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INTRODUCTION  
 

 The modern level of development of a science results in that more and more 

specialties which had before the applied (technical) character are included in sphere 

of university education. First of all to such specialties we should refer specialties in 

the field of computer sciences. Features of training of students on these specialties at 

university generate a need of the accelerated studying of a course of higher mathe-

matics, which has the volume coming nearer to the university course. Such challenge 

is issued by this text-book on higher mathematics issues which is intended for stu-

dents of the universities specializing in the field of computer sciences. Here the read-

er will find many perfectly developed pages as the course of the general mathematics 

cannot be original work. The reason of it that a course carries out the first contact to 

new knowledge and it is intended for the persons finished the school education and 

having only principles of elementary mathematics knowledge. Feature of the given 

text-book is also the uniform methodical approach to a statement of the entire higher 

mathematics course, consisting that the basic mathematical concepts follow from the 

general concepts and from logic concepts with the following distribution of a materi-

al. 
 The course is divided into five books. 

  The book 1 contains some logic concepts, the elementary concepts concerning 

to sets and operations on them (union, intersection,  difference, product), and also the 

basic mathematical concepts, namely: concept of function or mapping; concept of  n 

– dimensional arithmetic space. 

The book 2 is dedicated to the linear algebra. From fundamental concept of mapping, 

concepts of internal and external laws of a composition are introduced. Conditions at 

which operations of these laws on a set transform them into groups, rings, fields and 

vector spaces are considered. It is investigated: a field of complex numbers; a ring of 

multinomials; vector space of multinomials; vector space of free vectors in geomet-

rical space; vectors in n – dimension arithmetic space. Concepts of matrixes, deter-

minants and system of the linear equations result from concepts of vector space and 

linear mapping of one vector space to another one. In the separate chapter it is con-

sidered reduction of matrixes by changing of basis to more simple form. Rather in de-
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tail, it is shown for reduction of the square matrix to the diagonal type, and the 

square-law form to the canonic type.  

 The book 3 contains a number of concepts of analytical geometry required by 

the program: the equations of a straight line on the plane and in the space; the equa-

tions of a plane; curves and surfaces of the second order, the equation of curves and 

surfaces of the second order are reduced to the canonical type with use of square-law 

forms. These geometrical concepts act as the direct appendix of the book 2 or as 

transferring of results of this book on language of geometry as it is made in it for free 

vectors in geometrical space. 

 The book 4 is dedicated to the mathematical analysis. Numerical functions of 

one and many real variables are considered. Concepts of limit  and continuity are in-

troduced for these functions. The book comes to an end with the statement of differ-

ential and integral calculus. 

In the book 5 the chapters are collected which are concerning to the concepts, having 

technical character at a level of the general mathematics course, these are differential 

equations and lines. 

   The statement of a theoretical material is accompanied by the illustra-

tive examples and the solutions of typical problems. With the purpose of reinforce-

ment of educational material, here the exercises for independent work are offered.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE BOOK 1  

http://www.multitran.ru/c/m.exe?t=1599167_1_2
http://www.multitran.ru/c/m.exe?t=1599167_1_2
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GENERAL CONCEPTS 

 

CHAPTER 1 

 

SETS 

 

   Ä1. DEFINITIONS AND LOGIC SYMBOLS  

 

 

  

Many objects by some certain attribute, for example - objects of one nature, can be 

combined in a set, which is conceivable as the whole. The objects making a set, we 

shall name set members. The set is usually designated with capital letters ɸ, ɺ, ʍ, and 

its members are designated by small letters ʘ, ʚ, ʭ. Belonging of the member  ʭ to the 

set A is written down ʭÍɸ. 

 If the set contains finite number of members such set is referred  to as fin ite 

set. 

If for any beforehand given number ɓ,  what big it would not be, in set there will be 

the quantity of members which exceeds this number ɓ it is said that such set is indef-

inite set. More strict definition of infinite set will be given below. 

 

 

1.1. Number sets.  
 

Sets which members are numbers refer to as number sets.  

  Number set ʈ can put in conformity a variable ʭ which possesses all number 

values of this set i.e. which domain of variability are all number values of the set ʈ. 

Such conformity is written down as follows ʈ =  {ʭ}.  

  A number of number sets have standard designations: 

  1. Set of all natural numbers 

 

          N = {  n } , where  n = 1, 2, 3 . . .; 

      2.  Set of all integers 
 

              Z =  {  ʭ } , where х = 0, ±1, ±2, ±3, . . .; 

          Set of all non-negative integers  

 

                 Z0 =  {  ʭ } , where ʭ = 0, 1, 2, 3, . . .; 

3. Set of all rational numbers           

       

            ö
÷

õ
æ
ç

å
=

n

m
Q ,  где  mÍZ ,  nÍN.;                          

4. Set of all real numbers 
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   R =  {  ʭ } , where ʭ = Ñb, Ŭ1, Ŭ2, ..... Ŭn . . . -  infinite decimal fraction or periodic 

one (set of rational numbers), or nonperiodic one (set of irrational numbers), here 

is  ɓÍZ0 and ŬiÍZ0..  

  The set of all positive real numbers is designated R
+
, and all negative ones - -R

. If these sets are added the number zero we shall write accordingly -+
00

 ʠ RR  

 

  

1.2. Point sets of geometrical space.  
 

The least and indivisible structure of geometrical space is the point. All other 

geometrical figures and bodies of geometrical space are considered as set of points. 

Therefore geometrical figures on a plane, such as a segment, a line, a polygon, etc. 

and also bodies in geometrical space, for example, a sphere, the polyhedron, a cone, 

etc., represent point sets which members are points. 

 

 

 

1.3. Set assignment   

 

   

To assign a set, means, to specify that general features, that separates its mem-

bers from other objects. In most cases set is assigned with the help of characteristic 

property of its members. Characteristic property of the set A is understood as such 

property which all members of the given set have and only they have it. If character-

istic property of the set A, which member is ʭ,  we designate through G (ʭ), the  set is 

written down: 

(){ }xGxA=  

 For example, if A  is the set of all even natural numbers, it is written down: 

 

ɸ =  {  ʭ |ʭ=2n. nÍN }  

 If two sets A and B consist of the same members such sets refer to as equal 

sets. Equality of two sets is written down ɸ=ɺ. 
 

 

 

 

    1.4. Inclusion. Empty set 

  

The set A which all members belong to some set B, is called a subset or a part of set 

of B. It is written down as ɸË ɺ or ɺ Èɸ  and  it is read as: A is included into B or B 

contains A. . Symbol    Ë   is called inclusion symbol. 

  The subset which does not contain any members, is referred to as empty set 

and it is designated with symbol Å. 

By definition it is accepted, that for any set ɸ :Å Ë ɸ;  ɸ Ë ɸ. 
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   If    ɸ Ë ɺ  and   ɺ Ë ɽ,  then   ɸ Ë ɽ – is the property of transitivity. For 

example, N Ë Z Ë Q Ë R, то N Ë R.  

 If   ɸ Ë ɺ and ɺ Ë ɸ, then  ɸ=ɺ. 

 

1.5 Propositional logic. The theorem. 

 Necessary and sufficient conditions 

 

Implication. We shall speak, that proposition W implies or attracts, and also 

has as consequence the proposition Q, if  Q is valid every time as it is valid W, and we 

shall write down W Ý Q.  If, in its turn, Q attracts W then propositions W and Q refer 

to as equivalent ones; it is written down W Ý Q. Then in any reasoning it is possible 

to replace one of these two propositions by another one. 

 

Quantifiers. For designation of expressions “ for all ”, “ for everyone ”, “how-

ever that may be ”, "exists", “ there will be even one ”, symbols which refer to as 

quantifiers are used: 

Universal quantifier": “ for all ”, “ for everyone ”, “however that may be”. 

Quantifier of existence $:: "exists", “ there will be even one ”. 

For example, the statement, that ɸ Ë ɺ  it is possible to write down as follows - 

"ʘÍɸÝʘÍɺ. The opposite is incorrect. That fact, that ʘÍɺ  does not attract, that 

ʘÍɸ. Propositions are not equivalent. 

 

 Negation. Negation of the given property is represented by a symbol of the 

given property crossed out with line Ê,Î, Ý. 

  For example, the statement, that the set F is not a part of the set B, is equiva-

lent to the following: there is such member a from F, that a does not belong B. 

F Ê ɺ Ú ( $ ʘ Í F Ý ʘ Î ɺ ). 
 

     Propositions are equivalent. 

 

The theorem. The mathematical proposition, which validity is defined by the 

proving (by the reasoning), is referred to as the theorem. The auxiliary theorem is re-

ferred to as the  lemma. 

  The formulation of any theorem consists of two parts: conditions and conclu-

sion which follows from the given condition. The condition and the conclusion can 

interchange the position: a condition can become the conclusion, and the conclusion – 

can become a condition. Then one of these theorems is referred to as direct theorem, 

and another to inverse theorem. 

  In mathematics there are theorems with three various conditions; necessary, 

sufficient and both necessary and sufficient. 

 

The necessary condition is a condition without fulfillment of which the given state-

ment is incorrect. 
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The sufficient condition is a condition from which follows, that the given statement 

is true.  

 

For example: 1. For the quadrangle to be a square, it is necessary, that its diagonals 

are mutually perpendicular. 

This condition is necessary, but there is not enough. Actually, if diagonals are not 

perpendicular, a quadrangle is not a square but if diagonals are perpendicular, it does 

not mean still, that a quadrangle is a square. 

         2. If the sides of a quadrangle are equal, such quadrangle – is a parallelogram. 

This condition is sufficient, but it is not necessary since and without its fulfil lment  

(the sides are not equal) the quadrangle can be a parallelogram. 

The same condition can be both necessary, and sufficient at the same time.  

            For example, if in a triangle two angles are equal, such triangle is isosceles.  

            The given condition is sufficient, since the theorem is true and it is necessary. 

Actually, if in a triangle two angles are not equal, such triangle cannot be isosceles - 

the condition is necessary. 

 

 Necessity and sufficiency of a condition can be written down, using implica-

tion. If the theorem is considered as set of two propositions W and Q and if the theo-

rem is true, i.e. implication is true W Ý Q, then Q is a necessary condition for W, and 

W is a sufficient condition for Q. If the propositions  are equivalent W Ú Q, then W 

is a necessary and sufficient condition for Q, on the contrary Q is a necessary and suf-

ficient condition for W.  
 

 

Ä2. OPERATIONS ON SETS. 
 

2.1. . Intersection of sets 

  

 Let there are two sets ɸ and ɺ. The set of all members ʭ, belonging at the same 

time to A and B, makes new set F which is referred to as intersection of  A and B and 

it is written down:   

 

                                  

  F = AÆB = {ʭ | x Í A ʠ xÍB }   ( fig. 1.1 ) 

  

Sign Æ - is a symbol of intersection. 
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                   - F = AÆB                                                 - C = A Ç B    

                  

 Fig. 1.1                                                         Fig.1.2 

 

Operation of crossing possesses the following properties: 

 1.A ÆB = B ÆA  - operation Æ is commutative; 

 2.(AÆB) Æʉ = ɸÆ(ɺÆʉ)  - it is associative; 

 3.AÆɸ = ɸ,   AÆÅ =Å; 

 4.If  ɸ Ë ɺ, then AÆB = ɸ. 
 

 If sets have no common members, i.e. they are not intersected, then AÆ

B = Å. 

 

2.2. Sum of sets  

 

 Let there are two sets A and B. The set C, consisting of members belonging to 

A or B, i.e. belonging or A or B, or A and B at the same time, is referred  to as sum  A 

and B and it is designated  

 

ʉ = A Ç B = { x | xÍA, or xÍB, or  xÍɸ and xÍB } . (fig.1.2). 

Sign Ç  - a symbol of sum. 

  The basic properties of summing operation are as follows: 

 1.A Ç B = B Ç A  - operation is commutative; 

 2.(A Ç B) Ç ʉ = ɸÇ (ɺ Ç ʉ)  - it is associative; 

 3.A Ç ɸ = ɸ,  A Ç Å =ɸ; 

 4.If  ɸ Ë ɺ, then A Ç B = ɺ. 

 

  

2.3. Set difference 
  

 Let there are two sets A and B. The set D consisting of members  ʭ of the set A 

and not belonging to the set B, is referred  to as  set difference of A and B and it is 

designated: 

 

             D = ɸ\ɺ ={ʭ | ʭÍɸ  и ʭÎɺ}  ( fig.1.3 ). 
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         - D = ɸ\ɺ                                      - ɽ = ɺ\ɸ              - Gɸ = ɺ\ɸ 

           ɺ 

               Fig. 1.3        Fig. 1.4      Fig. 1.5 

 

The basic properties 

1. ɸ\ɺ  ̧ɺ\ɸ – operation is not commutative (fig.1.3 and 1.4); 

      2. (ɸ\ɺ)\ʉ  ̧ɸ\(ɺ\ʉ) – it is not associative ; 

          3.If  ɸ Ë ɺ, then ɸ\ɺ = Å, but ɺ\ɸ makes the set named complement of set  A 

relative to B and it is designated 
ɺ
Gɸ = ɺ\ɸ = {ʭ | ʭÍɺ and ʭÎɸ, ɸ Ë ɺ} (fig. 1.5). 

We have: =ö
÷

õ
æ
ç

åÆ=ö
÷

õ
æ
ç

åÇ
B

GAAʠ   B
B

GAA Å ,. 

 
  

   

2.4 Product of sets  
   

Let there are two sets A and ɺ. And let ʘÍɸ, bÍɺ.  Let’s consider the ordered couple 

(a, b), and couples (a, b) and (b, ʘ) are considered to be distinct, even if ɸ=ɺ. Set of 

the every possible ordered couples (a, b) makes the new set named product A and B 

and is designated ɸ³ɺ.  Elements a and b refer to as components, or coordinates of 

the couple  (a, b). 

  As an example product of two point sets A and B of the geometrical spaces is 

considered on fig. 1.6.  

 

 

 

 

 

 

 

 

 

 

                                       - А³B                                        - B³A 

                       Fig. 1.6  

  

 

From fig. 1.6 we can see, that ɸ³ɺ  ̧ɺ³ɸ and, hence, product of sets is not commuta-

tive. 

  When set B is identical to set A( ɺ = ɸ), then ɸ³ɸ  represents set of the or-

dered couples (ʘ, ʘ¡ ), where а and а¡ belong to the same set A ( ʘÍɸ and ʘ¡Íɸ ). 

Such set is referred  to as the Cartesian square. But also in this case (ʘ, ʘ¡)  ̧ (ʘ¡,ʘ ). 
Letôs illustrate it by the example of point sets (fig. 1.7).  
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The set of points of the shaded part of the plane makes the set ɸ³ɸ  - the Carte-

sian square. 

