsinj , wherej - an angle Btween vectorsands, b) & Gand&” &, c)

if & 0, thenvectors 3,8, & form the right triple Vector product is deghated
& 5]

According to conditior® )’Eé: 0 only if, vectors&ands are collinear Theefore for
a set 6 vectors of the spade 'vector product will casist only of one zero vector. If
fcf, 5 then [i§| is numerically equal to the area of the parallelogransitocted on

vectors Gands’, reduced to common origin (fig. 2.7). It should be noted, that as
against the scalar produ@®@®J, which is amappingR*: R®into R, vector praluct,

as well as addition, represents the internal law of a composition for space ofciree ve
torsR®.
The basic properties of vector product are reduced to the following:

i

A

O
/\\s\“\

Fig. 2. 7.

[& 8] =- 93 d - is noncommutative;

/|&® o] =/ 0] =|G® /9],

[53 (5’+ ﬁ] :[53 5]+ [53 fﬁ - is distributive reléive to the addition.

Neutral element does not exist.

Let’s consider how the vector produ

8= 5] = [(Xlib’f Vil + 21@3 (Xzib+ Yol + Zz‘z)J-
We oped the brackets taking into account that

o
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= i1=[12 i]=k* K]=0.a

[ =kl 1=kl k=t 1=l 1= 71 k= 17 we obtn
o
(Y122 - Yo7)i +(21X2 'bxllel + (x> - Y1X2)k
] K
2 |1C |7 | C [x
Hencet%: zlzl | - xlzl | + Xl);l kK=XY¥7 | (6.2)
242 242 2Y2
X2Y227
v X1Z X
Here N4 =Xq; - e ; 1% =2y, coordinates of \@or
Y222 X227 X2Y2

D= Xal +Ya] + 24K
3.2. The mixed product of three free vectors

Definition. If we multiply a vecto = [53 51 scalar by vectofffj, the do-
tained number is referred to #® mixed producbf three vectord3 s and ffj. It is

designated|[(® 8] dF.

It is not difficult to show, that absolute value of the mixed product of three
vectors is equal to volumé, of the parallelepiped constructed on these vectors, i.e.
[ 8]@j=V, Really,| &|=|[c? 8]- is area S of the parallelogram constructed

on vectors®ands’, and | L‘)g \:\((:h cos(p% |- is heighth of a parallelepiped

which basis is a parallelogram with af®aince p*an p*8. Hence, \[@3 deﬁz
(B cos@ECy |=S=V, - volume of a peallelepiped.

Let’' s express Rﬁh ﬁCﬁ ifandx veldme\fy of cadparallelepiped)
through coordinates of vectors. Taking into account (6.2), and disax,

D= =k&=1 andi =i &= & =0 we obtan

Z C X1Z C X1 Y v v
(&8 8] G pca:ﬂyll v 1 kﬁ-x3i+y3j+z3k:
Y22 X22p X2Y2 ( \)
X114 X114
M4 X4 XY _
=X3 - Y3 +23 =|X2Y2Zp| andVp ¥ X222
Y225 X2Zp X2Y2
X3Y3Z3 X3Y3Z

Thus, absolute value of a determinant of the third order is equalume of
the parallelepiped constructed on three vectors which coordinates in unite orthono
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mal basisi’ |k are row- vectors of a corresponding matrix and, accordingly el
ments of rows of a determinant. Basically, vector coordineaesbe placed in ¢o
umns ofa matrix (determinant), since value of a determinant in transposing af a m
trix does not change. Hence, we can make the folloaanglusion.

For three vectors to be coplanar, it is necessary and sufficient that theideterm
nantof the matrix specified in coordinates of these vectors, in orthonormal basis be
equal to zero.

The concept of a parallelepiped and a determinant as its volume, is distributed to th
vector spaceR ", which dimensionn> 3. Similar formation fromn vectos of the
spaceR" and a set of points of this space, enclosed in borders of these vectors whic
are considered as volume and limited to these vectors, is referrepai@idslotope

Let parallelotope be formed by n vectorsq @q which decomposition

n

by canonical basis 71, ? ’?q of the spaceR is of the form of
|
a; —alj +av21’> +. +avnJ ?n,  1=12,...0, then the volumé/,, of such

parallelotopeis equal to absolute value of determinBn($ ) whereA —is a square
matrix whicha j are column vectors( row - vectors), i.e.

a8, 2 a, &4, 8,,.-Aa,, O
122 n &2 ln8 ce o
A, 85,4 a 0.3, O
Vp=| D(A) |= 21722 2nll and A=§21 22 2n 8= (al,azan)
................ &8
anlanzz ann é%nlafﬁ' 'annf

A4. APPLI CATI ON OF DETERMI NANTS FOR T
MATRIX RANK

We shall consider a matri&k abovethe field{ which hassizem®*n and we
shall pesent it as system of n colummectors in the spade™.

3a11a1-...4
8811812---81n

C C 8@21322 -ap
¢ =(ag,ay,..., n) "

Elements of a matri&g - numbers fronP. To determine rank of the given sgtem

of vectors or matrixes, specified inthe coordinates of these vectors, it is 13sagy

to define possible greatest number of linearly independent vectors which cam-be ch
sen from this system, or, in other words, number of basic vectors of stesnsy
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Before we shall consider a specialegs when m = n. Let '
square matrix of the order n the following theorem is valid.
I . .
The theorem 1Forn of vectorsay,a,,...a, f r o M toFbelinearly ince-

pendent, it is necessary and sufficient, that a determinant of aesmarix A,
formed of coordinates of these vectB@) = D(z\ii,éfz,...é’n) . 0.

The proof NecessityLet 51,5'2,...an belinearly independent, the the matrix
A-isinvertible (book 2, Chapté;, 85, i1 tem 5. 1Y)xirvdrtbletoi s,
it - matrix ¢%, such, thatp A'¢= , wherer - an identity matrix. Then ng taken
an advantage of property of determinant multiplication, we shedlive:D ( ¢"Yp=
D(¢) AD(=¢ DI and,sop ( ¢ ) ")AD,hénced() , O.

Sufficiency The statement, that@(A), 0 thensystem of vectors is learly
independent, is equivalent to the statement, tHat(#) =0, thenthe system of v&
tors is lirearly dependent. We shall prove the last. Sind#\) =0, theneither oneof
rows or one of columns @& determinant are equal to zero, or two rowsu@ms) of
a determinant are equal or proportional, and, at last, one of rows (cdlafrask-
terminant is a linear combination of other rows (colupufsa determinant. For sy
tem of vectorsé’l,z\a’z,..é’n it means, that in system there is either a zarector, or

two equal or proportional vectors, or a vector which is a linear combination of other
vectors of system. In all these three cases as it follows from theaklnearly -
pendent and linearly independent vectors, the system of vestods ..a, will be

linearly depedent, as was to be proved.
Thus, it follows from the abovstated theorem, that if determinant (A) of the
square matriXA of the ordem is not equal to zero, then rank of the matiis equal
n: r (A) =n.If D (A) = 0,thenr(A)<n.

Now we shall generalize the obtained result to specify the processingllto
determire the exact value of rank(A) by means of determinanterfa matrixA of
any size. This process is based on the theorem for which we shall give only-the fo
mulation, and we shall omit the proof. But before we give the formulation of ¢éhe th
orem, we shall introduce a conce&ptthe basic minor and minors borderg it for a
matrix A.

Definition 1. A minor of the ordeth of the matrix A is referred to athe dete-
minant fromh rows andh columnswhich is obtained as a result of deletion of sow
and columns othis matrix so that onlyr rows andh columnsremainedor in other
words, the minor is a determinant of a square matrix formed with of elerneatsed
at intersection ot various rows andi various columns of the initial matrix.

It is obvious that the best order of a minor of a matrix in the mZa is equal
to the minimal number fromm or n, hyax= Min( M, n).

Definition 2. If h <min( m, n)then matrix of the orddr can be added some

i- rowsandi i columns of thenitial matrix where i = 1,2,..., min( m, nh
and we can obtain the minors ofjher orderdh + i. Such minors are referred &3
borde'ing for the basicminor h.

Definition 3. If as the basic minor of a matrix
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aBaq-...2a 0
ate 12--21n  Q
a821822---82n 0O

o)

we shall choose the minor of thestlorder located in the upper left cor@er all mi-
nors bordeng minors of the higher orders obtained by addition of the next rows and
columns are referred tasthe mainminors of a matrix A.

a11312.. 45
a3 a11812813 N
_ _[B11892 _ _|@21892..A2g
D1(A) = a17, Dy (A) = o a , D3(A) =|azjazans,2 ,Dg(A) = ,
21a22 S i
a51a52..ass

where S =min( m, n).