 

 

 

 

 

 

 

 

 

 

 

                                                           

                                                                                       -  ɸ ³ A                                                                                

 

 

 

 

 

Fig. 1.7 

  

             In general let there is aggregate of sets ɸ1, ɸ2, ɸ3 . . . ɸn, not necessarily dis-

tinct, we shall name as product and designate through  

                                  Ô
=

=
n

i

iA

1

 ɸ1³ ɸ2³ ɸ3 ³. . . ³ɸn                                                                            

    the set of the ordered systems(ʘ1, ʘ2, ʘ3 . . . ʘn where i- member belongs to set ɸi.  

Symbol P signify a sign of product:  

                                             Ô
=

ÖÖÖ=
n

i

ni

1

.21 aaaa 2  

        The index i is referred  to as an operational index. It can be replaced with any 

other letter                                                   

                                         Ô Ô
= =

=
n

i

n

k

ki

1 1

aa   

 

Definition. The element of product of infinite number of the sets which is 

equal to the set R of real numbers is referred  to as number sequence. 

 ( b1, b2, b3, . . . , bn, . . . ) Í R³R³R³ . . . ³R³. . . . 
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CHAPTER 2 

 

FUNCTIONS, MAPPINGS 

Ä1. FUNCTIONS 

  

  

  

Let there is the set D named a definitional domain. And let there is the set ɽ named 

range of values. 

Definition. Conformity which refers  each element ʭÍD to some element ʫÍɽ,  

is called a mapping D into ɽ. 

  The element ʭÍD  (a prototype of ʫ) is referred  to as variables or argument, 

the element ʫÍɽ is referred  to as value or direct image. 

 Mapping is called also a function, it is usually designated by letters f, y, j  

and it is written down ʫ = f(ʭ). Designation ʭ­ f(ʭ) also is used, which is read as:  the 

element ʭ corresponds to the element f (ʭ). There is also a designation f:D­ɽ,  which 

is read: f is a mapping of the set D into the set  ɽ. Also we can say, that f  is a func-

tion of variable ʭ with values in ɽ or that ʫ=f (x)  is a direct image of the element ʭ at 

mapping f (or by means of f). 

 It is necessary to distinguish precisely the variable ʭ which is a member of the 

set D, value of function f (ʭ) which is a member of the set ɽ, and operation f which 

represents a category which is distinct from two previous ones. In the given definition 

of a function, two aspects are essential: first, indication of the set D for members ʭ 

(i.e. a function domain) and, second, an establishment of a rule or the law of corre-

spondence f between members ʭÍD и ʫÍɽ.  The range of values possessed by func-

tion f (ʭ), which is usually  a subset of the set ɽ of function domain, usually is not  

indicated, as the law of correspondence already defines this subset. The range of val-

ues possessed by function or f (D), or ɽ (f) is designated;  

f(D) = ɽ(f)={  f (x) | ʭÍD } Ë E 
 

and it is referred  to as image of set D at the mapping f or simply image of mapping f. 

So, at the mapping f: D­E  not all members уÍɽ should be images of any ʭÍD. 

 

 

1.1. Identical mapping 

 

If  ɽ = D, then  f defines the mapping D into (or onto) itself.  

Definition. Mapping which puts any member ʭÍD in conformity with the same 

member, is a mapping D onto D, named identical mapping, and designated ʝ, i.e. ʝ: 

D­D and ʝ(ʭ) = ʭ," ʭÍD.   
 
 

 

1.2. Function (mapping) graph  
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Definition. Let f there is a mapping of the set D into the set ɽ. The set of the 

ordered couples (ʭ, f (ʭ)), where ʭÍD, and f(ʭ)Íɽ, which are a subset of the product 

D³ɽ  is referred  to as the graph of function f. 

  Let’s consider it by the example of point sets (fig. 1.8) 
 

 

 

 

 

 

 

 

 

     

The set of points of the shaded part of a plane makes the set D³ɽ.  A line  

is a subset of couples (ʭ, f (ʭ)) - the graph of function f. Letôs note, that each value of 

argument ʭ corresponds only  one point (x, f (x)), belonging to the graph of function f. 

 

1.3. Sequence of set members 

  Let’ take as D the set N of natural numbers, and as ɽ - any set. 

Definition 1. Mapping f  of the set N  into the set ɽ is referred  to as sequence 

of members from ɽ. 

 Thus, the sequence f connects each natural number n with some member ʫ 

from ɽ, which is usually designated yn or fn,  yn, instead of f (n), and n is called an in-

dex. The sequence will be frequently designated f = {  f1, f2, . . . fn, . . . or in abridged 

form f = { fn} , , and the member fn= ʫn from ɽ we shall name a member with an index 

n (or n-th member) of the sequence f. 

 

 The mapping (sequence) f can not be unequivocal: the same member from ɽ 

can serve as image of many various numbers from N. Therefore we should not con-

fuse expression “ sequence f = { fn}” with expression “range of sequence f ”. The 

range of the sequence { fn}  can consist only of one member ʫ = ʘ from ɽ at = and, 

such sequences refer to as constant sequences and these are designated {ʘ} , i.e. fn = 

ʘ, " nÍN. 

Definition 2. Two sequences { fn}  and  {Yn}  from  ɽ { fn} are equal, if  fn = Yn 

at all nÍN. 

  We should not confuse equality of two sequences with equality of ranges of 

these sequences. So, we shall consider sequence { fn} ,  determined by means of f2ʨ= 0, 

f2ʨ+1=1, where ʨÍN, i.е. fn= 0,, if n –is even, and  fn =1, if n – is odd, and sequence 

{Yn}, determined as Y2ʨ  = 1, Y2ʨ +1 = 0.. These sequences represent mapping of the 

set N into ɽ = Z0; range of these two sequences is the same; it consists of two mem-

bers - 0 and 1; the sequences {fn} and {Yn} are not equal. 

  Using concept of function for numerical sequence (Chapter 1, § 2, item 2.4.), 

we can give following definition. 
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                  Definition 3. Mapping f of the set N of natural numbers into the set 

R of real numbers is referred  to as numerical sequence. 

For example, the mapping  

                                                f : n ­ fn =  ,
3

172 2

+

-

n

n
  

Where nÍN  is a numerical sequence, and it is written down { fn}  =  
3

172 2

+

-

n

n
  .  

 

  The given numerical sequence is sequenced in such a manner that with index 

of the n-th member of sequence{fn} we can define also numerical value fn  of this 

member. For example, 9-th member of the specified sequence is equal to  

 

 
 

 We also shall consider such preset numerical sequences below.                                                                       

                                                

Definition 4. Numerical sequence f : n ­ an= ʘ1+ (n-1)d,  where ʘ1ÍR and is 

referred  to as an arithmetical progression. The number d is referred  to as a differ-

ence of an arithmetical progression. 

 

Definition 5. Numerical sequence f : n ­ an=  a1 g
n-1

,  where a1ÍR and gÍR  is 

referred  to as a geometrical progression. The number g is referred  to as a denomi-

nator of a geometrical progression. 

 
 

 

 
     

Ä2. TYPES OF MAPPINGS 

 

  Lets’ consider the mapping f of the set D into the set E. set of all images f (ʭ), 

where ʭÍD  at the mapping f : D ­ɽ forms a subset in the set ɽ and as noted above, 

this subset is designated f(D). Then f(D)={f(ʭ)| ʭÍD}Ë ɽ. 

 

Definition 1. If  f (D) =ɽ i.e. when any member from ɽ serves as image even of  

one member from D,  mapping is referred  to as superposition (surjective) , and we 

can say that f  is the mapping D onto ɽ. 

  And so, if " yÍɽ Ý y = f(ʭ), where ʭÍD then f – is superposition, and ɽ = f 

(D). 

Definition 2. Mapping at which different members of set D have various imag-

es, is referred  to as a nesting (injective), i.e. if ʭ1 ̧   ʭ2, then   f(ʭ1)  ̧ f(ʭ2). 

 

9
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   2.1. Biunique mapping 

 

Definition. Mapping which is surjective and injective is referred to as biunique 

mapping. In other words: any member ʭÍD has as the image some unique member y 

= f(ʭ)Íɽ, and any member yÍɽ  has a prototype some unique member ʭÍD. 

 For biunique mapping the operation, which is inverse to f, is mapping ɽ oto D 

as for "yÍɽ the image is the unique member ʭÍD. Such mapping is referred to as an 

inverse mapping  to f and it is designated f
- -1

. 
 

  Thus, the distinctive feature of biunique mapping is existence of an inverse 

mapping for it. 

 

 For example, mapping f: f: ʭ ­ y = ʭ
3 
, where ʭÍR  is mapping R onto R and it 

is biunique mapping. Inverse mapping for it will be f
- -1

:y­ ʭ = 3 ʫ, where yÍR.  

Mapping ʭ ­ ʭ
2
 is mapping R into R and it is not biunique. As not any member yÍR 

is an image of some member ʭÍR,  and that member yÍR which is an image, is the 

image of not a unique member ʭÍR: y = -5  is not an image "ʭÍR, and y = 4 is an 

image for ʭ = 2 and ʭ =-2. Therefore operation ʫʭʫ °=­ , which is inverse to map-

ping  ʭ ­ y = ʭ
2
 ,  is not a mapping. 

 

2.2. Countable sets 

 

 

Definition 1. If for sets D and ɽ there is even one biunique mapping D onto ɽ 

so we can say, that D and ɽ have identical potency and also, that such sets are equiv-

alent. 

  The potency concept serves as generalization of usual concept of the counting. 

Actually, the counting consists in an establishment of biunique conformity between 

set of objects and some finite set of successive integers, starting with one. 

The potency concept allows to give the exact meaning for the concept of the set hav-

ing infinite  number of members. Such set will be determined by means of the follow-

ing property: there is even one subset distinct from all set and having with it  identi-

cal potency. So, let N there be a set of natural numbers; the set of even numbers con-

stitute a part of the set N which is distinct from N. But conformity n ­ 2n is biu-

nique; so, these two sets have identical potency, so  N  is infinite. 

Definition 2. Set ɽ is referred to as countable set  if it has the same potency as 

the set N has. 

  It means, that there is a biunique mapping f of the set N onto ɽ, i.e. anyone 

nÍN  can be put in conformity with one and only one such member ʭÍɽ, that ʭ = 

f(n), and n = f 
--1

(ʭ). Usually the member from ɽ, corresponding to n, is designated 

through ʭn, and n is referred  as an index. So, the countable set is the set all members 

of which can be given natural indexes. We shall notice, however, that the opposite is 

not true; the member set of the sequence can not be countable, but it can be finite. So, 
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the sequence determined by means ʭn = 1 at any n, forms the set consisting of a 

unique member 1 so, this set is finite and thereby it cannot be set of the same potency 

with N. 

   

An example of countable set. Set N 
/    

of even numbers is countable: actually, map-

ping n ­ 2n  is biunique mapping N onto N 
/
.   

The theorem. Product of finite number of finite or countable sets is finite or 

countable. 

  Let’s accept this theorem without the proving. 

Corollary fact .  Set Q of all rational numbers is countable. Set R of all real numbers - 

is uncountable. 
 

 

 

2.3. Finite set permutation 

 

 Definition 1. Any biunique mapping of the set D onto itself is referred to as 

permutation  of the set D.  

  Let D be a finite set from n members D = {ʘ1. . . ʘn} = {ai}, where i =  1, 2,  . 

. .  n.  Mapping f is permutation for the set D, if f( ai ) = aj,  where aiÍD  and  ajÍD, i 

= 1, 2, . . . n, j = 1, 2, . . . n. If i = j, then  f (ai ) = ai and there is identical mapping. (f 

= ʝ).  Thus, identical mapping is always permutation. 

  Number of various permutations of the set D from n members is equal to n!  (n  

factorial). n! = 1 Ā 2 Ā 3 Ā  . . .  Ā n -  is the product of  n successive natural numbers, 

starting with one. 

 

 

 

   Definition 2 .Permutation in which places only two members of set are 

changed, is referred to as  transposition. 

              a1, a2, . . . ,ai, . . .  aj, . . ., an 

tij  =  

             a1, a2, . . . ,aj, . . .  ai, . . ., an       . 

 

  Any permutation can be obtained from the basic permutation by successive 

transpositions. The choice of the basic permutation is completely arbitrary. For defi-

niteness we shall name the basic permutation a1, a2,. . ., an  and we shall consider ar-

bitrary permutation  f this set ʘi¡ = f (ai ), i = 1, 2, . . . n, but  ʘi¡   is one of members 

a1, a2,. . ., an  and so ʘi¡ = ima , where  m1, m2, . . . , mn - values of some set permuta-

tion 1, 2... n, the first n natural numbers. Thus, the following two permutations are 

equivalent to:        
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If into the permutation m1, ........ mn  there will be such couple ( mj, mi ),, that i> j, 

and>j, ʘ mi< mj, we can say that  such couple forms an inversion 

               Definition 3. The general number of the inversions formed by every 

possible couple of permutation m1, m2,  .  . . mn, is referred  to as number of inversions 

of this permutation. 

  Permutation  f is referred  to as even permutation,  if  number of its 

inversionsn( f)  is even otherwise it is referred  to as odd permutation. 

  For example, in the permutation                               

                                                                                                                                                                                                     

                             öö
÷

õ
ææ
ç

å
=

 2 7 4 6 5 1 3

 7 6 5 4 3 2 1
f                                                                  

number of inversions  is equal to: (2);  (0) ;  (2) ;  (2) ;  (1) ;  (1)  - general number of 

inversions  n( f) =8. The permutation  f  is even. 

   

The theorem. At transposition the permutation evenness changes, i.e. transpo-

sition  - is an odd permutation. 

  The proof.   

 

                               ( ) öö
÷

õ
ææ
ç

å
=

nij

nji
ji
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,

222

322
t      

  

n ( t ( i, j)) = (j - i ) + (j - i - 1) = 2(j - i ) - 1 – odd number. 

 

  

  Here: (j - i ) –is number of inversions for number j after it was permuted; (j - i 

- 1)  -  is number of inversions for all numbers located after j and before i. For all oth-

er numbers the number of inversions has not changed. 

  

 

 

  Ä 3.  COMPLEX FUNCTION. INVERSE MAPPING   
 

Definition 1. Let f there is a mapping of the set D onto the set ɽ (i.e. f (D) = 

ɽ), and g - mapping of the set  ɽ into the set G. And let ʭÍD, then y = f(ʭ)Íɽ,  also it 

is possible to consider member z = g (ʫ) which belongs to G. Thus, each ʭÍD corre-

sponds with z = g[ f(ʭ)]  from G and thereby mapping of the set D into G is deter-

mined, which is named complex function, or a composition (superposition) of map-

ping f onto g and it is designated g0 f  (here it is read from right to left, instead of from  

left to right since g0 f is g[ f(ʭ)]), g - is referred  to as external function, and f ï inter-

nal function. 
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Example. Let there be  f: ʭ ­ ʫ = f(ʭ) = 2
ʭ
,   where ʭÍR, ʫÍR

+
.  In this case f  

is a mapping of the set R onto the set R
+
 and let g: y ­ z = g(y) = 5 - 

ʫ

3
, where zÍR,  

and, hence, g is mapping of R
+
 into  R.   Then g0 f: ʭ ­ z =  =g[ f(ʭ)]  = 5 –  

X

X

-Ö-= 235
2

3
и g0 f : R­ R.           

                                                      

  

Operation of composition of mappings (0 ) is  generally non-commutative: g0 f  ̧f0 g 

and f0 g can not make sense, as f  is a mapping  of D onto ɽ, and g – is a mapping of ɽ 

into G. 

  Contrariwise, it is associative: if h  is a mapping of G into ʅ, then  h0 (g0 f) = 

(h0g)0 f. Let f(ʭ) = ʫ,  g(ʫ) = z,  h(z) = w then (g0 f) (ʭ) = g(ʫ) =   = z and [ h0(g0 f)] (ʭ) 

= h(z) = w ; just as (h0g)0 f (ʭ) = [(h 0 g) (y)] = h(z) = w. 

  Now with the help of a composition of mappings we shall define inverse map-

ping f
- -1

 to the mapping  f. 

 

 

 

Definition 2. Let mappings f be given: f : D ­ɽ and y : ɽ ­ D.. Mapping y is 

referred  to as the inverse mapping to f and it is designatedy = f 
--1

 , if   y0 f = f0 y = ʝ, 

where ʝ -  is identical mapping: ʝ (ʭ) = ʭ. 

  As it was mentioned above, inverse mapping exists, if f ï is a biunique map-

ping. The inverse proposition is true - if  f has inverse mapping f 
--1

 ,  so this is biu-

nique mapping. 
 

 

 

 

Ä 4. MAPPINGS OF SETS R, R³R ʠ RʭRʭR ONTO 

POINT SETS OF THE GEOMETRICAL  

SPACE 

 

4.1 Biunique mapping of the set R of real numbers  

onto set of points of the coordinate axis 

Let's take a straight line and set on it a positive direction (usually it is shown 

with an arrow). Then the opposite direction will be negative. Such directed straight 

line is referred  to as an axis. If we chose on the axis  any reference point ʆ  and 

scale segment  ʆɽ,  such axis is referred  to as  coordinate or number axis. The point 

ʆ  is referred  to as the origin of coordinates. Coordinate axes usually are designated  

as x, y, z or ʆʭ, Oʫ, Oz.  

Let's choose on an axis ʆʭ  a point M and define its position. For this purpose 

letôs measure the length of segment OM by scale segment ʆɽ. The length of a scale 

segment is accepted as equal to one ʆɽ=1. We shall obtain an abstract number aÍ +

0R  
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which will be rational if scale unit and the given segment are commensurable, andit 

will be irrational if they are incommensurable. 

 

Definition. Coordinate of a point M. on a number axis is the number ʭÍR 

and  equal to length of a segment ʆʄ ʭ = a,  if the point  M is located in a positive 

direction from the origin of coordinates and negative ʭ = -a,  if the point is located in 

a negative direction from the origin of coordinates. The coordinate of the origin of 

coordinates is considered to be zero. That fact, that ʭ is coordinate of  point  M, is 

written down M (ʭ). 

 In this case between set R of real numbers and set of points of a coordinate axis 

ʆʭ it is possible to establish conformity f:ʭ ­ ʄ(ʭ) – it  is a conformity f will be biu-

nique mapping. Each point  M of a coordinate axis Ox corresponds to a unique real 

number ʭ from R and on the contrary,  each real number ʭ from R corresponds to only 

one certain point  M on a coordinate axis Oh. Thus, the set R and point set of a 

straight line have identical potency and, hence, they are equivalent. Mapping f here is 

understood as a way of definition of coordinate of a point of M on a coordinate axis 

Ox. 

 

 

4.2 Biunique mapping of set RĬR onto set of points of the coordinate 

plane 
 

Let two intersected coordinate axes be given on a plane and their sequence on a 

plane be specified, for example, the first axis ʭ, and the second – y. Such axes refer to 

as  ordered axes. The intersection point of axes O is taken as origin of both axes of 

coordinates. Scale segments at these axes can be various.  

 

 

 

An angle two ordered axes ʭ and y is an angle at which it is necessary to turn 

an axis ʭ to y so that directions of both axes coincide. If turn is made counter-

clockwise the angle is considered to be positive and if turn is made clockwise – the 

angle is considered to be negative. The angler between axes is defined ambiguously. 

If we designate the least angle between axes through j, then the angle j+2pʢ, where 

ʢÍZ, also will be an angle between these axes. If it is necessary to determine and an-

gle unambiguously we bring restrictions, considering, for example, 0 ¢ j < 2p  or  -p 

<  j ¢ p . 
  
Definition 1. Two ordered coordinate axes intersected with an angle j  in a 

point accepted as origin of both axes, make the general Cartesian coordinate system 

on a plane (fig. 1.9, ʘ). 

The first axis Ox is referred to as an abscissa axis; the second ʆʫ - an ordinate 

axis. The plane is referred to as coordinate plane  and it is designated ʭʆʫ. 
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Definition 2. The ordered set of two mutually perpendicular axes of coordi-

nates ( j = ° p/2 )  with equal scale segments pieces ʆɽ1 = ʆɽ2 = ʆɽ  and with the 

general origin of coordinates Ot on each axis is referred  to as the Cartesian rectan-

gular system of coordinates on a plane. 

  If  j = + p/2, the system of coordinates is referred to as right (fig. 1.9, b) if j = 

-p/2 the system is referred  to as left (fig. 1.9, c). 

 

 

        a)                                                         b)                                           c) 

 

 

       E2          j                    E         j=+p/2                 j= -p/2 
                                                                                                                                       E 
                   E1                                                              E                                                           E 

                                                                                                                          

                                                             

Fig. 1.9 

  

   Further we shall use only the right Cartesian rectangular system of coordi-

nates. 

  We shall take in a coordinate plane xʆy an any point M and we shall draw 

through at two straight lines parallel to axes ʆx and ʆy (fig. 1.10). Such operation is 

referred to as parallel projection. Intersection points of these straight lines with coor-

dinate axes we shall designate ʄ1 and ʄ2, and their coordinates - accordingly through 

ʭ and y. Points ʄ1(ʭ) and ʄ2(ʫ)  refer to  projections of a point  M to corresponding 

coordinate axes (fig. 1.10). 

 
 

 

           ʫ                                                                                            
                                                                                             

 

                                                                                    

                                                                                                

                                                                                            

        ʄ2(ʫ)                                ʄ(ʭ,ʫ)   
 

 

  

              ɽ 

  

                0        ɽ                       ʄ1(ʭ)                     ʭ 
 

Fig. 1. 10. 
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As a result of projection operation the point M is put into conformity with the 

ordered couple of numbers (ʭ, ʫ), where ʭÍR and ʫÍR, hence, (ʭ,ʫ)ÍR³R.. These 

numbers are located in sequence of coordinate axes, and refer to as the Cartesian co-

ordinates of point M on a plane and these are written down M (ʭ, ʫ).  

 It is easy to see, that each point M located in a coordinate plane xʆy, corre-

sponds to the unique ordered couple of numbers (ʭ,ʫ)ÍR³R.. On the contrary, each 

set ordered couple of numbers (ʭ,ʫ)ÍR³R  corresponds to unique point M in a coordi-

nate plane xOy. To define it, it is necessary to draw straight lines through points ʄ1(ʭ) 

и ʄ2(ʫ) which are  parallel to coordinate axes. The intersection point is the desired 

point  M (ʭ, ʫ). 

  

Thus, between the set R³R of the ordered couples of  real numbers and point set of 

the coordinate plane xOy it is set up a biunique conformity (ʭ,ʫ) ­ʄ(ʭ,ʫ),  so, the set 

R³R  and set of points of a plane are equivalent sets. 
 

 

 

 

4.3. Biunique mapping of set RĬRĬR onto set of points of geometrical space in 

chosen system of coordinates 

 

Let's take three ordered coordinate axes ʭ, y, z which do not lay in one plane 

and are intersected in the point O. Lets take this point as the origin for all three coor-

dinate axes. Such ordered set of coordinate axes is referred to as the general Carte-

sian system of coordinates in geometrical space. 

  Definition. The ordered three in pairs perpendicular axes of coordinates with 

the general origin of coordinates O on each of them and with same scale segment 

ʆɽ=1 for each coordinate axis, is referred  to as  

The Cartesian rectangular system of coordinates in geometrical space (fig. 1.11). 

 

 
 
 

 

                                                                         M(x,y,z) 

 

 

        M3(z) 

                                                                                                              E        E 

               E     E       M2(y) 

                                                                                                         E 

 

                         E                           M 1(x) 
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Fig.1.11,а                                                           Fig.1.11,b 

 

 

 

 

The first axis is referred to as an axis Ox, or an abscissa axis, the second - axis ʆʫ, or 

an ordinate axis, the third - axis Oz, or an applicate axis. The plane which is passing 

through two out of three axes Oh, ʆʫ, Oz is referred to as a coordinate plane; there 

are three coordinate planes; they are designated as: ʭʆʫ, yOz and zOx.  

The ordered triple of coordinate axes which are not laying in one plane, is re-

ferred to right if from the end of a positive direction of axis OZ  the shortest turn from 

the axis ʆʍ  to the axis ʆY  is seen counter-clockwise (fig. 1.11, ʘ). Otherwise the sys-

tem of coordinates is referred to left (fig. 1.11, b). We shall use only the right system 

of coordinates. 

Let M – be any point of space. Let’s draw through it the planes parallel to the coordi-

nate planes (fig. 1.11, ʘ). Intersection points of planes with corresponding coordinate 

axes we shall designate through M1, M2, M3,   and their coordinates - ʭ, ʫ, z. . Such or-

dered number triple (ʭ, y, z) Í R³R³R  is named the Cartesian coordinates of a point  

M in geometrical space, and points M1(ʭ), M2(ʫ), M3(z)  - are named the projections of 

a point  M to coordinate axes and it is write down as  M (x, y, z). 

 It is obviously that each point of geometrical space is correspondent in the Car-

tesian system of coordinates to the unique ordered number triple. It is valid also the 

converse proposition: each ordered number triple in the Cartesian system of coordi-

nates is correspondent to the unique point of space. To find it, we need to draw planes 

through points M1(ʭ), M2(ʫ), M3(z) which are parallel to corresponding coordinate 

planes. Straight intersection of these planes are intersected in a point which is the de-

sired M (x, y, z). 

Thus, in the Cartesian system of coordinates it is  established the biunique mapping 

of set R³R³R of the ordered triple of real numbers onto the set of points of geomet-

rical space: (ʭ, ʫ, z) ­ M(x,y,z),  i.e. we can say, that the set R³R³R and the set of 

points of geometrical space are equivalent. This mapping is made by means of the 

Cartesian system of coordinates and a way of definition of the point coordinates. 

 

                                         

In case of product R³R³R³ . . .³R,, with number of factors n >3,  point sets in 

the geometrical space, which are equivalent to these sets, do not exist, in view of fact 

that we have no intuition of space with number of measurements, more than three. 

However, if we want to distribute geometrical methods also onto products of sets R, 

by number which is more than tree, we introduce the concept n - dimensional arith-

metic space R 
n
  and at n >3.   
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CHAPTER 3 

 

ARITHMETICAL SPACE  R
n 

 

  

A point  M of arithmetic space is the ordered set from n real numbers ( ʭ1, ʭ2, . . . ʭn ),   

which are called the coordinates of the point  M, i.e. M = ʄ =  (ʭ1, ʭ2, . . . ʭn) (или  ʄ 

(ʭ1, ʭ2, . . . ʭn)).  The arithmetic space makes  a set of all conceivable points M. The 

number n of coordinates of the point M, determined by quantity of factors in product 

RʭRʭRʭ . . .ʭR , is referred  to as  dimension of arithmetic space. It is designated as n 

- dimensional arithmetic space R
n
. 

 

For example: one-dimensional arithmetic space R
1
.  A point M of this space is the 

number ʭÍR, i.е.  M = (ʭ). In geometrical space, the space R.
1
 is mapped by a straight 

line; bidimentional space R
2
. A point M of this space is the ordered couple of num-

bers (ʭ1, ʭ2)ÍR³R, i.е. ʄ = (ʭ1, ʭ2).  In geometrical space, the space R
2
 is mapped by 

a plane; three-dimensional space R
3
  is mapped on all geometrical space and  point ʄ 
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= (ʭ1, ʭ2, ʭ3)ÍRʭRʭR.  The further conformity of arithmetic space R
n
,  which can not 

have dimension n >3  with geometrical space, also these spaces have no geometric vi-

zualization. 

 

  

Ä1. EUCLIDEAN SPACE  

  

In arithmetic space R
n
  by analogy with geometrical space it is introduced the 

concept of "distance" between points ʄ1 = (ʭ1,ʭ2, . . . , ʭn) and ʄ2 = (ʫ1,ʫ2, . . . , ʫn), 

designated d (ʄ1, ʄ2).  If this "distance" is defined by the formula 

                           d (ʄ1, ʄ2) = Õ ( ʫ1 ïʭ1 )
2
 + ( ʫ2 ïʭ2 )

2 
+ . . . ( ʫn ïʭn )

2
 ,                (3.1) 

                                               

so such arithmetic space is referred  to as Euclidean space. In this case for n ¢ 3  

"distance" between points in arithmetic space coincides with distance between points 

in geometrical space. 

 

 In n – dimensional Euclidean arithmetic space, as well as in geometrical space, 

we can introduce the concepts of "line", "figure", "body", etc. 

For example. 1. Set of points M =(ʭ1,ʭ2, . . . , ʭn),  which coordinates inde-

pendently one from another satisfy to inequalities 

ʘ1 ¢ ʭ1 ¢ ʚ1, ʘ2 ¢ ʭ2 ¢ ʚ2 , . . ., ʘn ¢ ʭn ¢ ʚn, 
 

is referred to as closed n - dimensional rectangular "parallelepiped" and it is desig-

nated as following:  
 

         [ ʘ1, ʚ1;  ʘ2, ʚ2;  .  .  . ; ʘn, ʚn ] = {  M( ʭ1,ʭ2, . . . , ʭn )| ʘi  ¢ ʭi ¢ ʚi, i = 1, 2, . . . n }  

 

If there the strict inequality ʘi  < ʭi < ʚi,,  "parallelepiped" is referred  to open. 
  