The following theorem is valid.

The theorem 2If there is a minor of the - order which is not equal to zero in
the matrixA, and all minors of thér+1) - order, bordering this minor, are equal to
zero, thenr is a rank of the matrid: r = r (A). The minorof the ordermr, distinct
from zero is referred to dmsic.

The remak. If all minors of the(r+1) - order are equal to zero, also allnors
of higher orders also are equal to zero.

In view of this theorem the process of definition of a matrix rankdaaed to
the following. It is necessary to choose in a matrix asbidsic a minor of any order
which is distinct from zero. Then it is necessary to calculate minors of higihenso
which are bordering it. Then the highest order of the bordering minor whick-is di
tinct from zero, also will be a rank of a considered matri

al-2 130
Example Define a rank ofamatri)p=£ 3-118. Let’' s cchoasics e
B 4-152
a minor of the ist order located in the upper left corggf, 0. A bordering minor
bordering of the second

order X j =5, 0, and bordering minorsfahe third order

1-21 1-2
3- 1-1 [3 31 1| [3

1 3-1=1 |+2 + =1+4-5=0,[1 31|= + + =11+4- 15=0,
4- 3-1 3 4 3 3

3 4-1 3 45

Hence, a matrix rand: r(A) = 2.

The remark.If as the basic minor we choose other minor distinct from zero,
but located in the other place of a matrix, the result will be the same.




A 5ARRAYING OF INVERSE MATRIX

We already saw, that for the matixto be convertible, it is necessary and suént
that it be square and its rankKA) should be equal to the orderof the matrix A.
Now, using a determinant of a matrix, we can formulai® statement as followsoF
the square matriA have the inversmatrix ¢, it is necessary and sufficient, that its
determinanD(A) , 0. Membersof inverse matrixp™ are defined by the fonula:

aaeAll A21 Am1 9

a(A) D(A) D(A)6

Al @A A Anl g

'QD(A) D(A) DA ]

aeAm Aon Ann@
(A DA DA2

Here,D (A) - is a deternrmant of a matrixp =), iakrei = 1,2,...,n,j=1,2,....n
¢jj - are algebraical complements of the mentGeof the matrix¢. It should be o-
ticed that ¢j; are not located on a place of the menGebut they are locateoh a

. o . aA o .
place of the m@berG;. Hence, matrixp™ is transposed to aatrix %g,wmch

membersp;; are locatecon a place of membef§ which algebraic complements
they are, then

81 A1 A 811 A..... Ay gT
A_l _ 1 ﬁzAzz ..... Anzq_ 1 %21A22 ..... Azné _ (A )
DA ..o, 0 DIAZ....ce O D(A) I

%’l Ao Ann - éa{]lAnz ..... n g

We shall prove, that arrayed matx is inverse tod. Forit we need to show, that

o ¢= .

AGN L=
Members of the transposed matrA(H AJ?. It foIIows from the theorem of ra
other's canplements that it , j, then
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n n
a a1')AJ') =0, a a ai?A? = D(A)
?=1 ?=1
We obtained a diagonal mnx with equal members on the main diagl, and it is a
scalar matrix, therefore

aD(A).....0.....0 g 4...0..08
P = o} P> < WP lo)
1.1 & pa).0 0=PWNap | go_¢
D(A) & O D(A)E 0
S 0..D(A)2 %..0..12
257 ¢
Example Define a matrix, inverse for a matri¥y =6 3 4 o F | r stsholwet ’
B-2-32
257
that the given matrix has inverse matrig(A) =|6 3 4 |=-1. Since
5-2-
D(A), Othent he gi ven matri x has i nverse on
ments:
34 6 4
— 1+1 _ _ 1+2 _ —
o1 =(-D -Z—J__l 012 =(- D™ c _4—38, P13 =-27,

021 =1 oo =-41 $23=29, $p31=-1¢3> =34, §33=-24.
Thus,

&1 1-1¢6 81-11 5
1 1 0O e 0
) :—1858-41 34 5= 53841-344
832729-249 3927-29 249
Let’' s test
25784 1-1 1 9 34005
1_% 0.8 o & O
b d =56 345Q=3841-345=0105
g%-z-sg 3927-29 249 3%012
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EXERCISES

1. Solve theequations

~ 1 n -2 2
1 =G 1 -1 =0
11 rl -2 1

2. ArepointA (1, 12201, 2B( C( dyin@dinadhgplaneA( 2, 2, 1)

3. Prove that addition the members of any determinant column to cordagpon
members of other column tiie same determinant, multiplied by the sammlmer
which is not equal to zero, does not change volume efeardinant.

4. Do vectors 3,2]), 8(1- 1- 2) and {0, 31) form the basis of vector spa&g?

If they do, determine the coordlnates of a vectcol 2 3) in this basis.
5. Vectors are glvena 1I 2] +2k 9 3| 4k Define their vector prd-

uct, angler between them and the area of the parallelogram constructed on ¢hese ve

tors.
6. To calculate volumeVp of the paralleleped constructed on vectors:

34,6), 9(411), f{2,0,3).
7. To define a matrix rank

é— 242 3 lo
ae 163 2 2 o)
o= ®2 126 4 49
?3 -2-15 3§
8. Is matrix
512105 6
¢ = §314 0 invertible? If it is, define its inverse matrix.

%1408
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CHAPTER 7
LINEAR EQUATION SYSTEMS
A 1DEFINITIONS. CONSISTENT AND INCONSISTENT SY STEMS

Linear systenk of the equations witih unknownmy, m, . . . ,mn, IS referred to as a set
of equalities

QM+ L+ . im=.:19+0

Qr+ 2D+ . am=.:9+0 (7-1)

Q1:1+ Qz@"‘ . gm:n:. co+ O
Coefficients@ andfree members;, i =1,2,....S,j = 1,2,...n - are known and é&

long to the fieldR of real numbers ato the field C of complex numbers. Fther we
shall consider the fielR of real numbers as this field.
Solve system (7.1) means to determine the ordered set of nusnlars . .,a,

from R (or &) so, that in substituting at replacemen® ,. . . .m, foray, -, A. . 8,
accordingly,each equation of the system becomes correct equality. The ordered set c
numbersy, a, . . .,a, isreferred to assolution of systeng7.1).

The system of the linear equations is referred tooasistent if it has sall-
tions, andjnconsistentif it has no solutions.

If two consistent systems have identical solutions, such systensfeared to
as equivalent systems

The consistent system of the linear equations is referreddertsn if it has
only one solution and tauncertainif there is a set of solutions.

Gaussian method gives answers to these questions.

A2. GAUSSI AN METHOD

With system (7.1) of linear equations it is possible to make the followingtopes
which do not break equivalea of system of the equations:

O Yo add to both parts of the equation corresponding parts of other equatior
multiplied by on some number;

b) to permute the equations in system;

c) to exclude from system the equatiosx+ DO+x . n = 0. As#hdsx

equality is identity, and any values ,, X psatisfyit, X
With the help of these operations any system of the linear equations a&n be r
duced to triangular



CiXi+t 126+ . pXnt. .+ apg=ds

CooXo + . oXr . . T oG =.d2 + C (72)
CrrXr + mn=0dr + ¢
+ nrin =dn
or trapezoidform
CiXa+ 126+ . aXnt. . FipXg=dp +
CoXo+ . aXr . . +opg=d; + C (7.3)

CirXr+ ...+ mEn=0.
At reduction of system to triangular or trapezoid form there caadoation® x+
0 %+ . n=4,i=t,20 x.,nlf di = 0, these equations are identities and they
are excluded from system, butdf, O, then this equation is not satisfied with any

valuesx; . In this case the system has no solutianis,inconsistent.
The consistent system of the equations reduced to a triangular kind (7.2) has th
unique solution and, hence, it is certain. If the consistent system is reducecdeto trap

zoid kind (7.3), and< n, thengiving to Xy+1, Xr+2, . . . , % anyvalues, from system
(7.3) we can defing;, 5, X r.and.construckthe solution of system. Howeved, ta

ing into account, thad.1, Xr+2, . . . , % can take any values froRy we obtain unae
tain system, and number of its solutions is an infisge Unknown which take any
values, are referred to deee, auxiliary, independenand their quatity is equal to
n-r.

Examples.

1. Solve the system by Gaussian method

4 x+ 22X 3=14
X1+ 3tX =X
2 X- Xo+ 3xXb5.
Let's exclde from the 2 ndand 3—rd equations of the given system the unknown
X1. For this purpose we multiply the second equatiordyand the third equation by
-2 and add to the first one:

4 x+ 2X3%X4
-1 0%/ x=-4
4 X - X3=-6.
Now we shall multiply the third equation of the obtalrsystem by 5/2 and we shall
add the second equation to it:
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4 x+ 2X3%x 4

-1 0,%7 x=-4
: 159:3:19

The system is reduced #otriangular kind. From last ediion of system we defings
= 2, from the secong,=-1, from the first ;= 1. The sgtem has the unique solution
(11, 2).