At n ¢ 3   n-dimensional rectangular "parallelepiped" has real geometrical rep-

resentations. If n = 1 and ʘ ¢ ʭ ¢ ʚ, such closed one-dimensional rectangular "parallel-

epiped" is referred to as a segment, it is designated [ ʘ, ʚ] and it is geometrically rep-

resented by a segment. Open one-dimensional "parallelepiped" (ʘ  < ʭ < ʚ), , is re-

ferred  to as an interval and it is designated (ʘ,  ʚ). 
  
In the case n = 2 closed bidimentional rectangular "parallelepiped" 

(ʘ ¢ ʭ ¢ ʚ, c¢ y ¢ d)  it is geometrically represented by a rectangular with the sides ʚ ï 

a  and  d - c .  

Three-dimensional (n=3) closed rectangular "parallelepiped" ʘ ¢ ʭ ¢ ʚ, c¢ y ¢ d, f ¢ z 

¢ l is geometrically represented by an ordinary rectangular parallelepiped with the 

sides ʚ - ʘ , d ï c  and  l - f. 

2. Set of points M = ( ʭ1,ʭ2, . . . , ʭn ),  determined by an inequality 

                  ( ʭ1 ï ʫ1
0
)
2
 + ( ʭ2 ï ʫ2

0
)
2
 + .  .  . + ( ʭn ï ʫn

0
)
2
  ¢ r 2

 ( or < r 
2
 ) ,  
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where ʄ0 = ( ʫ1
0
, ʫ2

0
, . . . , ʫn

0
 )  is a constant point, and r is the positive constant 

number, forms closed (or opened) n - dimensional "sphere" with radius r, with the 

center in point ʄ0. In other words, "sphere" is a set of points M, which distance from 

some constant point ʄ0  does not surpass (or less) r. It is clear, that this "sphere" if n 

=1 is correspondent to segment, if  n =2 - a circle, and if  n =3 - an ordinary sphere. 

  

Open "sphere" of any radius r> 0 with the center in point ʄ0 ( ʫ1
0
, ʫ2

0
, . . . , ʫn

0
 ) can 

be considered also as the vicinity of radius r or r - vicinity of this point. At n=1 the 

vicinity of a point x0  of radius r represents an interval with the center in this point 

and it is designated (x0-r, x0+r). 
  
  All stated in this paragraph should be considered as an establishment only the 

certain geometrical language; it is not connected (at n> 3) with any real geometrical 

representations, therefore all geometrical terms which were used in the sense which is 

distinct from usual, we placed so-called: "distance", “ a rectangular parallelepiped ”, 

"sphere". Henceforth we will do it any more. 

 

 

Ä2. THE BASIC PROPERTIES OF THE ARITHMETIC SPACE R
1
 

 

 That fact, that between the set R of real numbers (space R1) and the point set of 

coordinate axis is established biunique conformity (Chapter.2, §4, the item 4.1.) ena-

bles with sufficient presentation to illustrate the basic properties of real number set. 
  

 

  

2.1. Orderliness property   

 
  

  For any two real numbers ʭ1 and ʭ2  there is one, and only one of ratios:  

ʘ) ʭ1 = ʭ2 - points ʄ1(ʭ1) and ʄ2(ʭ2) coincide on a coordinate axis; 

ʙ) ʭ1 > ʭ2 - point ʄ1(ʭ1) is located to the right of points   ʄ2(ʭ2) on a coordinate 

axis; 

ʚ) ʭ1 < ʭ2 – point  ʄ1(ʭ1)  is located to the left of points ʄ2(ʭ2) on a coordinate 

axis.  
  

  Signs > (greater than) and  < ( less than ) have transitive property . It follows 

from  ʭ1 > ʭ2, ʭ2 > ʭ3 , that ʭ1 > ʭ3 and from ʭ1 < ʭ2, ʭ2 < ʭ3 Ý ʭ1 < ʭ3. 
 

2.2. Density property  

However what may be two real numbers  ʭ1 and ʭ2,  at that ʭ2 > ʭ1  there always 

will be a number ʭ3, , put between them: ʭ2 > ʭ3 > ʭ1. 
  There is an uncountable set of numbers x3, moreover, among them there is also 

an uncountable set of rational numbers. Actually, points ʄ1(ʭ1) and ʄ2(ʭ2) are the 

segment ends ʄ1 ʄ2,,  which  length d(ʄ1 ʄ2)  is distinct from zero, and according to 

the formula (3.1.) it is equal to ʭ2 - ʭ1.  Letôs choose on a coordinate axis any point ʄ3 
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which coordinate we shall designate ʭ3. We shall demand the point ʄ3(ʭ3)  not to co-

incide with point ʄ2(ʭ2)  and we shall consider the ratio      

       
d M M

d M M

x x

x x

( )

( )

1 3

3 2

3 1

2 3

=
-

-
                                                                                

(3.2) 

                                                                     

If this ratio equal to any positive number l from R
+
, then it follows from orderliness 

property of the set R,  that point ʄ3(ʭ3) is inside the segment ʄ1ʄ2  and, means, 

ʭ1<ʭ3<ʭ2 (provided that ʭ2> ʭ1). 

  Thus, for all lÍ R
+
 , the point ʄ3  with coordinate 

 

                              ʭ
ʭ ʭ

3

1 2

1
=
+

+

l

l
                                                                            (3.3)         

is inside the segment ʄ1ʄ2, i.е. ʭ1<ʭ3<ʭ2 (if  ʭ2> ʭ1) piece ʄ1ʄ2, i.e. ʭ1 <ʭ3 <ʭ2 (if  ʭ2>  

ʭ1) and there is an uncountable set of such points, sincel - is any number from  R
+
.  

  The formula (3.3) which is obtained from (3.2.) provided that l=
-

-

32

13

xx

xx
, is 

referred to as the formula of segment  division in the given ratio. 

 

2.3. Continuity property  

 

  Let’s partite the set R into two nonempty sets ʈ , and ʈ
1
 and let the following 

conditions be satisfied: 

1. Each real number gets into one and only in one of the sets ʈ, ʈ
1
.   

2. Each number a  of the set ʈ is less than each number a1 
of the set ʈ

1
. 

  Such partition is referred to as section. Set ʈ is referred to as the lower class 

of a section, set ʈ
1
 - the upper class of a section. The section is designated ʈ|ʈ1

.  For 

section in the field of real numbers the following theorem is valid. 

 The theorem. For any section ʈ|ʈ1
 in the field of real numbers there is real 

number b,   which makes this section. This number b,  will be: 

1) either  the greatest in lower class ʈ (and then there is no the least one in upper 

class ʈ
1
  there is no the least), 

2) or the least in top class ʈ
1
  (then there is no the greatest one in bottom class 

ʈ). 

  Really, since ʭ­M(ʭ)  is a biunique mapping, and there is space between the 

points on a coordinate axis which are images of real numbers and thus the section al-

ways falls at a point of a coordinate axis which serves as image of real number b 
which is making a section of the set R. 
 

2.4. Absolute value 
 

 Let ʭ be some number from R. For it only one case exists from three cases ʭ 

<0, ʭ=0, ʭ> 0. Now let’s define mapping  ʭ­ f(x),  as follows. We shall put f(x)=ʭ,  
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if  x²0  and  f(x)= -ʭ, if ʭ< 0.. Then mapping (function) ʭ­ f(x), is referred to as abso-

lute value or the module of number ʭ and f (x) it  is designated |ʭ|, i.е. f(x) = | ʭ |. 

Geometrically an absolute value of the real number ʭ is equal to distance from the 

origin of coordinates 0 up to the point  M mapping the given number ʭ on a coordi-

nate axis, i.e. | ʭ | = 0ʄ (Chapter.2,Ä4.item.4.1).  

  Absolute value has the following three properties: however  that numbers  

bÍRā gÍR, may be, it always is 

 

1.  |b | ² 0,  и |b | = 0 Ú b = 0; 

2.  |b g | = |b | |g |; 

3.  |b+g | ¢  |b | + |g | 
  

Last inequality is referred to as an inequality of a triangle. 

 

Ä3. MAPPING  R
n
 INTO  R;  

NUMERICAL FUNCTIONS OF REAL VAR IABLES  

Let’s consider the set D of points ʄ= (ʭ1, ʭ2, . . ., ʭn) from R
n
.  If on this set D func-

tion f with value in R is determined, i.e. "MÍD is put in conformity some number 

yÍR, such function is referred to as numerical function of real variables and it is 

designated y = f(ʭ1, ʭ2, . . . ʭn). 

If  D Ë R, function f, determined on D, is referred to as numerical function of one re-

al variable. In this case the variable ʭ and the value y = f (x) of function f belongs to 

same space R
1
. The graph of such function – is a set of points in space R

2
 with coor-

dinates (ʭ, f (ʭ)). In geometrical space  it is a line in coordinate plane ʭʆʫ.   

Let's note also, that the sequence of real numbers (Chapter 2, Ä1.item.1.3) is  a 

sequence of values of numerical function determined on the set N, and, hence, at 

which the role of performs a natural number n, taken increasing order. 

  

When D Ë R
2
, function f, determined on D, is referred to as numerical function of 

two real variables. In this case variable is a point from R
2
,  i.e. the ordered couple (ʭ, 

ʫ), and value z = f (x, y)of functions f – is number from R. The graph of such function 

– is a set of points from space R
3
 with coordinates(ʭ, ʫ, f(ʭ, ʫ)):  in geometrical space 

- it is a surface. For example: z = ax + by + c - a plane; 
b

y

a

x
z

22

+= , where а >0 and b 

>0 -  an elliptic paraboloid (fig. 1.12). 

 

                                              z  

 

 

 

 

 

 

                                                                                           у      
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Fig.1.12 

 

  

Function f, determined on D Ë R
n 
( n ² 2),   is referred to as numerical function of 

many real variables. In this case value of function y from R, it is designated: ʫ = f(x1, 

x2,  .  .  . , ʭn).  For example, f(x1, x2,  .  .  . , ʭn) = ʘ1ʭ1 + + ʘ2ʭ 2+ . . . + ʘnʭn – a linear 

function.  

  The descriptive graph in geometrical space at such functions (n> 2) does not 

exist. 

 

 

EXERCISES  

1.  Represent on a plane ɸ Æ ɺ , if:  

а) { }1  ),( 22 ¢+= ʫʭʫʭʄɸ , { };  ),( 2ʭʫʫʭʄɺ ²=   

b) { }25  ),( 22 ¢+= ʫʭʫʭʄɸ , { }.4,7 ),( ¢¢= ʫʭʫʭʄɺ   

Prove that operation of intersection of sets is associative one. 

 

2.  Define all members of set ɸ³ɺ,  if  ɸ = ɺ =  {ʘ, ʚ } . 
 

3.  What from the following conformity are mappings f:R ­ R?   

 ʘ) ʭ ­ ʭ;     b) ʭ­ tg x;    c) ʭ ­ sin x. 

4.  Define set D Ë R,   so  that the following conformity are mappings  f:D­R : а) 

f(ʭ) = 
1

ʭ
;   b) f(ʭ) = ln x;    c) f(ʭ) = b ʭ,   b > 0 и b  ̧1. 

5.  Let's consider system of coordinates on a plane. Each point of a plane we shall 

put in conformity with its projection onto axis ʆʍ. Say, whether this mapping is: ʘ) 

mapping onto axis Oʭ; b) biunique mapping?  

6.  Define f(R), if  :  

    а)  f(x) = x
2
, " xÍR;  b) f (x) = (0,3)

ʭ
, " xÍR;   c) f (x) = cos x, " xÍR. 

7.  Make all mappings set A = {a, b, c} into itself and  choose among them permu-

tations of the set 

8.  Define the length of a bisector of angle A in a triangle with vertexes  ɸ(2, -1), ɺ(5, 

3), ʉ(-6, 5)   

 

  
9.  Define the number of inversions in the permutation   
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10. Say, whether the set {A
m

n
= mÍN, nÍN}  is countable?  

11. Define all points on a number axis, coordinates ʭ which satisfy to an inequali-

ty:: а) | 2ʭ-7 |< 5;   b) | ʭ
2
 - 4ʭ -5 |> ʭ2 - 4ʭ -5. 

12. Under what condition can mappings f: x­ ʫ = ʭ and  g : y ­ z = 5
y 
  form a 

complex function 
xzxfg 5:0 =­ . 

13. Define the sets D and ɽ for which the following numerical functions of one real 

variable have inverse functions:  а) ʫ = ʭ
2
;   b) ʫ = ʘ

ʭ
, ʘ> 0  и ʘ  ̧1; c) ʫ = sin x. 
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BOOK 2 

 

LINEAR ALGEBRA  

 

CHAPTER 1  
 

LAWS OF THE COMPOSITION  

 

Ä1. INTERNAL LAWS OF THE COMPOSITION  

 

 

Definition. The internal law of a composition or the algebraic operation giv-

en on the set K, is referred to as  mapping of the  product ʂĬʂ (Cartesian square) into 

K. In other words, algebraic operation is a rule, according which, the ordered couple 

(ʭ1, ʭ2 ), where ʭ1ÍK (ʭ1, ʭ2) and  ʭ2ÍK, is compared to the member ʭ3 from the same 

set K.  

  Instead of writing down a rule, by means of a functional symbol f:( x1,x2 

) ­ ʭ3 or f( x1,x2 ) = ʭ3,  some special symbols are used, namely: + for addition x1+x2 

= ʭ3,, symbol  ¶ for multiplication, ʭ1 Ö ʭ2 =  ʭ3,  designation 2

1
ʭ
ʭ = ʭ3  for power, etc. 

To have an opportunity to study the general properties inherent in all these laws, we 

shall use a uniform symbol ┬, and we shall write ʭ1 ┬ ʭ2 = ʭ3,  that verbally is ex-

pressed: х1 in a composition with х2 gives х3. 

 

 

1.1.   Properties of internal laws of the composition. 
 

Commutativity. The internal law ┬ is referred to as commutative if for any ʭ1  

and ʭ2  the condition satisfies  

    ʭ1 ┬ ʭ2 = ʭ2 ┬ ʭ1                                              (1.1) 
 

Examples. Let ʂ = Z.  Operations of addition and multiplication of integers  

are commutative, and exponentiation and subtraction – are not commutative: 

        2

1
ʭ
ʭ  ̧ 1

2
ʭ
ʭ    и  ʭ1  - x2  ̧   ʭ2 - ʭ1. 