2. The system is given

2 X-Xo+ 4X4

4 Xx—2 ¥+ 3% 4xX7

6 X- X, +2X3-X4=8

8X1- 4 x+ 33%X,=11

The remark.In solving the system by Gaussian method the unknowns in the
equations of system can beckided not only from the beginning, but also from the
end.

Thus we do in solving of the given system. For this purposshat multiply
the last equation by 1,-1, consistently, and we shall add it with three first ones; we
shall obtain an equivalent system

8 x—4 x+ 3Fx,=11

1 0,%x5%x+ S x=15

12:,%6 x+ 4x=18

2 X+ 2- % =-3
Now we shall muiply the last equation by 3 and by 4 consistently, and we shall add
it to two previous ones; we shall obtain an equivalent system:

4 x- 2% =
Then, we shall multiply the penultimate equationlbgnd add it to the last e
tion, we have:



Last equation is identity and it can be excluded from systemall{

8 x—4 x+ 3Ix4,=11

-2 X+ 2- XX3 = -3

2 X- Xo = 3
Thus, the system is reduced to resulted to a trapezoid Ikind.suppose ithe ax-
iliary unknown and give to it any values, for examfgwe find the solution of s¢

tem(b, 2b-3, 0, 1). Sinceb can takeany values fronR, the system is not certaand
it has infinitely many solutions.

A3. MATRI KCTAORIBORMS OF NOTATION OF LINEAR
EQUATION SYSTEMS. KRONECKER 1T CAPELLI THEOREM

It is possible to connect the following matrixes with system (7.1) of linear equations:

1. Matrix A of coefficients@; if unknowns of the system axg X, . . ., X%.
331115..24n O
98119412+ Sn 8
_a82187..87n0_ . .
A=Z q_@ﬁ)|_Lz_k,J_L2mn

é%klakz---akn 8

This matrix is namebtasic matrix.

1. If we add a column of free membesgo,, .c.of thesystem to the basic
matrix A we shall obtain the scalled expandedmatrix ¢ *of the given
system

glgllalz- 8109

_ a8121822.- 21920

B2222 O

8

CA%18K2-- Aknd¢ +

Q
0
0

.
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1. Matrix — column of free member$ = matrix formaté3 1.

BB B B
|-O0: Q: O: OO

2. Matrix — column of unknowns

axq 5
e
aé(z

%nﬁ

Using definition of matrix product, system (7.1) can be written down as
om = | (7.4)
This form of notation of the linear equations system is referred s . If
thus we consider the matr& as some mapping of the sp:Ré into R, and if we

associate matrixeX andB with column- vectors>L<'I R"and al RK. accodingly.
Then the solution of system (7.1) can be reduced to a problem of determinirg of ve
tors >(('J I R",which are prototypes of a vectsil RK if mapping R " into R¥, set by

>

a matrixA, i.e. (I)(.'f."j) =9.

Besides of matrix, the system of the linear equations can be written down also in thi
vector form. For this purpose a matAxs connect with system from column- vec-

tors 51, é’zé'n in the spac® :

X = matrlx formatn3 1.

o ~ éa A
981312810 Q i 8
a821822--8n6_C C  Cy C &0 .
A= 6= (.3,.an) &= 6 j=12..n
% ............. 8 &.. O
CAK1Ak2-- Akn + g%kj 2
Then the system (7.1) will beconﬁéq + GSZ mp t..t an =9, (7.5)
a
21
Here 5= 2207 Rk

:O_

9B
|

In terms ofthe equation (7.5) the problem of solution of system (7.1) can be

reduced to a problem of determining of linedependence of vector system

C < C L . . C < C U
&,a9,...,8,,9. So the system (7.1) has the solution if the vecirs,,...,a,,9

are linearly dependent. Really, it follows from (7.5), that the vestois a linear



121

. . | O~ | .

combination of vetors a1, a,,...,a, and, hence, it belongs to the subspace, genera
L~ | -

ed by vectorsy, a,...,a,. If the vectord® does not belong to the subspace, genera
L~ O . L~ O L . .

ed by vectorsa, ay,...,a,, i.e. vectors &,a,,...,a,,9 are lirearly independent,

the system (7.1) has no solutions. In other words the system (7.1) has the solution

__—_ |~ O L
the rankr (A') of vectorsystem of vectorsa,,a,...,a,,9 does not exceed the rank

r(A) of vectorsystemé’l,gz,...,é’n, and it means, that they should be equal. Now if

O A VI o
we connect system of vectogy,a,,...,a,,9 with expanded matriXA , thenthe

aforesaid can be comlgired as the proof of the following theorem.
Kronecker-Capelli Theorem @ consistacy condition of the linear equation sy
tem) the linear equation system is solvafitensistent), only if the rank(A) of the
basic matrixA is equal to the rank (A) of theexpanded matrid : r(A) =r (A) .



A4 . KRAMER' S SYSTEM

We supjpse, that the number of the equations in system (7.1) is equamtzenof
unknowns k = n) and that columr-vectorsa ,&,..& from R" are linearly indepedh

ent; in this case (7.1) is referred to Iésamers system.
Since column- vecors & ,a,..4, are linearly independent, they formasiis of

the spac®’, hence, any columnvectoral R" is represented by unique way, in the
form (7.5). Thus, Kramer's system always has the solution, and moreover gus.uni
For defining of this solution we shall write down Kramer's system in @iaxyorm
(7.4):¢ m =Badicmatrix A of theKramer's systemsis square, of the orddft and
its determinant is distinct from zerd{A), 0, since column-vectorsof a netrix are
linearly independent. Therefore the matihas inverse matripd™*. We shall mulit
ply both parts of the equation (7.4) By’ from the left;

A'AX = A'B.

Since A'A=E and EX =X, then X = A'B or

g éA_LlAzl---Anl 5 591 5
o_ 1 68‘\12A22 An2 oiz o
0~
8

Multiplying A~ by B, we obtarn
gle:l 8 51(1)1191 + 0107 +...+ OOy 0
@20 1 3@1281 + 02007 ...+ 01120, 6 (7.6)
& 0~ D(A) N/ A OB 0 :

%ng %msl+¢2naz +...+ ¢nn9n§
él- )(Aual A2182+ +An19n)

wherej=1, 2,...n,and Ayjo; + Ay8, +....+ Apjon - a matrix determinant which ise
tained from the &sic A by substituting oimemberg- column, i.e. coefficients at the
determined oknownx; for column of free membees, ,, apofsystem. Thus,

Hencexj =
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A11--A(j-1)913(j+1) -+ An

Ap1.-A2(j-1)9282(j+1)--A2n

anl..an(j_ 1) anan(j+1) ..Ann

A11--8(j-1) A j A j+1) -~ Qn A
321..320_1) azj az(j+2) ...don

An1--8n(j-1)@njan(j+1) - Ann
Now all aforesaid we shall formulate as the following rule.

Kramer's rule.If determinantD (A) the baic matrixA of thesystem oh line-
ar equations witln unknowns is distinct from zer(O(A), 0), then system has the
unique solution and this solution is defined by theniala:

D(A))
I DA

whereD( Aj) - is a determinant obtained froB(A) by substituting j- column for
column of free members of system.

=12, .0, (7.7)

. An example Solve system of the egtions.

Ax-5y+2z=1,
5x-6y+4z=3.
Let's @alculate a determinant of the basic ma#ix

{ 3x-3y+27=2,

3-32
-52 4
D(A)=|4-52= + +
-6 54
5-64

SinceD(A), O then this iKramer's sgtem and, hence, it has one solution which we
determine be the formula:

2

4 -5
6‘:-24+18+2:-4.

_D(A)

j=1,2,3.
i~y b3
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2-32
1-52| |-52 12 [1-5
2 + +2
3-64 “-64 3 3-6 -16-6+18 -4 _

X1 = = —
4 4 4 _ 4
322

412 12| 42 |41
-2 T+2
. 534 34 54 53 -4

2T a7 -4 =4t

3-32
41
+2
2

4-51 -51
+
5-6 _%-64

4 -4 -4

1,

3 =

Answer ;=X X — 1ly; ==z%1l. X

A5 . HOMOGENEOUS SYSTEM OF THE LI NEF¥#

The system of the linear equations is referred to as homogeneous if the righ
parts of these equations are equal to zero:

g+ apXot ...+ Xy = O,
Xy T AxpXet ... + A Xn= 0,
...................................... (7.8)

X+ A X+ ... + AnXn = 0.

The homogeneous system is always consistent, shecexpanded matrix differs
from the basic one with a column representing a zesxtor. As the system contai

ing a zero vector, is always linearly dependent, the rank of the expanded matrix c
incides with a rank of the basic matrix. Consistency ahdgeneous system is abv

ous, as it always has the trivial solutien= = . . .y = 0.=Thisssolution will be

the unique if the homogeneous system is Kramer's system i.e.kwherand dete
minantD (A) of basic matrixA is distinct from zero. In otlrewords, when the rank
r(A) of the basic matrix is equal to numbeof theunknowns of sgtem:r (A) = n. If

r (A) <n, the homogeneous system of the linear equations has uncountablecset of s
lutions and a set of solutions of system forms a vector suhspéeshall show it.

For this purpose we shall write down system (7.8) in tlotovdéorm in spacdR " of

row - vectors. In this case each equation of system represents scalactmbtwo
vectors
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from R & =(a,a2,....a )i =1,2,.k 1 X=X, %5, %n )
%&’z 0
ao (")c<:: 0 (7.9)
& =0
Let's prove, that if vectors»gO :éﬁ;xf,xo,...xrqg and 9) :é‘e/fygyrqg are sali-

tionsof system (7.9jhen X~ + Yy~ and /)%o will be solutions of this sgem. Really,

since scalar product is distributive relative to addition of vectors also is associative
relative to multipication by number, we have:
0+ )- 85055 =0

S9)= [ ®)=0, 112,k
This implyies that)L(b + )(/‘0 and /)L(‘o are also solutions of homogeneous systeea. B
sides neutra(0,0...., ) and symmetricéﬁe xf xg,....- XRS elements also belong to

the space of solutions. Thusset of solutions of homogeneous system forms a vector
subspace. Now we shall define subspace dimension of system solutions wershall co
struct its basis. As we have already mentioned, a subspaodutbns contains me

zero vectors, ifr(A) < n. The onditionr (A) <n is always satisfied, if the miberk

of the system equations is less than nunmbef unknowns. That fact, that a rank of
basic matrixA is equal tor (A), means, that matri& contains a minor of therderr,
distinct from zero; neverdless minors of higher orders are equal to zero, including
(if it exists) minor of the ordem. Without limiting a generalitywe can consider that
this minor is the main minor of matr&of the order.

11 2.. A
as1a59.. 4

a1y 2..Qyr

We can always obtain thiby permutation of the equations in system. Then the ot
ers¢-r equations of system are linear combinations of therfiesjuations of sstem

and consequently, without breaking equivalence of the system, these equations can |
excluded from the systenfhe restr equations of the system we shall write down in
the fdlowing form
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€311X *3oXp +...+ 8 Xr = - A+ Xr+1- -7 BnXn
|
jao1Xg TagoXy +...F Ay X = - Qo(r 4 Xr+1 - -+-m A2nXp
| . (7.10)
barpxg +arXo +oota X == arrepXra1 - - 8mXn
Let's notice, that if we give some numerical values to the unknowpns . , in .

the system (7.10) we shall receive Kramerstey sinceD, (A), 0 and, hence, other
unknownsm;, », » .  Can bedetermined unequivocally by Kramer's rule (7.7).
Let’' s def i ¢ ~unlgrimywonssiently following vaes (1,0..., 0),
(0,1,0..., 0)..., (0,0..., Fpr unknowns mr+1, r+20 . n . Such ¢hoice is caused by
that each set from-r numbers is a vector of canonical basis of the spdte L et
supposethat for each specified set of valdes, r+om . nformg, .o,,n . the fd- | ;

lowing n-r sets fronr numbers@11: 81281 ), (@21,822,--82r )1 are obtained
accodingly.... .. (@(n- r)1.@(n-r)2:---@(n-r)r )-
It is obvious that vectors

3\// = (311,312,...,31r ’110,...,0),

=la@-1,899,..4-,,010,...0),
Yo (21 22 2r ) (7.11)

3c’:n- r— (a(n- (1 @(n-r)20@(n-r)r ,0,0,...;I_)

are solutions of the system (7)10lumber of coordinates of vectordr Y2 Yn-r
is equal ton and they belong to the spaRé.
We shall prove, that vectory\;'l,...,)\/'n_Ir are linearly independent. Really, if

we write down the equalityl)k/’l +. )k/’n P = 0 in thescalar form

' :
a/iyj =0, ]=12...n,
i=1

It is immediate from the equations, for which r+1. It is not difficult to show that
any solutiony’= (b, 65,2 , b,) of homogeneous system (7.10) is a linear combin
tion of vectorsY1l: ¥2:¥Yn-r with coefficients

%:brﬂ\’lgz:brtz’----’gn-r Sbn,i .be . O O

Y=0raY1t brioYo tot By r S+ 92Y2 A Gk Ynr,  (7:12)
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wheregy = by 41,---.9n- 1 = by can take any values froR For the proof of it if we
solve the system (7.10) for unknowrs 4,...,%, we suppose valug#. 4, 0...., 0), (0,

by+2,, 0,..0),......(0,0,. by).

Thus, vectorsy\/’l, )\72% ¢ With components (7.11) form a subspace basis of
homogeneous system (7.8) solutions of disiensn-r. The expression (7.12) dete
mining all set of subspace solutions, is referred tges®ral solutionsof homogeer-
ous system. Set of linearly independent soluti&'@s....)\/'r]_ ¢ Of the system iser

ferred to asfundamental system of deisions. Variables;.,,...x, arereferred to as

free, Xy,...% - basic.
The remark.The definition of the fundamental solutions indicated above, is

not obligatory and in solving of specific problems a choice of vadues..x, can be
another.

Example

Let the homogeneous system of the equations be given

X1+ 2%- 5%3+ 3x,=0,

2X1+ 5% - 6X3- X4=0,

5%+ 12%- 17%3+ X4=0,
in which number of unknown is n = 4, and number of the equations is k = 3.SSince
n thenr(A)<n and, hence, the system has infinite number of solutions. Foi-defin
tion of fundamental and the general solutions of the system we shall definera rank
(A) of the basic matrix

al 2 -53§
0=22 5 -6 -15
512 -17 12
12 -5
Let's consider the principal minors, (A) =‘1Zil =1, 0,D3(A) =2 5 -6|=0.
512 -17
123
For matrix¢ there is one more minor of the third ordBg(A) =|2 5-1,it is also
5121

equal to zeroThus, all minors of the third order of the matfare equal to zero, and
among minors of the secondder there is a minor distinct from zero. Hence, the rank

r (A) of thematrix Ais equal to 2. It means also, that the third equation of system is a
linear combination of first two ones and it can be excluded from the system. Really.
we can obtain the thldrequation, if we multiply the second equation by 2 and add it
with the first one. After deletion of the third equation from the system of the third
equation, we shall rewrite the rest two apns in the following form
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X1+ 22X p-8 X
2 X+ HB=X HtX 4 X

Supposingz = 1 4= 0aweshall obtain the fundamental solutiEi_“l of the sytem
X1+ 226
{ Y x;= 13,=-4, E=(%3,-4,1,0).
2 x+ 526
Supposings = 0, andx, = 1, we shalldefine i,
X1+ 2=%3
{ Y X=-17 ,=7,&=(-17,7,0, 1).
2 x+ B5=A

The general solution of the system

Y=G1Vi +G2¥5 = 1(13- 41,0) + go(- 17,7,01) =
=301 - 1795, - 40 + 792, 51, 92),
where g, andg, are any numbers froiR.

Where1 492 any numbers frork.
So, system solutions make a vedobspae of thedimensionsn-r=4-2=2

A6 . HETEROGENEOUS SYSTEM OMIONSHE LI N

If in system of the linear equations (7.1) only one of free mensphésglistinct from
zero such system is referred toha@serogeneous

Let be given theheterogeneous system of the linear equations which in the
vector form can be presented as

gx=9,i=12,., ¢, 7.13
C ‘ C ‘
& =(a1,82,....8n.)] R", X=(%,X,....%,) 1 R".

Let's consider corresponding homogeneous system
ax=0,i=12,.k (7.14).