Associativity. The internal law ┬ is referred to as associative if for any x1, x2, ʭ3  

from ʂ , the condition satisfies 

  (ʭ1 ┬ ʭ2) ┬ ʭ3 =  ʭ1 ┬ (ʭ2 ┬ ʭ3)      (1.2) 

Here it is important to observe the order of members. 

Examples. Addition and multiplication of integers are associative, and expo-

nentiation and subtraction – are not associative:  (3 - 5 ) - 2 ̧  3 - ( 5 - 2 );  (2
2
)
3
 = 64, 

but .256)2(2
3

= .  

 Neutral element. If there is such element ʝÍK, that  

    ʝ ┬ ʭ = ʭ ┬ ʝ = ʭ,       (1.3) 

whatever ʭÍK may be, so  ʝ is referred to as a neutral element  concerning operation 

┬. 
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  If the neutral element ʝ exists, it will be unique.  Since, if we can have other 

element ʝ ' we would have  ʝ' ┬ ʫ = ʫ ┬ ʝ' = ʫ  if  any ʫ. Then, having taken ʭ ┬ ʝ = ʭ  

as ʭ , an element ʝ ', we shall obtain ʝ ' ƌʝ = ʝ '. Having taken ʝ' ┬ ʫ = ʫ  as y an el-

ement ʝ, we shall also obtain  ʝ' ┬ ʝ = ʝ. . Hence, ʝ = ʝ '. 

Examples. If ʂ = N,  addition has no a neutral element, and 1-neutral element  

of multiplication. If ʂ = Z , both addition and multiplication have neutral elements, 

accordingly 0 and 1. For the law of a composition of mappings g  ̄ f,  the  identical 

mapping ē   f = f  ̄ e = f serves as  a neutral element.  

 

Symmetric elements. Let ┬ be an internal law of a composition on ʂ, which 

has a neutral element. We can say, that the element ʭ from ʂ ʭ  is symmetric to an 

element ʭ from K concerning operation ┬, if 

ʭ ┬ ʭ = ʝ                                      ( 1.4. ). 
   

If   ʭ = ʝ, it serves as a symmetric element of itself,  since ʝ ┬ ʝ = ʝ. 

If the element ʭ has the symmetric element ʭ,  and the element ʭ,  has the 

symmetric member ʭ i.e. when the condition is satisfied,  

ʭ ┬ ʭ = ʭ ┬ ʭ = ʝ                  ( 1.5 ) 

we can say, that the element ʭ is reversible concerning operation ┬. 

  If each element ʭÍK is convertible concerning operation ┬ such operation on 

this set K is referred as to reversible. 

Examples. If  ʭ  is a real number, so -ʭ  is symmetric to it concerning addition, 

and operation of addition is reversible on the set R. If, besides ʭ   ̧0, then 
1

ʭ
  is 

symmetric to ʭ concerning multiplication, and operation of multiplication also is re-

versible on the set R, but without ʭ = 0. 
 

Distributivity. If on the set K two laws of a composition is defined which are 

designated as ┬ and ┬, then the law  will refer to as  distributive  concerning the 

law  ̂, if for any x, y, z from K we have: 

                              ʭ ┬ ( ʫ  ̂z ) = ( ʭ ┬ ʫ)  ̂( ʭ ┬ z )                                     ( 1.6 ) 

Examples. Multiplication of numbers is distributive concerning addition, since  

ʭĀ( ʫ + z )=xĀy + ʭz, but addition is not distributive concerning multiplication, as 

equality ʭ +(ʫĀz) = (ʭ+ʫ) Ā( ʭ + z)  is not valid for all ʭ , ʫ, z from R. 

 Operations of association and intersection of sets also are the laws of a compo-

sition and as it is easy to show, for any ɸ, ɺ, ʉ  

 ɸ Æ (B Ç ʉ) = (ɸ Æ B) Ç (A Æ ʉ), ɸ Ç (B Æ ʉ) = (ɸ Ç B) Æ (A Ç ʉ); 
 

              Hence, each of these laws is distributive concerning another. 

 

 

1.2. The basic algebraic formations: groups, rings, fields 

 

Group. We can say, that the set K, which have the internal law ┬,  is a group if 

the law ┬ possesses the following three properties:  
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  ʘ) the law is associative; 

  b) there is a neutral element; 

  c) any element ʭÍK  has symmetric. 

  If these three properties are added the fourth property of commutativity, then 

the group is referred to as commutative or Abelian group. 

Examples. If  ʂ = N , then addition does not transform N into group since the 

last two conditions are not satisfied. If ʂ = Z , then addition transforms Z into Abeli-

an group.  

Ring. Nonempty set K , on which two algebraic operationŝ and ┬ are speci-

fied, is named a ring if the set K relative to  ̂forms the Abelian group, and the se-

cond law ┬  is associative on K and distributive relative to ̂ . 

  If the second law ┬ is commutative, then a ring is called a commutative 

ring. 

Example. The set Z is a commutative ring: the law of group (Abelian) -  is ad-

dition, the second law – is multiplication. 

Field. The ring K, possessing the same property, that the set of members from 

K, having no a neutral element of the first law, forms Abelian group concerning the 

second law, and it is referred to as a field. 

 It follows from definition of a field that it contains, at least, two neutral ele-

ments (but they belong to the different laws).  

Example. The set R of real numbers is a field (law -̂ is addition, ̂  –is  multi-

plication). 
 

 

 

                           

Ä2. EXTERNAL LAWS OF THE COMPOSITION  

 

Definition. Let there be two sets K and L; mapping of the product ʂ ³ L into ʂ  

is referred to as the external law of a composition on K. 

  An example of the set of such type is the vector space , IV chapter of the giv-

en book is devoted to its study  
                                                             

 

           

Ä3. ISOMORPHISM 

 

Definition. Let there be two various or coinciding sets K and L; and let K be 

given the internal law ┬, and L – the internal laŵ . Isomorphism of the set K onto L 

is referred to as such biunique mapping f of the set; we can say, that K and L are iso-

morphic concerning the laws ┬ and .̂ 

Examples. 1. ʂ = Z,  the law ┬ is addition; L – is the set of numbers of the 2
m
  

kind (where mÍZ), and the law  ̂-is multiplication. Mapping f: m ­2
m
    is an iso-

morphism since m +  ¡m ­   2
m + m '    

=  2
m
 Ā 2

 m '
 , i.e.  f(m + m¡') = f(m) Ā f (m¡'),  and 

the mapping is biunique, since  2
ʨ
 = 2

g
 result in  ʨ = g. 
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2. Let ʂ = R 
+
,  and the law ┬ is multiplication; let further L = R, and the 

law îs addition. Mapping ʭ ­ ln x , i.e. f( ʭ ) = ln x ,  is isomorphism, as ln (ʭ, ʫ) = 

ln ʭ + ln ʫ and besides this, mapping is biunique since ln u = ln v Ý u = v. 

Isomorphism allows to replace operation ʘ ┬ ʚ   in the set  K with following 

operations: we form members ʘ' = f(a) and  ʚ' = f(ʚ) of the sets L, and in L it is appli-

cable to them the operation ,̂ i.e. we form member ʘ'  ̂ʚ' = ʩ'; at last, we shall ob-

tain ʘ ┬ ʚ = f 
ï1 
( ʩ' ).  This process is of interest in that case when operation  ̂in L is 

more simple, than operation ┬ in ʂ. We do so when replacing by means of loga-

rithms multiplication by addition. 

When there is an isomorphism between two sets, each of them is given one or 

the several internal laws corresponding to each other at this isomorphism, these sets 

are often identified, i.e. for a designation of their members and symbols of the inter-

nal laws corresponding to each other at isomorphism, the same symbols are used. We 

shall meet an example of such identification when studying complex numbers and 

vector spaces.  
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CHAPTER 2 

 

COMPLEX NUMBERS  

 

  We shall consider the equation ʭ2 +  1 = 0. It is obvious, that any real number 

ʭÍR  is not the solution of this equation. We shall draw such field C, containing R as 

a subfield (R Ë ʉ),on which the given equation can be solved. This field is the field 

of complex numbers. 

 

Ä1. THE FIELD C OF THE COMPLEX NUMBERS  

 

Definition. The ordered couple (a, ʚ) of two real numbers, ʘÍR and ʚÍ R is re-

ferred to as complex number. Hence, z = (a, ʚ) is a member of the product RĬR or a 

point of arithmetic space R
2
. 

  We shall define on set RĬR  two internal laws - addition and multiplication - 

by means of the following rules: 

  

       z1 + z2 = ( ʘ1, ʚ1 ) + ( ʘ2, ʚ2 ) = ( ʘ1 + ʘ2, ʚ1 + ʚ2 ) 

     z1 Ā z2 = (ʘ1, ʚ1)Ā (ʘ2, ʚ2) = (ʘ1ʘ2, - ʚ1ʚ2,  ʘ1ʚ2 + ʘ2, ʚ1)                 (2.1) 

  

For z1 = z2  it is necessary and sufficiently, that ʘ1 = ʘ2 and ʚ1 = ʚ2. 

  We shall show now, that the set of complex numbers on which these two op-

erations are given, is the field C. 

  Addition on the set C: 

 1.  is associative:  z1 + (z2 + z3) = (z1 + z2 )+ z3; 
 

2.  is commutative: z1 + z2 = z2 +z1; 
  

3. has  a neutral element ʝ = (0, 0); 

4.  is invertible, i.e. each complex number (a, ʚ) has a symmetric element  

(-ʘ,-ʚ) 

  (ʘ, ʚ) + (-ʘ, -ʚ) = (0, 0) = ʝ . 

 

   

Hence, for addition the set C is Abelian group. 

  Multiplication on set C: 

       1. is associative z1Ā(z2Āz3) = (z1 Āz2 )Āz3; 
  

           2. is commutative z1 Ā z2 = z2 Ā z1; 

       3. has a neutral element ʝ = (1, 0)  

  (ʘ, ʚ) Ā (1, 0) = (ʘ Ā1 - ʚĀ0, ʘĀ0 +1Āʚ) = (ʘ, ʚ); 
 

       4. Without a neutral element ʝ = (0, 0) for addition - it is invertible 

  

                 ( ) ( )ʘʚ
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Thus, the set C  without ʝ = (0, 0) for operation of multiplication is Abelian group.  

  Multiplication is distributive concerning addition 

 [ (a1, b1) + (a2, b2)]  Å(a3, b3)  = (a1, b1) Å (a3, b3) + (a2, b2) Å (a3, b3) 

  So, all conditions are satisfied, and the set of complex numbers makes  

field C. 

  We shall prove that the plotted field meets the desired requirements. 

  1. We shall designate through D the set of couples of (a, 0 ) kind , where 

aÍR, and  DËC. We shall define how the operations (2.1) determined on C, on the 

set D function.  

 

            (a1, 0) + (a2, 0) = (a1 + a2, 0),   

   (a1, 0) Å (a2, 0) = (a1 Å a2 - 0 Å 0, a1 Å 0 + a2 Å 0) = (a1 Å a2, 0). 

   

Hence, if each number aÍR is put in conformity with (a, 0)Í D, the set D of complex 

numbers of (a, 0) kind is isomorphic concerning addition and multiplication of corre-

sponding numbers a from R. Therefore sets D and R can be identified. Thus, the first 

condition is satisfied: R Ë C. 

 

1. In field R the equation x
2 
+ 1 = 0 has no solution. We search for the solu-

tion of this equation in a field C. The real number 1 ­ (1, 0);  0 ­ (0, 0) ; x 

­ ( u, v), and the equation in it become 

     (u, v)
2 
+ (1, 0) = (0, 0). 

  

  When we executed operation of multiplication (u, v) Å (u, v) and addition  

with(1, 0), , we obtain 

      (u
2 
ïv

2 
+1, 2u v) = (0, 0). 

 

  By definition of couple equality we have u
2 
ïv

2 
+1 = 0  and 2uv = 0. From 

here u=0 (or v=0)  and  v = Ñ1 (or u
2 
= ï1,  has no solution). Hence, we obtain two 

solutions  

    ʭ1 = ( 0, 1) and  ʭ2 = ( 0, -1). 

 Couples which are solutions of the equation ʭ
2
 + 1 = 0, we designate (0, 1) = i, а (0, 

-1) = -i,  and i is called imaginary unit. 

  In this case any complex number can be written down as 

                  z = (ʘ, ʚ) = (ʘ, 0 ) + (0, ʚ) = ʘ + (0, 1)(ʚ, 0) = ʘ + iʚ,                    (2. 2) 

Where a and b – are real numbers, and i
2
 = (-i)

2
 = -1. Such form of record of com-

plex number is referred to as  algebraic. 

The number a is referred to as valid, and b - as imaginary part of number z. We des-

ignate ʘ =Rez, ʚ = Imz. If ʘ = 0, number 0 + iʚ = iʚ is referred to as  imaginary. 

Hence, in any operation of addition and multiplication it is possible to replace com-

plex numbers z with the sum ʘ + iʚ  and to make operations as with real numbers; it 

is sufficient to replace i
2
 with -1  i2  every time when i  appears with a power not less 

than 2, for example i
3
 = i

2
 Å i = - i, i

4 
= 1, i

5
 = i  etc. 
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Example.  

 

    (ʘ + iʚ)
3
 = ʘ

3
 + 3ʘ

2
iʚ +3ʘ( iʚ)

2
 + (iʚ)

3
 = ʘ

3
 + i3ʘ

2
ʚ -3ʘʚ

2
 - iʚ

3
 = ( ʘ

3
 ï3ʘʚ

2
)+ 

    + i(3a
2
ʚ-ʚ

3
).  

 

 

    

Ä2. COMPLEX CONJUGATE NUMBERS 

 

  Since (-i )
2
 = -1,  the number-i has property of number i, namely, its square is 

equal to -1.  

  Definition. The complex number z= ʘ ï iʚ  is referred to as complex conju-

gate number with number z = ʘ + iʚ, i.e. the number distinct from z only by sign of 

an imaginary part. 

Mapping z ­ z is biunique mapping of the set of complex numbers onto itself, i.e. 

permutation of this set, since if z = ʘ + iʚ,   z' = ʘ' + iʚ
'
,  the conditionz = z '  results 

in ʘ = ʘ' and ʚ = ʚ',  , and, hence, z = z '. 

  Let z = ʘ + iʚ  and  z' = ʘ' + iʚ';  we have   

            (  z + z'  ) = (ʘ +ʘ' ) - i( ʚ +ʚ' ) = z + z ' . 