A\ 4
Let the vector’™ —(al,az,...,an) be the solution of heterogeneous system

(7.13), and the vectoV:(bl’bZ""’bn) be the solutionof homogeneous stem
(7.14). Then, it is easy see, that the vectaf=X; + Y also is the solution of hate
ogeneous system (7.13). Really
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? E/:Sl Ae (#4‘%:91 ,\eg E—Sl %
o (8B gk oo, 165 =0
| |

ZCZSQ l&(%Jf =9g l&nl &g—ag T&qzag

Now, using the formula (7.12) of the general dolutof the homogeneous eajion,
we have

o \ \ \
Y=AY1+t9Yo* - FGnr Yn-r
and therefore
| \ 2 \ 2 \
Z=Xt1+t32Y2+--FGnr Yn-r> (7.15)
\ N\

whereg,,...,gn. ¢ are any numbers frofR, and yi,...,Y,. - arefundamental slu-
tions of homogeneous system.

Thus, the solution of heterogeneous system is s set of its partial solution anc
the general solution of corresponding homapers system.

The solution (7.15) is referred to athe general solution of heterogeous
sygem of the linear equationdt follows from (7.15), that the consistent heterogen
ous system of the linear equations has the unique solution if ther (@)kof the
basic matrixA coincides with numben of unknowns of the system (Kramer'sssy
tem) ifr r(A) <n, the system has infinite number of solutions and this numbey-of s
lutions is equivalent to solution subspace of corresponding homogeneous equatio
system of dimension-r.

Examples.

1. Let be given the heterogeneous system of the equationkjah the nmm-
ber of the eqations isk = 3, and the number of unknowsis= 4.

Xi—Xo+ 33X x=1

Xi—Xo+  #Z%=2

5x-5%x+ $HKXx=3
We shall determine ranks of the basic ma&iand expanded matri$ *of the given
system. AsA and¢ *arenot zero matrixes ankl= 3 < n, thereforel ¢ r (A), r (

$)¢3.Let’s consider mi noarigeshahdptthe secon.

1-1 * . [11

D,(A)=D,(A" )= J 0 Dy(A)=Dy(A" )=

Thus, among minors of the second order of matiixasd¢ *there is a minor

distinct fom zero, thereforg ¢r(A), r (A) ¢ 3. Now we shall casider minors of the
third order

=1, 0.
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1-1 1

D3(A):D3(A*): 1 -1 21=0, dnce the first and the second column are propo
5 -5 8
1-1-2
tional. Similarly to the minong(A):ng(A*):l -1 -1|=0.
5 -5-7
-11 -2
Dj(A) =Dj(A)=|]-1 2 -1 :-J~2 '1‘- 1\4 '1‘- 2"12|:6- 2-4=0.
£8 .7 8-7 [-5-7 |5

And so allminors of the third order of the basic matAxare equal to zero, henae,
(A) = 2. For expanded matrix *still there are minors of the third order

1-11 111
D;""(A)=1-12=0 D;""(A)=|-122=5, 0.
5-5 .58

Hence, among minors of the third order of expanded médtrithere is a minodis-
tinct from zero, therefore* (A *) = 3. It means, thaf, r(A), r (A) and then, on the
basis of Kronecke€apelli theorem, we can conclude, that the given system is-inco
sistent.

2. Solve system of the equations

3 X+ 2% x+ %=1

3 X+ 25%X3-2 x=2
For the given systerh=2<n=4 and consequently ¢ r(A), r(A) ¢ 2 . lcent ' s
sider for matrixes A and A* the minors of the second order

. 132 x
D2(A) =Dz(A') = ] =0 Dj(A) =Dj(A) =
* (A *) =2, and, hence, the system is consist@atbasic variables we shall choose
any two variables for which the minor of the second order formed of coefficients o
these vaables is not equal to zero. Such variables can be, for example

11
5 =-1, 0. Thenwe have

3
3 ;l:-Gé O. Thus,r (A) =

xza n d, since.Dj(A) =

{x3+x4= 1-3 x—-2 x
-X3-2 X=2-3 Xx—2 X%
Let's define the partial solutioﬁ_’t of the heterogeneous system. For thigoppae we
shall putx; = , x0.
{ Xa+ 4X1
-X3-2 X=2
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The soluton of this systeny; = 4,- /~ - 3, hence, = (0,0,4;3).
Now we shall define the general solution of the corresponding homogeneatisrequ

| X3+ 4%-3 X—2 X

X3-2 X= -3 X—2 %

Weput ;=1 ,=0x

| Xz + 4%X-3

-X3-2 X=-3

Solution o0f=-9,h3a system X

Thus & =(1,0,-96).
Now we stalpElxput x

{ X3+ 4X-2
-X3-2 X=-2
Solution 3=¢6 , 4 = 4,andthen & = (01-6,4).

After we determined the partial solutich, of the heterogeneowes)a-
tion and fundamental solutiond? andy, of the corresponding homogeneous &qu
tion, we write down the general solution of the heterogeneoai@aju

Z=X +01V1 +2Y2 = (0,04, 3) + 1 (10,- 96) + g»(01- 6,4) =
=(n,9>,4- 99, - 69,,-3+6¢ +409,), whereg and g, are any numbers from

R.
EXERCISES

1. Solve system of the equations by Gaussian method and witlelpheftde-
terminants

2 X+ ¥ 33¢ 4,x 11;

7 X+ 3¢  H+x8,%x 24;
3 X+ 22X 4x5,x 14,
X1+ 2¥X 3+x4,x 10;

2. Define basis and subspace dimension, formed by set of solutions of hom
geneous equation stem:

a 1+ B x3+ 2,x0; by 1+ X8 x+ 6,x0;
2 x+ AXzt+ 3% 0 1t DXz ¥X 20 2 X
X1+ 3IFX3+t 4, 0 1+ of-% O3% 2 Q=X0; X

3.Is the system of the equations consistert it is consistent, solve it:
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aj) 1+ 2¥X3x%x3 b 1-2 x-8 x=-3

Xp+ 2x3 %x=-1 1+ 38 X=0;
2 X+ ->x2 x=1 X1+ AX3x 3
X1+2 x-3 x=1 3 X+ >x1 33x-6

C) 1+ 2XK3-Xa+ 5X1 d) 1-Xo+2 xxX5 x=4
X1- Xo+ 3% 42 x= 0 1t BB+ 4X2
3 x+ 3R%-3x+ X 2 1-X+ 3xXX3=1
4 x+ HX¥x-5x+ =X 3 1-3 X+ PHX FX

€ [ 1+ 260X+ sX-1
2 X+ DHH6xz-5 x+ 5x0
X1-2 X+ 3XX4-X5=3
X1+ ItX23%2 X+ 5x-1
X1-4 X+ 3K 4XX5:3
4. Define the solution of the system with the help of inverse matrix

xl+4x2- 7x3+6x4:O
X, - 3x2— 6x4=9

2xl+x2- 5x3+x4:8
2x2- x3+2x4=-5

— = @

—_— —>
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CHAPTER 8

MATRIX REDUCTION
Let K be a vector space of finite dimensiombove the field . And letf be a linear
mapping of the spade into K. With the help of usual isomorphism of spa&eand
P " we come tdinear mapping " into P ". This mapping dermines a squarean
trix from n rowsandn columns dependent on dsen basis ifK. We shall try to find
in K such concrete basis relative to which bounded fitle netrix would have the
most simple form.

Al. A MATRI X OF TRANSI TI ONANPREM ONE

s v

Let 21, ?p,..7¢ -initial baS|s of the spade, and ’?1 ’?Q ’7q its new lasis.

\/

We shall express vector’q ’?Q, q through the vectoré?l, ?2,... 7, forming the
first basis. We havé’.J —1‘1J 1+z‘2J 2+ +z‘,r,J ?n, 1= 1, 2., n.Coordnatest

of vectors’>|J in the basis? 1, 72,... 7% can be written down as a matrix:

a1z L1y @

aézlfzz fzqo
............... 0"

%ml‘uz--l‘t_{ i L L
here matrix columns are coordinates of vectof3, ?iz,---?ij on hasis 7y, ?2,...’?1]'.

Definition. Matrix u, which column- vectorsare formed of the vector coo+d
nates of new basis expressed through initial basis, is referrectmasix of trans-
tion from one basis to another.

The matrlx of transmom possesses the following properties:

1. As ’71, ’)Q 911 and ﬁ arebases of the same spa€ethe number of
them is identical, and decomposition in terms of the basis is unique. Theretare m
v isaways square also is defined unequivocally.

2. Column— vectors of the matrixs are linearly independent (these are vectors of
the basis). Thus, the ranKT) of the transitiommatrix T is equaln; it means, that et
terminantD(T) , 0 and matrlx Tis hvays has invers&*, which will be a natrix of

transition from ’?1,’72 711 to Vl VZ, -
The matrix of transitions represents a biunique mapping=u(Ri) of the
space paceB " onto itself. Really, letS - be any element frori. We
have
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Cc L C C C L C
a=/121+1 52542 +/ 2, =142+ 52 +2 +/}?;

if we express?)’ij througﬁ?’i andu, we shall obtain
/J :[j1/i+tj2/i+2 +l‘jn/|i], J =12,2 n.