The same z Å z' = (ʘʘ' - ʚʚ') - i(ʘʚ' + ʘ'ʚ) = z Å z '. 

So, mapping z ­ z is isomorphism concerning addition and multiplication. 

The following properties also occur: 

  1. . z + z = 2R e z = 2ʘ.. Hence, the sum of complex number with its conju-

gate number is always a real number; 

  2.  z ï z = 2i Im z = 2iʚ  Hence, the difference of complex number with its 

conjugate number is always an imaginary number; 

  3. zz= ʘ2
 + ʚ

2
. Hence, product of complex number and its  conjugate 

number is always  a real number, which is  ² 0; 

4. if  z = z, then  z –is  a real number. 

Let's consider the equation ʘʭ
2
 + ʚʭ + ʩ = 0,  

where  ʘÍR, ʚÍR,  and  ʩÍR .   (2.3) 

Solutions of such equation are numbers: 

    ʘ

ʘʩʚʚ
ʭ

2

42

1

-+-
=

 and. ʘ

ʘʩʚʚ
ʭ

2

42

2

---
=

 

 

ʘ

ʘʩʚʚ
ʭ

2

42

1

-+-
=     and    

ʘ

ʘʩʚʚ
ʭ

2

42

2

---
= . 

If discriminant is D = ʚ
2
 ï 4ʘʩ > 0,  the solutions of the equation (2.3) will be two 

various real numbers. Under condition that D = 0 
ʘ

ʚ
ʭʭ

2
21 -==  it also belongs to R. 

If  D < 0 , the equation (2.3) has no solutions in the field R. We shall define them in 

the field C of complex numbers. With this purpose we shall transform discriminant D  

=  ʚ
2
 ï 4ʘʩ = -(4ʘʩ ï ʚ

2
) = i

2
(4ac-ʚ

2
),  where  4ʘʩ ï ʚ

2> 0; Then we have: 
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ba i
ʘ

ʚʘʩ
i

ʘ

ʚ
ʭ +=

-
+-=

2

4

2

2

1    and   ba i
ʘ

ʚʘʩ
i

ʘ

ʚ
x -=

-
--=

2

4

2

2

2 ;                    

 

 Hence, the equation (2.3.) where D < 0, has two roots on the field C: complex 

number ʭ = a +ib   and its complex conjugate number x = a ïib. 
 

   

 

Ä3. THE MODULE OF A COMPLEX NUMBER. DIVISION 

TWO COMPLEX NUMBERS  

Definition. The module of complex number z is referred to and designated |z | 

mapping z  ­  | z |  of the  sets C into the set of non-negative numbers from R, deter-

mined as    |z| = 22 ʚazz +=Ö . 

The module is an absolute value. Actually: 

1. || z | ² 0, а |z| = 0 result in  z = 0 and vice versa. 

1. | z1 z2 |  =  |z1|Ö| z2|.  Indeed,    

| z1 z2 |
2
 = ( z1 z2 )(  z1 z2 )  =  z1 Ö z2 Ö  21 zz Ö  = )()( 2211 zzzz Ö  =  |z1|

2Ö | z2|
2
. 

3. |z1+  z2| ¢ |z1|+|  z2|. 

Except for these three properties one more property is added: 

4.|z | = |z|. 

Introduction of the module allows immediately to write down the real and im-

aginary parts for quotient of  two complex numbers z1 and  z2. 
 

 

  
z

z

z z

z z

a iʚa iʚ

ʘ iʚʘ iʚ

ʘʘ ʚʚ

ʘ ʚ
i
ʘʚ ʘʚ

ʘ ʚ

i1

2

2

2 2

1 1 2 2

2 2 2 2

1 2 1 2

2

2

2

2

2 1 1 2

2

2

2

2=
Ö

Ö
=

+ -

+ -
=

+

+
+

-

+

( )( )

( )( )
                               (2.4) 

 

 

Ä4. GEOMETRICAL INTERPRETATION OF  

COMPLEX NUMBERS  

  

  Geometrically complex number z = a + iʚ as the member of the set RxR, is 

represented by a point  M on a coordinate plane xOy with coordinates (a, ʚ). And this 

mapping, as we saw (the book 1, Chapter.2, Ä4, item 4.2), is biunique. 

  We shall consider a segment  OM and angle j, which it forms with axis ʆx 

(fig. 2.1). We shall define length of the segment OM. From rectangular triangle (fig. 

2.1)  by Pythagorean theorem 

 

    22)( ʚʘOMd += , 

hence, the length of the segment OM corresponds to the module of complex number 

z: d (OM) = |z |.  

 

Angle j , if (OM) is given, unambiguously defines the position of a point on 

the coordinate plane, and, hence, a complex number. This angle is called argument of 
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complex number and it is designated Arg z. The argument of complex number is con-

sidered to be positive if it is counted from  positive direction of axis ʆx counter-

clockwise, and negative - at the opposite direction of counting. It is obvious, that ar-

gument j for given complex number is defined not unequivocally, but accurate with-

in an item, which is divisible by 2,́ i.e. 

 

                               ű = Arg z = argz + 2ˊm, where m = 0,  °1, °2, . . . , 

argz – values of argument of complex number determined by inequalities 0 ¢ argz < 

2ˊ (or -
2

p
 ¢ argz < 

2

3p
) and which is called principal argument of complex number. 

 

 

                                                      

 

                                                     y 

                                                         М2                         М(а, в) ­z 

 

                                                         в 

 

                                                    0            φ                   М1 

                                    -а                                  а                        х 

                                                                     - φ                

                                                         -в   

 

               М(-а, -в) ­ -z                                                М(а, -в) ­ z 

                                                  

Fig 2.1 

If - ¢
2

p
arg z<

2

3p
and the point of M is in the coordinate half plane of the posi-

tive values of axis ʆx   (ʘ > 0),then arg z = arc tg
ʘ

ʚ
 ,  if it is in the half plane of neg-

ative values (ʘ < 0),  then arg z=p+ arc tg
ʘ

ʚ
  If  ʘ=0:   

arg z=
2

p
, if b>0, and arg z= -

2

p
, if b<0. For definition of arg z we can to use also the 

following system of the equations 

cosj =
22 ba

a

+
, sinű =

22 ba

b

+
. 

 

Whence, provided that 0¢j<2ˊ 
 

î
î

í

îî

ì

ë

<
+

-

²
+=

0.b   if    ,arccos2

0;b  if       ,arccos

arg

22

22

ba

a
ba

a

z

p
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Thus, we understand ɸrg.z as all set of the angles adequate to number z and, 

apparently from fig. 2.1, we have:   ɸrgz= -ɸrg.z;  ɸrg(- z) = ˊ + ɸrg.z. 

  The set of real numbers is characterized by condition (a, 0) and, hence, they 

lay on axis ʆx. Set of imaginary numbers is characterized by  condition (0, ʚ) and 

they lay on axis Oy. Therefore axis Ox is referred as real, and axis O -  imaginary ax-

is. Whole plane is referred to as a complex plane. 
  

 

Ä5. THE TRIGONOMETRICAL FORM OF A COMPLEX NUMBER. MOI-

VRE FORMULA. EXTRACTION OF THE ROOT  
 

  We shall consider a complex number which is distinct from zero z = ʘ + iʚ, 

and we shall write down it, using value |z | = d (OM) and ű = ɸrgz. Using  fig. 2.1, 

we can write down ʘ = |z| cosj и ʚ = |z|sin j. Then for complex number we obtain: 

z = |z|(cosű +i sinű) or z = r (cosű +i sinű), where r = |z|.                     (2.5)  

 

This record is referred to as the trigonometrical form of complex number. For z = 0 

trigonometrical form is not determined, and for argument we can to take any real 

number. 

  Use of the trigonometrical form of complex number considerably simplifies 

operations of multiplication, division and extraction of a root. 

 

Multiplication.  Let   z1 Ā z2  ̧  0  

and z1 = r 1 (cosű1 +i sinű1),and z2 = r 2 (cosű2 +i sinű2). Then   

 z1 Ā z2   = r 1r2(cosű1 +i sinű1)(cosű2 +i sinű2)  =  

=  r1r2 [(cosű1 cosű2 -  sinű1 sinű2) + i(sinű1 cosű2 + cosű1 sinű2 )] =  

= r 1r2 [cos(ű1 +ű2) + i sin(ű1 + ű2)] . 

Thus, product of two complex numbers which are distinct from zero, is com-

plex number which module is equal to product of modules of these numbers, and the 

argument is equal to the sum of arguments of the multiplied numbers. The obtained 

result is easy for transferring on product n of numbers z1, z2, . . ., zn. In particular if z1 

= z2 = . . . zn = z = r (cosű +i sinű), then 

                    z
n
 = r

n
(cos nű +i sin nű).                                                    (2.6.) 

 

           This equality is referred to as Moivre formula. From here 

  |z
n
| = |z|

n
,      Arg z

n
  = n Arg z. 

 

Division.  
z

z
r i z z r i r r i

1

2

1 2 2 2 2= + Ý = + = + + +(cos sin ) (cos sin ) [cos( ) sin( )].j j j j j j j j  

r i r r i1 1 1 2 2 2(cos sin ) [cos( ) sin( )]j j j j j j+ = + + +  

Equality is possible, if  

                             
2

1

21
r

r
rrrr =Ý=  

                                        2121 jjjjjj -=Ý+=
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The quotient of two complex numbers which are distinct from zero, is a complex 

number which module is equal to the quotient of modules of the given numbers, and 

argument – is equal to a difference of numerator and  denominator arguments. 

 

Extraction of a root. The root of the n-th power of a complex number z is re-

ferred to as any number zkÍʉ  which n-th power is equal to z. Thus 

zzzz n
kk

n =Ý= . From the last equation we have: 

 

zzz
n

k
n
k

==  and ArgznArgzArgz k
n
k

== . Thus, n
k zz =  and 

n

Argz
Argzk = .  

Hence, 
n

k zz =
and n

Argz
Argzk =

.  

 

If  z = 0 , then it is indispensable that zʢ = 0 that is, zero has in C only one root of the 

n - th power, namely a zero. 

  Now let’s assume, that z ̧  0.  As Arg z it is determined accurate within 2p,  
and therefore the argument of number zʢʢ can take n, and only n values determined 

accurate within 2p, namely:  

 

n

k

n

z
zk

p2arg
arg += , where ʢ = 0, 1, 2, . . . n - 1. 

Hence, n z  has on the set C  ʧ various values z0, z1, . . . , zn-1, which ʧ-th  power is 

equal to z: zzn
k
= , ʢ = 0, 1, 2, . . . n - 1. 

 

 

                 ù
ú

ø
é
ê

è
ö
÷

õ
æ
ç

å +
+ö
÷

õ
æ
ç

å +
=

n

kz
i

n

kz
zz n

k
pp 2arg

sin
2arg

cos .                 (2.7.)  

It is obvious, that the points which are mapping the numbers zʢ  on a complex plane, 

lay on a circle with the center O  and radius 
n z

 and represent vertexes of regular n- 

square.  

 
 

We shall consider a special case, when z = 1; then |z | = 1, ʘrg z = 0, 



 52 

mArgz p20+= ,   m = Ñ1,  Ñ2,  . . . and, then , n-th roots of one have the module 1, 

and the argument ,2
2

ö
÷

õ
æ
ç

å
+ m

n

k
p

p
where  ʢ = 0, 1, 2, . . . n - 1.  So, roots of one on set 

C will be numbers:   ,2
2

sin2
2

cos ö
÷

õ
æ
ç

å
++ö

÷

õ
æ
ç

å
+= m

n

k
im

n

k
zk p

p
p

p
  

 

Where k =  0, 1, 2... n - 1, m = 0, ±1, ±2.... 

 Points, mapping the numbers zʢ on a complex plane in the case if n = 6, are 

shown on fig. 2.2. 

 

 

 

 

 

 

j=p/3 

 

 

 

        Fig.2.2 

 

 

Ä6. COMPLEX FUNCTIONS 

 

1 Complex functions of one real variable 
 

Definition. Complex function of one real variable is referred to as  mapping R 

(or some subset from R) into C. 

 Let ʭ belongs to some set ʈ from R, and F  is a complex function from ʭ, de-

termined on P.  Value of function F in the point ʭ is a complex number F (ʭ), which 

real and imaginary parts are the essence real numbers which value depends on ʭ, i.e. 

these are numerical functions of real variable. Thus,   F(ʭ) = y(ʭ) + ig(ʭ), where y 

and g – are numerical functions of real variable, determined on PË R. 

It follows from definition of set C, that it is identical to the set R
2
.  Therefore complex 

function F of one real variable can be considered as mapping of the set ʈ into R
2
 or if 

ʈ = R, then  F:R­ R
2
,  or as the ordered couple of two numerical functions of one 

real variable F (ʭ) = ( y ( ʭ ), g( ʭ ) ). 
 

 

6.2. Complex functions of one complex variable  

Definition. Complex function of one complex variable is referred to as map-

ping C  (or some subset from ʉ) into C.  

 Let ʈ be  some set from C. If each complex number zÍʈ  at mapping F is put 

in conformity with complex number F (z), then  real and imaginary parts F (z) are the 



 53 

essence real numbers which values depend in z, so these will be values of two numer-

ical functions of complex variable zÍR. Thus  

 

                                           F(z) = y(z) + ig(z).       

But C is identified with R 
2
,  i.e. each complex number z = ʭ + iyÍ ʉ  is identified 

with point (ʭ, ʫ)ÍR
2
, therefore we can consider y and g to be numerical functions of 

two real variables ʭ and y. Hence, we can write 

 

                              F(z) = y ( ʭ, ʫ ) + ig( ʭ, ʫ) or  F = y + ig. 

Then function F acts as mapping R
2
 into  R

2
, or as the ordered couple of two numeri-

cal functions of two real variables: 

F(z) = (y (ʭ, ʫ), g( ʭ,  ʫ )). 

 

 

6.3.  Exponential function 
zez­  with complex factor and its proper ties  
 

 

 Numerical exponential function ʭ­ ʘ
ʭ
 (ʘ >0 ʠ ʘ  ̧1) of the real variable ʭÍ R 

makes  the biunique mapping of the set R of real numbers onto the set R
+
 of positive 

real numbers; this mapping transfers addition into multiplication, i.e. this function 

puts the sum ʭ1 + ʭ2  in conformity with the product 21 ʭʭ
ʘʘ Ö  images of items: 

2121 xxxx
aaa
+

=Ö . Is there a complex function f of complex variable z, determined 

on C  and such, so that any z1Íʉ and  z2ÍС,    

                                           f( z1 + z2 ) = f( z1 ) Ā f( z2 ). 

It is determined, that such function f exists also it is  function z­ ʝ
z
 , which values for 

any z = x + iyÍ ʉ are defined as follows  

 

   f(z) = e
x+iy

 = ʝ
ʭ
(ʩʦsy + i siny). 

Actually, it is not difficult to show, that for this function we have 

 

                                       2121 zzzz
eee Ö=

+
. 

Except for this feature the exponent function f(z) = e
z
 has as well the following fea-

tures: 

 

1. 
2

1
21

z

z
zz

e

e
e =
-

; 

      2. ( ʝ 
z
) 

m
 = e 

m z
 , where m – is an integer number;  

      3. )(  , 2xzzxiyxz eeeeee =Ö== +
 

           4. ,   2 zmiz ee =+ p
where m – an integer number.  
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On the basis of feature 4 it follows, that exponential function ʝ 
z
 is a periodic function 

with the period 2p i. 
 
 

 

 

6.4.  Euler's formulas.  

6.5. The exponential form of the complex number  

 

 

  If we put ʭ = 0 into z = x + iy, then for ʝ 
z
 we shall obtain 

                                    ʝ 
i y 

=  cosy + i siny                                             (2.8) 

It is Euler's formula expressing the exponential function with an imaginary parameter 

through trigonometrical functions. Replacing in Euler's formula y with -ʫ, we shall 

obtain: 

 

            ʝ 
-i y

 = cosy  - i siny. 

Now, combining ʝ 
i y

 and ʝ 
ïi y

, we have: 

 

                  ;
2

cos
iyiy ee

y
-+

=      .
2

sin
i

ee
y

iyiy --
=   

These formulas also referred to as Euler's formulas. 

  We shall represent the complex number z = a + iʚ  in the trigonometrical form 

 

z = r(cosj + isinj ), where 
22 bazr +== ;j = argz + 2pm, m = 0, °1, °2, . . . ,;  

,arg
a

b
arctgz=     if  ʘ>0;   

a

b
arctgz +=parg    if   ʘ< 0;   argz = p /2   or -p /2 

(3p /2) if  ʘ = 0. 

By Euler's formula cosj + i sinj = e 
i j

  and, hence, any complex number can be pre-

sented in the so-called exponential form: 

 

   z = |z| e 
i j

 = r e 
i j

 = r e 
i (arg z + 2p m)

 

 

 

                                                  

 

CHAPTER  3 

 

MULTINOMIALS  

 

Definition.  Let ʈ – be the given field (R or ʉ), and ʭ - some formal symbol. 

Expression of a kind:  

 

aʢʭ
ʢ
 + aʢ-1 ʭ

ʢ-1
 + . . . + a1ʭ + a0 ʭ

0
, where an index ʢÍZ0: a0, a1, . . . , aʢÍR, 
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 is referred to as a multinomial from variable or (unknown) ʭ above the field P. Un-

der the agreement it is written down as  ʭ
0
 =1, and a multinomial is written down as 

 

               aʢ ʭ
ʢ
 + aʢ-1 ʭ

ʢ-1
 + . . . + a1 ʭ + a0                                                      (3.1) 

  

Members a0, a1, . . . , aʢÍR, are referred to as factors of a multinomial; factora0,  is 

referred to as a free term. If all factors are equal to zero the corresponding multino-

mial is referred to zero multinomial and it is designated with zero. 

Maximum index k at which aʢ  ̧ 0,  is referred to as a degree (or order) of a multi-

nomial, and aʢ – is the leading coefficient of a multinomial. Zero multinomial has no 

a degree. 

  If ʭ Í R  and  ʈ = R,  the multinomial represents numerical function of one re-

al variable. Such function is referred to as a polynomial  or integer rational function.  

 Multinomials of the variable ʭ we shall designate as  f (x), g (x), etc., and set of 

multinomials above the field ʈ - ʈ [x].  

Let's consider two multinomials from the set ʈ [x]  

       f(x) =  aʢ ʭ
ʢ
 + . . . + a1 ʭ + a0  and  g(x) = bm x

m
 + . . . + b1 x +  b0  

 

to be equal and  we write down f (x) = g (x), if  m = k (an identical degree) and ai = b 

i, for  i = 0, 1, . . ., ʢ. 

  The multinomial can be written down also in the increasing order of indexes 

 

                                 a0 + a1 ʭ + . . . + aʢ-1 ʭ
ʢ-1

 + aʢ ʭ
ʢ
                                     (3.2) 

  

We shall note, that a multinomial g (x) of the degree m always can be replaced with a 

multinomial which is equal to it with an index ʢ > m, adding to g (x) a multinomial  

    b m+(ʢ-m) x 
m+(ʢ-m)

 + . . . + b m+1x 
m+1

, where b m+1 = b m+2 = . . . = b m+(ʢ-m) = 0, i.e.  

                   g(x) = b0 + b1 ʭ + . . . +b m ʭ 
m
 + 0 ʭ 

m+1
 + 0 ʭ 

m+2
 + . . . 0 ʭ 

ʢ
. 

 

So, any multinomial can be considered as sequence {b 0, b 1, . . . b m, 0, 0 . . . }  from 

ʈ which all members with some index are equal to zero. 

 

 

   

Ä1. A RING OF MULTINOMIALS 

 

  Letôs introduce on the set with multinomial ʈ [x]  two internal laws of a com-

position - addition and multiplication of multinomials, distributive concerning addi-

tion of multinomials. 

Addition. Sum of two multinomials f (x) and g (x) is referred to as multinomial  

h(x)=yt x 
t
+....+ y1 x + y0,  where  yi = a i + b i,  i = 0, 1, 2,..... t,   

 

the degree of a multinomial t is equal to the greatest of two degrees if these degrees 

are not equal; if they are equal, it can occur, that the degree appears to be less (atm = 

k,  ak = - b k ) and, hence, always we have 
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ʉm h(x)  ¢  max [Cm f(x), Cm g(x)]. 

  

It is clear, that operation of addition is associative and commutative. 

  There is a neutral member, namely a multinomial designated as 0 = 0 ʭ
ʢ
 + . . . 

+ 0 ʭ,  which all factors are zero. 

  At last any multinomial has symmetric, designated as  

-f(x) =  -a ʢ ʭ 
ʢ
 -a ʢ-1  ʭ 

ʢ-1
 - . . . -a1  ʭ1 - a0;  it is a multinomial which all factors are 

opposite to factors of a multinomial f (x). 

  Hence, the set of multinomials provided with this law forms Abelian (commu-

tative) group. 

 

Multiplication.  By virtue of distributivity of multiplication concerning addition 

it is sufficient to determine  it for multinomials of a kind a i ʭ 
i
. For a iÍ R, b jÍ R  i ʭ 

we shall suppose  
    

  (a i ʭ 
i
)(b j ʭ 

j
) =  a i b j x 

i+j
                                                 (3.3) 

In other words, we multiply variables as though their indexes were exponents  of 

power. If  

 

 

f(x) = a0 + a1 ʭ + . . . + aʢ ʭ
ʢ
,   g(ʭ) = b0 + b1 + . . . + bm ʭ

m
,  

then by virtue of distributivity,  

 

   f(x)Āg(x) = a0b0 + (a0b1 + a1b0) ʭ + . . . + (a0b i + a1b i-1 + . . .  + ai b0 ) ʭ 
i
 + . . .  

+ aʢbm ʭ
ʢ+m

. 

  

This operation is commutative and distributive concerning addition. With the help of 

rather long, but not complicated calculation we ascertain that it is associative. 

  We shall note the following important feature: 

 

 ʉm[f(x)Āg(x)] = Cm f(x) + Cm g(x).                                 (3.4)           

Thus, the set P [x]  is a commutative  ring. A multinomial  u(x) = h0 + h1 x + ..... + ht 

x 
t
    is a neutral element concerning multiplication, if u (x) Āf (x) = f (x) for any multi-

nomial f (x). In particular, it should be fulfilled u(x) Å x 
k
=x 

k
,  and, then, 

 

                             h0 x
k 
+ h1 x 

k+1
+......+ht x 

k+t 
= x 

k
,  

  that gives ush0 = 1, h1 = h2 =.......= ht = 0.  So, u(x) = x
0
 = 1; it enables us to 

identify a multinomial x
0 
 with number 1.  

  The multinomial f (x) has no multinomial symmetric to it concerning multipli-

cation.  

 

 

Corollary fact. Equality f(x)Āg(x) =  f(x)Āy (x) at f(x)  ̧ 0  implyies  g(x) = y 

(x). Indeed, equality is written down also as 
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        f(x) [ g(x)- y (x)] = 0,  and  f(x) ̧  0,  then , g(x) - y (x) = 0  and  g(x) = y (x). 

 

 

 

Ä2. DIVISION OF MULTINOMIALS IN DECREASING DEGREES 

  

If two multinomials f (x) and g (x) are given, we can not always define such 

multinomial h (x), that f (x) = g (x) h (x). If  h (x) exists, we shall say, that f (x) is di-

vided by g (x) or that g (x) divides f (x), and also, that the multinomial f (x) is divisi-

ble by  g (x). So, the multinomial 0 is divisible by any multinomial:0 = g (x) Ā 0. 

The theorem (of division of a multinomial with a remainder). Let there be 

two multinomials f (x) and g (x) of the ring ʈ [ʭ]. There are such unique multinomials 

h (x) and r (x), that f (x) = g (x) h (x) + r (x) where ʉm r (x) <ʉm g (x). h (x) is called 

a quotient, and r (x) - a remainder of division f (x) by  g (x). 

Remark. If  ʉm g (x)> f (x), h (x) = 0, and r (x) = f (x). Therefore h(x)  ̧0,  

when ʉm g (x) <  ʉm f(x).         

  The proof of the theorem is omitted. 

Corollary fact. To divide the multinomial f (x) by a multinomial g (x), it is necessary 

and sufficient that the remainder of division f (x) by g (x) is equal to zero. 

  

Practical calculation.  
 

Arrangement of operations is the same as at division of integers, and multino-

mials are written down in decreasing order of the variable degrees. Therefore such 

division also is referred to as division by decreasing degrees. 

 

Example. f(x) =  5ʭ
6
 + 1,    g(x) = ʭ

2
 + 2ʭ + 1 

 

           f(x) = 5ʭ
6
 +   0ʭ

5
 + 0ʭ

4
 +   0ʭ

3
 +  0ʭ

2
 +  0ʭ + 1          ʭ

2
 + 2ʭ + 1 = g(x)       

  y4ʭ
4
Ā g(x) = 5ʭ

6
 + 10ʭ

5
 + 5ʭ

4
                                             5ʭ

4
- 10ʭ

3
 + 15ʭ

2
 - 20ʭ + 25 

          f5(ʭ) =        - 10ʭ
5
 -  5ʭ

4
                                + 1       y4ʭ

4
 + y3ʭ

3
 + y2ʭ

2
 + y1ʭ + y0          

 y3ʭ
3
Ā g(x) =         - 10ʭ

5
 - 20ʭ

4
 - 10ʭ

3
 

         f4(ʭ) =                      15ʭ
4
 +10ʭ

3                              
+ 1           

 y2ʭ
2
Ā g(x) =                      15ʭ

4
 +30ʭ

3
 + 15ʭ

2
 

         f3(x) =                              - 20ʭ
3
  - 15ʭ

2
         + 1 

 y1ʭ Ā g(x) =                               - 20ʭ
3
  - 40ʭ

2
ï20ʭ 

         f2(x) =                                             25ʭ
2
+20ʭ +1  

     y0Ā g(x) =                                          25ʭ
2
+50ʭ +25 

       f1(x) =                                                     -30ʭ ï 24 

Here we have f(x) = g(x)Ā h(x) + r(x), where h(x) = 5ʭ
4
 ï 10ʭ

3
 + 15ʭ

2
 ï 20ʭ + 

25,  

r(x) = 30х – 24. Сm r(x)= 1;  Сm r(x) < Сm g(x)= 2. 
 

 

Ä3. MUTUALLY DISTINCT AND IRREDUCIBLE 
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MULTINOMIALS. THE EUCLIDEAN THEOREM AND ALGORITHM  
  

Let two fixed multinomials f (x) and g (x) be given, if even one of them is not equal 

to zero. The multinomial t (ʭ) is referred to as the common divisor f (x) and g (x) if it 

divides these multinomials without the remainder. The multinomial of a degree zero, 

i.e. constants a0  ̧0, is always the common divisors. 

Definition 1. The multinomial of the greatest degree which is a common divi-

sor of multinomials f (x) and g (x), is referred to as the greatest common divisor 

(GCD) of multinomials f (x) and g (x). 

  If  h (ʭ) is GCD of  multinomials f (x) and g (x), then GCD of  multinomials 

f(x) y(ʭ) and g(x) y(ʭ) is h(ʭ) y(ʭ) for any multinomial y(ʭ). Besides GCD are ac-

cordingly multinomials l h(ʭ) and l h(ʭ) y (ʭ), where lÍR  and it is not equal to ze-

ro. Therefore further we shall understand GCD as that GCD which highest coefficient 

is equal to 1. 

Any common divisor t (ʭ) of the multinomials f (x) and g (x) divides GCD h (ʭ) and 

any GCD h (ʭ) divides f (x) and g (x); so, the set of the common divisors of multino-

mials f (x) and g (x) coincides with the set of divisors of the multinomial h (ʭ). 

Definition 2. Two multinomials f (x) and g (x) are referred to as mutually dis-

tinct if their GCD has zero degree (i.e. is not a zero constant). 

  If  f (x) and g (x) ï are mutually distinct two multinomials from ʈ ʭ ,  there 

are unique multinomials v (x) and w (x) from ʈ ʭ , which have the following 

property v (x) f (x) + w (x) g (x) = 1, and Cm v (x) <Cm g (x), Cm w (x) <Cm f (x). 

This equality is referred to as  Bezout identity equation. 

Euclidean theorem. If  f (x) divides the product g (x) c (x) and if  f (x) and g (x) 

are mutually distinct,  f (x) divides c (x).  

The proof. Indeed, GCD of multinomials f (x) and g (x) is a nonzero constant l 

and, then, GCD of multinomials f (x) c (x) and g(x) c(x)  is l c(x). But f (x) divides f 

(x) c (x) and, by the data, divides g (x) c(x), and, hence, divides them GCD which is 

equal to l c(x), and, so, f (x) divides c (x).  

 

Definition 3. The multinomial p(x) is referred to as distinct or irreducible if it 

has no other divisors, except for itself and nonzero constants. 