VectorsX=(/1,/ 5,2 /) and >((:| =(/4,/% ,2 /}) belong to the space ", and
thus A =u(ni). Decomposition in terms of bases is unique and invertible (there is
inverse matrixs™ ), hencer = u(f}) - is a hunique mapping.

As an evident illustration of a transition matrix we shall consider it for ge

metrical space in which the matrix of transition is connected to transformatian of ¢
ordinate sgtem and it defines linear mappifj onto R’.

1.1. The matrix of transition connectedtd he system of
transformation in geometrical space

We shal write down a transition matrix in geometrical space for orthonolraaés.
o v -

Let s choose aisj,ktahdewe shallrcennectlit with it S/stem of cderd

nates X, y, z, and as the seco'\r/ipljbi, I; and connected to ihe system of coordates
x'y' z"(Fig. 2.8). Then
74 y

Fig. 2.8

(
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c

\ o v -
li=tygl +1g9] +131K

[
ji=tq)l +f221 +l‘32k (8.1)
i:l‘13i +1‘231 +l‘33k

—.C

(

=~

If we multiply the firstr bylbj K in sequence taklng inteeount, that
Ij = k:Jkkp Oandll —JJ il =Kk = l

then we shall olin =1l —cosQn) L, =iij —cosq | j)' t, =cosf k).
If we do the same with the second and third rowsbof equality, we can define:
l1o = COS(]|I) 1‘22 cos(m) [3o=cos(ik); 3= cos{<i|)

t23=C0sK]); t33=coskik).

Thus, the transition matrig of one orthonormabasis to another orthonormal
basis, connected with transformation of coordinate system in gecahepace, has
the form

a o cC cc o

g ?08(“) cos(jii ) COSQ(I)g

gell 12 138 e & se Q@ 5
T=abo I [230=500s(i) cos(ij) coski)g (8.2)

Rty 1222 & CC CcC CCcé

¢31 f32 7337 gos{ik) cos(j ik) cos«k)g

2 :

And its members ardetermined by cosines of angles which are formed in turning of
new system of coordinates relative to the previous one. If turn of coordinate system &
their transformation does not occur, and it is observed at parallel shift of coordinate

Qc CC
system thencosfii ) =cos(jj) =coskk) =1, and ober cosinesare equal to zero.

Therefore the transition matrix for parallel shift of coordinate system is idendity m
trix
é12 02 Oo
a@ 272 ('j
T=E=%212 0
& 0
B33 ¢
02 02 12

Now we shall consider transition matnx as a matrlx of hear maping
4

V=T(Vi) of the spac&®’® onto itself. Letr = Xil |+ yijit+ z|k| a radius- vector
of some pointM in the system of coordinates, i, zi. In the system of cadinates

X, Y, Zthe same vector has decompositio
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C - “ —
r=(x- xo)i +(y- yo)i +(z- 20)k,
wherexo, Yo, Z arecoordinates of the origin of coordinat&$ i, zi in the system of
coordnatesx, y, z Then the vectov = (X- Xg, Y- Yo,Z- Zg), andVi = (xi, yi, zi)
and they belong to the spaRe Therefore mapping’ = T (V) in the oordinate form
IS represented as:
ax- Xg 0 axig
& O _&0 )
& - Yoo=Tayigor X- X,=TXi (8.3)
8’02' Z, 9 8%19
From here we obtain the formula for coordinate change ofdivg M in transfa-

mation of coordinate system generally, when we have both parallel shift, and turn o
coordinate system.

axo axio axo G
20 &0 &0

ao=Taiotaygs or X=TXi+ Xp (8.4)
0 .0 0

aX|8 aXo O
In formulas (8.3and (8.4) we assume as knowi = aéuoand Xo = 39/0 o, :

I.e. coordinates of the poin¥l in new coordinate system are known and coordinates
of a point in old system should be defined.
The inverse problem is more natural whenn m are known and it is e-

quwed to define X, For this case we assume
V= (Xy,2, a V| (Xi+ Xg,Yi+ Yo, Zi+ Z) and then

axg axi+x, 0
2 Xoo

&0
ae/(:?:Tae/i’f yo(?or X=TXi+X,)
20 Favn
whence
‘%X""XOO axa
it Yoo=T" ae/oor Xi=T*X- X,. (8.5)

&Z|+X09 &ZO

1.2. Orthogonalmatrixes of transition

If we raise to the second power all rows of the equations (8.1) or multiply by each
other we shall obtain flowing equality system:

ha@ugt thq Qogt tag tag= 0a g, (8.6)



Whered; g, - is Kronecker symbola =1, 2,3, g=1, 2, 3.

Hence, in matrixs (8.2) sum of squares of the elements located in edeh co
umn, is equal 1, and the sum of products of corresponding elements of twoiany var
ous columnga , g is equal to zero. Matrixes of such type are referred twthsg-
onal.

The equality system (8.6) which exists for elements of orthogonal matan be
rewritten also as following conditionA T = & T'=T *, whereT'- is transposed
matrix, andT * —is inverse matrix tas.

Then, ifr" IS j- column vectolin & with components(z‘lj ,z‘zj ,z‘3j ) the @tio

(8.6) means, that scalar prodtf’td" d;,

vectors z‘j ,] = 1, 2, 3of the orthogonal matrix form the orthonormal dsis.

The given definition of orthogonal matrixes is applied not only for ttiems
matrixes of the third ordef = 3, but also for matrixes of the order 3.

Definition. Square matrixS = (sjj), where i=1,2,..n,

j=1,2, .,n, forwhichSAS HdE S 1S j+ S 2S 5 + ...t SpiSnj = dj,
where dj; —Kronecker symbol), iseferred to asrthogonal

It also follows from this definitin, that for the matrix to berthogonal, it is
necessary and sufficient, that either its coltwantors(or row - vectors) form o
thonormal basis inR ".

DeterminantD (S) of the orthogonal matrixS is equal to +1 ofl.. Really,
since the determinant the matrix product is equal to product of multiplier determ
nants, theD ( S)AS= D ( 5 ¥ [D&)] T=(DFE) = 1 and, henceD(S) = °1.
Values +1 and. correspond to various orientation of columrectors, forming bsis.
So, if as column- vectorsin S we choose canonical orthonormal basis

j=1,2,3,i=1, 2, 3and, so, columr

=(10....0), 25 =(010.,...0),...cc..., 2 =(0,0,.....1]), we shall obtairS=E and
D(S)—+1 If we take orthonormalbasis 51:(10,...,0, ’7 =(010.,...0),....... :
2.1 =(0,0,.. ,],O) =(0,0....- 1), thenorthogonal matrixsEadequate to itill

have determinarid (S)—- :

A2. CHANGE OF LI NEAR MAPPI NG M
AT CHANGE OF BASES
Let's consider linear mappirfgpf n-dimensionalspaceK above the fieldP in
m-dimensional spacé above the field P and let if in the spac& the basis

\\/1,\\/’2,...,\\/'m is set, and in the spaéethe basiS\\/i,\\/'Z,...,\\/’m, then mapping is as-

sociated with the matriR, repesenting linear mapping’= A(xj of the spac® "into
m, X P”yl P" Let’s pass in these spaces
’?1, ’?Q, ’?h and vi,vz, v,;n which are connected to initial bases with matrixes of

transition S: ’7| ’> nT:Vi- V.Ourtask is to determine, what kind the matkix
W|Iltake|nbase§?|andv|.L et’ s designate Bhis trans
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We shall consider any vectaf from the spac® ", and its imagey’ = A(X) from the

spaceP " in bases? and V. In changing of space basesandP™ are mapped into
itself by means of transition matrixes and T. Thus vectorsXjand yi will be

preimages of thevectors accordinglyX'= S(%) and §/':T(§/’|) Then the ratrix B

is set by means of the ratamd, then,

B=T'AS.isalso the required formula for determination of interrelation between m
trixes A andB, representing the same linear mappimg the spaceK into the space
F, in changing of the bases in them, determined by matrixes ofttoarfSandu.

If F=K, and initial, and also new bases in spd€esdF coincide, thenA
andS = u will be square matrixes of the same order. Then we shall abtairs¢ v ;
B isreferred to as matrix transformed frédhby means ofs; matrixesB andA arere-
ferred to asimilar matrixes.If Ais invertible, thens *( ¢) v =t w 3= 1™
Now we shdltry to define inK such concrete basis relative to which the square m
trix connected withf which is determining mappind® "intoP" would have the
most smple form.

2.1.Eigenvalues, eigenvectors of the square matrix
We can easy show, that equalit  ="¢ wresults inequality of deterimants:D (B)
= D (A).Really, from the rule of determinant multiplication, we have

DB)=D(TYH AD(A) AD(T) = 1BDA) D(E) = D(
On the other hand, the matrix transformed from identity matrix, iditglena-
trix: st v =hence, for any / R we have

I-rt =Y drr),u
and then, determinaf ( ¢ /[ )depends only on linear mappihgnd does notel
pend on a choice of concrete basis in
%11&122 a1n g
:6@213222 43,0
& o}

;}%nlanz2 a 8

nn

If A

o

aa1-r a 3 a
ae11 12 1n

>® a dor-r3 a
thenA- rE=g -0 "% N Gand

& ¢

C ani1 Anz 3 apn- 1=

0O: OM

DA-rg)=(-1) e dn-1/ 1, Ono/ 2+ ...+ qur +D(A), is amultinomialof the
r power, which is exactly equal to. We have no need to write down, what coeff
cients q;, are equal to.

Definition 1. Multinomial D(A-r E) is referred ascharacteristicmultinomial
of the mappind.

Its coefficients depend only on linear mappirand do not depend on a choice af b
sis inK. The same will concerrio zeros of thisnultinomialand to their multipkity.
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Definition 2. Eigenvaluesor characteristicnumbers of the mappinigare e-
ferred to aszeros of characteristimultinomial D(A-r £) i.e. roots of the equation
D(A-r E)=0 - thisequation is referred to abaracterstic.

If { is the fieldC of complex numbershe multinomial of the powem has pecisely
n zeros belonging t€; if we count each zero many times, as its multiplicity is{fu
damental theorem of algebra). Therefore henceforth we ssaiine, that t is the
field C.

Let r; be an eigenvalue, so sh real or complex number, thB(A-r1£) =0.
Then matrixA-r1£1s noninvertible, and let there be, at least, one such nonzetar ve

u1I C", sothat (A- r E)U) =0, i.e A(ui) i . Inversely, if there is such nonzero
vector Uji C", so that A(ul) = r1u1 , then the reasoning which is inverse to the

mentioned, we ascertain, thratis an eigenvalue.
Definition 3. The vectoruj is referred to agigenvector of the matrixA, be-

D

longing the eigenvalug,, if A(Uj) = rqUj , with h’i , 0.

. C -
If Jis a vector fromK, adequate to the vectaji C", then f (U;) = 74U, that
shows,as 01 andr; depend only on.
The vector Gi Is referred to aseigenvectorof linear mappind.

Let’' s | i st some properties of Ai ge
which are also the properties of eigenvectors and eigenvalues of lingangia

1. Each eigemector corresponds to the unique proper number.

2. If Uj- is eigenvector of the matri& with proper number, thenany vector
| U which is collinearto the vectorj, also is eigenvector of hmatrixA with the
same nmberr .

3. If Gj and G’g are eigemectors of the matriXA with same proper number

thentheir suml\fj+ L\JJQ also is eigenvector of the matex with same number.

It follows from the properties 2 and 3, that each proper is correspondent to the
infinite set of (collinear eigervectors. This set together with a zero vector whieh a

ways is eigenvector, forms a subspace oftreced " if it concens Ui eigervectors
of the matrix and the spaée if it concerns U eigenvectors of linear rppingf.

4. If eigenvectorstij,Up,3 ,Ug (or Us,U5,3 ,Uy) belong to various eige
values they arariearly independent.

Last item allows to solve the problem of square matrix reduction to nrore si
ple form.
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2.2. Reduction of a square natrix to the diagonal form

Eigenvectora\J’l,l\J’z,Z l\fn of linear mappind, belonging to variousigenvadues of
this mapping, and being linearly independent, can form a basis of thelsphdbe
dimensionn. It is possible, for example, if mappifigpjasnv ar i ous ei gen\
suppose, that it exists; we shall designate them thraugh, . . .,/n. All of them
serve as simple zeros of a characteristiuttinomial
Let (- eigenvectors belonging to eigenvaluesri=122 ,n, form a lesis
of the spac&. Theoretically it can happen, thatdiar mapping has less thaeigen-
val ues, but nevertheless it has basis from eigenvectors.

Let X=/4U; +/,U5 +2 +/ U7, beany vector fronK, andXi=/1,/5,2 ,/,,
correspondmg vector in g We have
=f(X) =/, F 7)) +2 +/,F(U,)=/1r0y +/5rU5 +2 +/rou,.  This
|mpIy|es, that a orresponding vector ina " wil be a vector
yi= (llrl,/2r2,2 ,/nrn); S0, it turns out fromXiby means of a diagonalatnix

8712 02 0§
O

x
- = 0
u=@2 ri2 og, vi=U (Xj)
- SN 0]
0
02 02 ry2

Thus, if we take eigenvectorsﬁ,L\J’z,Z L\J’n as basis irK , then maping of
space
"intow ", corresponding to the mappirfy is set by diagonal matrix. If
>?11,>?/2,2 ,?n- any basis irK, then

C . :
Uj =ajy; 1+32J +2 +ay ’7n forj=1,2 ..., nand transition matrix

Let A - be a matrix representing the mappinghen >.51, 52,2 , 7y are takeras la-

sis inK; thenU=TAT.Hence, there is such invertible mattxthat the matrix tras
formed fromA by means ots, will be diagonal matridJ. Matrix U is not unique
since it is possible to change the order of vectgrsi,,2 U,; however, if there is
diagonal matrix
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40,0...0 &
0 5,00

W:f2 8, transformed frong, then D(W- rE): D(A- fE),
55,

ie.  (book 2,  Chaptes, 8 4 §-1)(r- b)(r - b) O.Qr - br)=(-1)"(r-

r)@-r,)0O.@-ry), so, number#é, b ,...,b, accurate within the sequence order of
are eigenvalues, aMi there is one of matrixes of kindl.

We shall notice, that vector subspace veofogigervectors lelonging to one
eigenvalue, hathe dimension equal to one. Really,ﬁf{ and \71 aretwo eigenve-
tors belonging to eigenvalug, then theyboth belong to the vector subspace, which
is complement of then-l-dimensionalthe vector space genesdt by vectors
G’ZG}, s0, to the vector subspace of thimension, is one. Hencg= /1, / | C(
ifl . 0).

If all eigenvalues are not distinct, the it is not always possible to define-the d
agonal maix representing a linear mapping. However and in this case it is possible
to define a matrix revealing eigenvalues and having has the form, which is easy for
calculations. For consideration of this case we refer the reader to the speaal liter
ture.

For real spac&®’ complex roots of the characteristic equation cannot be eigers/a
since they do not need equali@(i‘) = /&, as coordinates of the vect& and men-
bers of the matriA belong to the fielR of real numbes. Therefore linear npping
R"intoR", set by the matriXA above the fieldR of real numbers, for which the
characteristic equation has only compt@®njugate roots (i.e. none real root), has no
eigenvalues (a power of such characteristidtinomialshould be even). Heever, if
linear mappingR "into R" is set by a symmetric matri, thenall roots of the cha
acteristic equation of such matrix are real; all eigenvectors belonging to them can b
chosen as real. In this case eigenvectors of thexwatorm a basis, and in this basis
the matrix of linear mapping has a diagonal kind. Let's consider it by tihepbxaf
reduction of symmetric real matriA to a diagonal kind, which determines the

squarelaw form onR".

A3. REAL LI NEAR -LAWBORMSUARE
Let’' s consi deR"aloheehe fiekRintwhich the baai§1e52,...,5n
is givenand letx = m? + m? +...1,?, - beany vector of this spacey R
Definition 1. Real linear form; is referred to asriear mapping o$paceR "

. n
into R, which every)L(I R" puts in conformity with numbef ()% =a/ymfromR,
i=1
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where/ ; andm - are numbers frorR . The linear form also is hamed the horaog

neous simple form, and it is mostly written down in fibldowing form:

j (B)=Qr + O®rp +...+ QX,, WhereX=(x,x,,...x,)i R".

Definition 2. Real squarelaw form w is referred to asiriear mappingR "into R,

which each&’l R" puts in conformity numbev(% a @su nynqg from R where
i=1 G =1

m - arecoordinates of the vectds, Sijj - are numbers fror for which the equa

ty sjj =5 jjIs satisfied.
e
From definition follows, thaf”’(/)%) =/ W()%) Therefore the squataw form

is the homogeneous form of the secpogver.
An example

= (4,%,%) ; WX)= a@ s.,xxg-
'—191-1 -

_ 2 2
= 519X +50p%X5 + 53355 + 251X %0 + 25135 Xg + 25 23X X5 -

3.1.Reduction of the squarelaw form to the canonical type

The squardaw form can be written down also by means of a matrix. For this
purpose |letXs (nzp..ulv?]) ftomm B " in @mfdrnaty with two matni-

am @
aeni
aéTQO

%8

ous, tha X T is the transposed matrix #. For coefficientssj; of the squardaw
form we shall introduce the real matrix

es: a column matrix X = ¢ and row- matrix X T=(m, m, ... m).ltis obu-

aS11S192 S1n O
8311212 in g

AP ¢ Then
;;%nlsnz2 snng
nan n 6
(%) = agasumnag aﬂ@asu aﬂ?AO< XTAX.
i=1¢j=1 = i=1 ]=1 +

The matrixA is referred to as matrlx of the squardaw form and since fordctors
of squardaw formsijj = sjj, thenthe matrixA is symmetric.
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We shall consider, how the mat#changesvhentransition intoR " from
one orthonor mal basis to anot hery,and et
coordinates of the vectof = (/71/7]1) in new basis througﬁ/’: (b1,065,2 ,b,)

. Then X=T(Yy), or in matrix formX = TY, wherev is an athogonal matrix. Thes-
fore for the squartaw form we have

w3 =XTAX =(TY)T ATY=YTTT ATY =YTBY, wherel 26 ws
But sinceu is orthogonalthens® = ™yandl ='¢ wi.e.Bis transformed fromi
by means omatrix T. Besides the transformed matBx-is also symmetric, since

1°= fou’y Buw'F W(Y= v = .
Asp’= ¢ .

As the matrixA is symmetric, hen R" possesses at least one orthonorraal b
o N\

SIS Gi,uz,Z ,Un, made of eigenvectors of the matdx then if we choose basis
GLG’Z,Z G’n as new basis, then the transformed matrix in this l&sis and has
a dagonal kind

éfl 02 0 0

& 0

_a0r2 040

B222 9

C 02 fn§
Here eigenvalueg; of the natrix A can be both distinct and the same, but all they

are real. If a matrix of the squalav form is diagonal, then the squdasv form ke-
comes:

W()%): zTuz = r1221 + r2222 +...+ rnzzn, wherez,, 2, ... zy— are coo-
dinates of the vectoX, decomposed on the baﬁ'@ LTzﬁ'n
Thus, concerning the basi\é_,ﬁ'z,..ﬁ’n, made of eigenvectors of aatmx of

the squardaw form, the squartaw form has only mmbers with sgares; we can
say, that it iseduced to theanonicalkind.

An example Reduce the squataw form to canonical type
mMR) = B gox Zxwherel=(5, 0, M)
1. We make up a matrix dfi¢ squardaw form:
d =2 0 0 (see the example in the beginning of the paragraph)
019
2. We write down the characteristic equation
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3-r 2 0

2 0-r 0 |=0,where(1-r)(r*-3r-4)=0.

O 01-r

Solving the last equation, waefine proper numbers;; =1, r, =4, r3 =-1. We
shall designate coordinates of the vedorin system of eigenvectors of a matrix
throughz, z, z. Then the squarkaw form becomes
WR)=2 +423-
1. We define orthwormal eigenvectors of a matrix:
01 =(ky, 27, My); G’Z =(ky,?5,mMp); 0’3 =(k3,?3,m3). For this purpose the
equatiorA (I) = r U is written down in the coordinate form:

é3k+2’>+0m rk, 'e(3 r)k+2?+0m=0,
|2k+0’?+0m r’>or|2k+(0 r)?+0m=0,
tok +0?+0m=rm lok+0?+(1- r)m=0.

Let's suppose” = r1 =1. Then the system becomes:

€2kj +2?; =0
[ 2ki- 2% =0
This systemhas the unique solutiokj =0, ?j = 0. Value of the compnentm, is

any. For the vectoﬁ'l to be normalized i.e. thdﬁﬂ =1, we shall assumey =1. We
havel\fl =(0,00).

Sincer =r, =4, the system becomes:

& kjp +2?p =0,

1 2Kj - 42 =0,

L. 3my =o0.
Hence kj =2t, ?p =t, mp =0, wheret- is any real number. Bt normalizing, we
obtain \L%\:\/kg +25+me =1 Y ks :%; ?5 :%; m, =0. So,
L(jiz 2 1

NN

For the third proper number = 73 =- 1 we have system:
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g4ky + 275 =0,

‘: 2k +?5 =0,
tomg = 0.
From hereki =-t, ?g =2t, my =0, wheret- is any real number. Noralizing
U3 =(-1,21,0), we define k3:-%, ? _E mgz =0, i.e. the vectoris
ucs:(-is,%,O). Thus, eigenetors of the squaraw form are: 131:(0,0,1),
L(J:Z :(i,i, 0), 3 =(- ,0), and a canonical form of the squdagv
V5 /5 f f

form is: W(% = 212 + 4z§ - 232,.

3.2.Definite square-law form. Sylvester criterion

Definition. The material squaskaw form W(m is referred to apositively

Definite form, if for any , Ofrom R " W(t.') > 0, andnegatively definite
form, if for any &, 0 fromR" u(5) < 0.

If for all vectors = from R " the inequalitiesare not strict, i.ew(m 2.0or
W(:) ¢ 0, the squardaw form is referred to as accordinglyonpositively or
nonnegatively definite fornor semidefinite form Definite and sendiefinite square
law forms are referred s refer tsign-definite forms

Squarelaw forms for which any of these conditions is not satisfied, ere r
ferred toas indeterminatesquarelaw forms. In other words, the squdasv form
W("") is referred to as nondefinite é(/ R" aredistinct from zeroandthe square

law form takes both positive, and negative values.
2

X X5 . iy - :
Examples The squardaw form W()(E) =1 +—§ Is positively definite, since
b
52
for anyone’, 0 wf5) > 0; the squardaw form W()C(:) ——- —g is indeternmnate
a® b

since the sign on the right part f8r, 0 can be both positive, and ratige.

As each squarkaw form can be written down in canonical form, the square
law form will be pogively definite; if all proper numbers of the matrix spgei the
squarelaw form, will be positive, and negatively definite if all proper numbers are
negative Sylvester @terion also gives the answer to a question aboundehess of
the squardaw form. For the squaréaw form with a symmetric matrix to be pose
ly definite, it is necessary and sufficient that the principal minors of matrix to be pos
tive, i.e.



14¢€

511512--S1n
511512513
$21522.-S1n
>0, 5915925 23 >0,..., > 0.
S B
SmSn2--Snn

Criterion of negavely definite form follows from Sylvester principle.
If M(X)>0, Tum(X)<O0 and inversely. Then, according to Sylvestereerit

rion, for - M(X) we have

- 511-5S122 -S1p
- 511-512-513

-S11-S -S91-S952 -S
- 51150, 11-5S12 >0, Sp1-59p-503>0,3 , 21-522 o
-S51-8 333333
21-522
- 531°531-533 S -Sp2 -5
n n nn
or
5115122 S1p
. 511512513 S 60D S
S14<0, 11512 >0,/ 2159 S 23 <03 ,(-1)" 21522 2n
S21522
S$21521S
31531533 S Sm2 S
nL<n nn

Thus, if signs of the principal minors of the squiw form alternate, the
squarelaw form is negatively definite.



EXERCISES
1. Define proper numbers and eigenvectors of linear transformation set bg-the m
ab2-3%
e 0
¢ =a45-4p

trix =
c64-42

[} ~

34
2. Show , by the>ample of the matrixdp :%Zg, that characteristic numbers of
g =

inverse matrixp™ are inverse values of characteristic numbers of the mfatrix
3. Define proper numbers and eigenvectors of a symmetric matrix

ar-2 0§
e 0
S= e 2 6- 2(’j
&0-2 52
Show, hat eigenvectors are orthogonal

4. Matrixes are given

42-23% 420 1%
(5 S] 0} x 0}
»=40-455and T=gl 3 -1
&5-462 E21 02

Show by the example of matrixdsandB = u ¢ y that similar matrixes have ide
tical characteristic numbers.
A\

5. Form the orthonormal badis j,k from eigenvectors of the atrix:

a7-20p a12 -4p
e (0] e (0]
aY=x2 6-25 b)A=zx2-2-25
geo-z 59 834-2 19

6. Reduce squailaw forms to the canonical kind and define their eigetors, if

a )/l/(éj 3x? - 48xy+27y . Z=(XY);

b) W()L() 99x2 12% Xo + 48x%1 X3 +13Ox2 60X5X3 + 71x3,
X'= (X1’X21X3)

Q) WX =X + 3% + X5, X'= (%, %p.).