  We shall take now  any multinomial f (x) and GCD h (x) of multinomials f (x) 

and p (x); since p (x) is irreducible, then h (x) is equal to either p (x), or a constant; in 

the first case f (x) is divided by p (x), and in the second case f (x) is mutually distinct 

with p(x). Thus, any multinomial either is divided by p (x), or it is mutually distinct 

with it. It can be the proof of the following theorem for factorization of multinomials. 

 

 

 

 

The theorem 2. Each multinomial f (x) from the ring P [x]  of the degrees ²1, is  

factorized  in the product of irreducible multinomials p (x) and c accurate within the 

sequence order, this factorization  is unique  
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Ô
=

=ÖÖÖ=
n

i
in xʨxpxpxpxf

1
21 )()(....)()()( .                                         (3.5) 

 

 It should be mentioned, that the multinomial irreducibility concept  significant-

ly depends on a field of factors R; so,  the multinomial ʭ
2
 - 4  is not irreducible in the 

field Q of rational numbers as it is divided by ʭ - 2 and by ʭ +  2; a multinomial ʭ
2
 - 2 

is irreducible in Q, but not in R since it is divided by  ʭ + 2 and by ʭ- 2 ; the mul-

tinomial ʭ
2
 + 1  is irreducible in R, and, then, and in Q, but not in C as it is divided by  

x + i and by x - i.  

We should mention that the multinomial of the first degree is irreducible for any field 

ʈ since its any divisor is either a constant, or itself and it is a unique irreducible mul-

tinomial above the field C of complex numbers. Above a field of real numbers, ex-

cept of a multinomial of the first degree also all multinomials of the second degree 

which have negative discriminant, will be irreducible. 

 

Determining GCD: Euclidean algorithm. Let f (x) and g (x) -  two multinomi-

als and Cm f (x)> Cm g (x); letôs divide f (x) by g (x) by decreasing degrees: 

                                      

                                     f(x) = g(x)h0(ʭ) + r0(ʭ),    Cm r0(ʭ) < Cm g(x).  

 

Then we shall divide g(x) by r0(ʭ),  

 

                                      g(x) = r0(ʭ)h1(ʭ) + r1(ʭ),    Cm r1(ʭ) < Cm r0(x). 

  

           Let’s divide again r0(ʭ) by r1(ʭ), we obtain the remainder r2(ʭ),  which degree 

is less than degree ofr1(ʭ). Then we shall divide r1(ʭ) by r2(ʭ), etc.; degrees of the 

consecutive remainders strictly decrease; hence, there will come the moment when 

some remainder rn-1(ʭ)  will be divided by the remainder rn(ʭ), and, so, we shall ob-

tain  

                           rn-2 (ʭ) = rn-1 (ʭ) hn(ʭ) - rn(ʭ),  Cm rn (ʭ) < Cm rn-1 (x),   

                                      rn-1(ʭ) = rn(ʭ) hn+1 (ʭ). 

 

   

Any common divisor of multinomials f (x) and g (x) divides r0(ʭ)  and, then, it divides 
r1(ʭ) etc., at last,  it divides rn(ʭ);  inversely, any divisor of the remainder rn(ʭ)  di-

vides rn-1(ʭ),  so,then rn-2(ʭ), etc., and, hence, divides f (x) and g (x); thus, rn(ʭ)  is 

GCD of multinomials f (x) and g (x). 

  This method of determination of GCD has the name Euclidean algorithm 

where a word algorithm means process of calculation.  

 
 

 

 

Ä4. ZERO (ROOTS) OF THE MULTINOMIAL. MULTIPLICITY OF ZERO. 
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MULTINOMIAL  EXPANSION IN THE PRODUCT OF IRREDUCIBLE  

MULTINOMIALS ABOVE FIELD  C AND R   

 

  

If we substitute variable ʭ in a multinomial f(x)Í R[ʭ] for the  number bÍR, we shall 

obtain the number which we refer to as value of a multinomial when ʭ = b  and it is 

designated 

 

                                 f(b) = aʢ b 
ʢ
 + aʢ-1 b 

ʢ-1
 + . . . +a1b + b0. 

Definition. Number l from field ʈ is referred  to as zero (or a root) of  the 

multinomial  f(x)Í R[ʭ], if f(l) = 0. 

Bezout theorem. For lÍR  to be a root of a multinomial f(x)Í R[ʭ], it is neces-

sary and sufficient that the multinomial f (x) is divided by  a multinomial x - l. Fur-

ther we shall designate a multinomial x - l  as  ʨl(ʭ). 

 The proof. Necessity: l - a root and f(l)) = 0. We shall divide f (x) by ʨl(ʭ)  in 

descending powers. As ʨl(ʭ)  has a power 1 the remainder has a degree equal to zero 

so, is a constant b, which can be equaled to zero, and we have f(x) = ʨl(ʭ) f1(x) + b.   

We shall take f(l) .  As ʨl(l) = 0, then  f(l) = b.  Hence, if l there is a root of a mul-

tinomial f (x), then  f(l) = 0;  so, b = 0, and  f(ʭ) is divided by ʨl(ʭ).  

 Sufficiency. If f (x) is divided by ʨl(ʭ),  then the remainder is  b = 0,   and then  

 f(l) = Rl(l) f1(x) = 0,  since ʨl(l) = 0. 

Multiplicity of zero. Let lÍR  to be a zero of a multinomial f(x)Í R[ʭ];  then, if 

ʨl(ʭ) = ʭ -l, then f(x) = ʨl(ʭ) f1(x). It may be, that f1(x)  hasl  as zero, and then f1 f1(x) 

= ʨl(ʭ) f2(x); and f(x) = ʨ
2
l(ʭ) f2(x).   

Definition 2. Multiplicity of zero (root) l  is referred to as the greatest  integral 

exponent h for which f(x) =ʨ
h
l(ʭ) fh(x), and f fh (x)  has no l as zero, i.e. f fh (l)  ̧0. 

 If  h = 1 , then l is referred to as simple zero if  h = n, then l  is called a zero of 

multiplicity n, or n - th (double, triple, etc.) zero. 

  Let l1,  l2,  . . . ,  ln – be a various zero of a multinomial f (x), and let h1,h2, . . . 

, h – be their multiplicity. Then, ).( )()( )()( 2

2

1

1
xcʭʨxbxʨxf

hh

ll
==  Multinomial 

)(
1
ʭʨl  has a power 1 and therefore it is irreducible for any field ʈ, and, hence, it is 

mutually simple with )(
2

xʨ
l

, if l2  ̧l1.. So, )(1

1
xʨ

h

l
and )(2

2
ʭʨ

h
l

 are also mutual-

ly simple.  

But 2

2

h
ʨ
l
(ʭ) divides the product )()(1

1
ʭbxʨ

h

l
, and, hence, according to Euclidean 

theorem , ,   )(2

2
ʭʨ

h

l
 divides b (ʭ), and we have        
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b(ʭ) = ).()( *2

2
xbʭʨ

h

l
, so, ).()()( *2

2

1

1
ʭbʨxʨxf

hh
ÖÖ=

ll
  Continuing this reasoning in 

sequence for all multinomials nixʨih

i
,...,2,1   ),( =

l
,, we finally obtain the formula 

for multinomial expansion product of irreducible multinomials. 

    

),()(...)()()()()()( 1
1

2

2

1

1
xxxxxpxpxpxf nh

n
hnh

n

hh
ylly

lll
-ÖÖ-=ÖÖÖ= 2

 

 

   ),()(...)()()()()()( 1
1

2

2

1

1
xxxxxpxpxpxf nh

n
hnh

n

hh
ylly

lll
-ÖÖ-=ÖÖÖ= 2  

  

and this form of representation makes obvious that fact, that, li is zero of a multino-

mial f (ʭ) and that its multiplicity is equal to hi.  
 

  Let k be a power of a multinomial f (ʭ); the last expression for f (ʭ) shows, that 

ʢ = ʉm f(x) = h1 + h2 + . . . +hn + Cm y(x), whence   

    h1 + h2 + . . . + hn  ¢  ʢ = Cm f(x).    

 

It follows that the multinomial of a degree k cannot have more than k  of various roots 

– Lagrange theorem. If they are equal to k, so all of them are simple. 

  Let’s a situation when field ʈ is a field C of complex numbers and f(x)Í ʉ[ʭ]. 
In this case the theorem which has the name DôAlembert theorem (or the fundamen-

tal theorem of algebra) is valid. Any multinomial f (x) of ʉ ʭ power which is 

greater than or equal to one, has in a field C of complex numbers and, at least, one 

root. 

Corollary fact. 1. Any multinomial f (x) of ʉ ʭ  power k  has all its roots in 

a field C of complex numbers and their quantity in accuracy is equal k if to count 

each root as many times as it  has its multiplicity. 

  2. Thus, if f(x)Íʉ[ʭ] and  Cm f(x) = k, then h1 + h2 + . . . +hn = ʢ, , and Cm 

ɣ(x) =0;  hence, ɣ(x)   is a constant which is distinct from zero and expansion  f (x) is 

represented as 

         ,)(...)()()( 2
2

1
1

nh
n

hh
k xxxxf llla -ÖÖ-Ö-=  (3.6) 

where an – is the highest coefficient f(x), h1, . . ., hnÍ N, l1, . . .,lnÍ ʉ. the formula is 

referred to as canonical expansion f (x) above a field C of complex numbers. 

 

2. Let f (x) ï be a multinomial with a real coefficient from the field R, then if among 

zeros  l1, . . .,ln there is zero liÍ ʉ  of multiplicity m,  so there should be  a complex-

conjugate root il of same multiplicity m among roots. Real irreducible multinomials, 

above the field R of the power more than one, are multinomials a2 ʭ
2
 + a1 ʭ + a0, 

which has negative discriminant; such multinomials in a field of complex numbers 

have as roots two complex-conjugate numbers l andl. (Book 2, Chapter 2, §2).  
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Now, after we combine in couples a multiplier ,)()( ji
i

h
j

h
xx ll -Ö- where ɚ 

j = il, hi = hj = ɛi in canonical expansion of a multinomial f (x) under the field, C we 

shall obtain: 

(3.7)          1
101

21
0111

2 ,te
)

t
x(...

e
)x(

m
mmx...xx

k
)x(f ll

m
aa

m
aaa -ÖÖ-Ö

ùú
ø

éê
è ++ÖÖ

ùú
ø

éê
è ++=                             

ɚ1, ɚ2, . . . , ɚt  ï  are real zeros  f(x),    a1jÍR,  ɚ0 j Í R,   j = 1, . . . , m,      f(x)Í R[x],       

ʉmf (x) = 2( ɛ1 +  ɛ2 +  . . .  +ɛm )  +  ʝ1  +  . . .  + ʝt      mulitnomails  ( ʭ
2
 + Ŭ1j ʭ + 

Ŭ0 j )  conform to zero couples  ɚi andɚj = il. 

  The obtained expansionis referred to as canonical expansion of a multinomi-

al f (x) above the  field R of real. 
 

 

                                     EXERCISES 

 

1. Prove that multinomial intersection operation is dictributive relative operation 

of set summing.  

2. Is the set Q of rational numbers, on which operation of multiplication is as-

signed, a group? 

3. Is set Q a field, if : 

ʘ) on this set the law of multiplication is assigned as the first law, and as the second – 

the law of addition? 

b) the first law – is the addition, the second – is multiplication? 

4) Calculate   .
32

3

i

i
z

-

+
=    

 

5) Define the real values of  ʭ and y from the equation 

                  (1 + i) x
2 
+ (2 + i) x - (1 - i) y = 7(1 + i). 

6) What geometrical sense has the difference magnitude of two complex num-

bers? To define this magnitude for z = 3 + i2 and 23 iz -= .  Represent these 

points on a complex plane.    

7) Define all roots and to plot them on a complex plane: 
3 ;1 i+ 6 .3-  

8) Solve the equations: 

а) 2x
2 
- 3x + 7 = 0,   b cos x = 3,    c) sin x = 2. 

 

9) Define roots of the equation z 
8 
- 2 3z

4 
+ 4 = 0  and plot  them on a complex 

plane. 

10) Represent in the indicative form the complex numbers: 

1 + i,  -1 + i,  -5,  3  + i.  
 

11) Divide a multinomial 3ʭ
6
 + 2ʭ

3
 ï 2ʭ + 5  by a multinomial 2ʭ

2
 + 3 in de-

scending powers. 

12) Define the multiplicity of zero ʭ =  1 for a multinomial  

   f(x)= 3ʭ
5
 ï 8ʭ

4 
 +4ʭ

3
 + 6ʭ

2
 ï 7ʭ + 2  
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 and the expansion of this multinomial in product of irreducible multinomials on the 

field R and C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   
 

CHAPTER 4 

 

VECTOR SPACES 

On some set K, which has the internal law of a commutative group, can be deter-

mined also by means of some other set L, the external law of a composition - map-

ping K³ L into ʂ..  The most important set of such type is a vector space (or linear 

space). 

 

Definition. The set K is referred to as a vector (linear) space above the field ʈ if it 

has the internal law (+) - addition and the external law (Ŀ) - multiplication by an ele-

ment from the field ʈ, having the following properties: 

1. Addition on set K has the internal law of the commutative group. ." ʭÍ K, " 

ʫÍ K and " zÍ K we have: 

ʭ + ʫ = ʫ + ʭ; 

ʭ + (ʫ + z) = (ʭ + ʫ) + z; 

$ ʝÍ K, so, that х +е = е + х = х (a neutral element), 

 , KxÍ$ so that exx =+ (a symmetric element).  
 

2. The external law of multiplication, so that " ʭÍ K," ʫÍ K and" lÍ R, " mÍ 

R,  

lÖ(ʭ + ʫ) = lÖʭ + lÖʫ 

(l + m)Öʭ = lÖʭ + mÖʭ 

lÖ(mÖʭ) = (lÖm)Öʭ 

                    eÖʭ = ʭ, where e is a neutral element of multiplication in the field 

ʈ. 
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  Elements from vector space K  are referred to as  vectors and they are usually 

designated by lower case Latin letters with arrows above then  ( ʭʚʘ
CCC

,,  etc.) or by low-

er case in thick print. Elements of the field ʈ more often are designated by lower case 

Greek letters ( lgba ,,, etc.). The neutral element of additionʝ in ʂ is referred to as a 

zero vector and it is designated as0
C

. The neutral element of addition in ʈ is designat-

ed by 0 (zero), and multiplication e - by 1 (one). The element ʭsymmetric ʭ is re-

ferred to as opposite to a vector ʭ
C
  and it  is designated ʭ

C
- , i.e. ʭʭ

C
-= .    

Corollary fact from definition. 1) In vector space it can be only one zero vec-

tor and for each vector can be only one opposite vector. Let’s assume that there are 

two zero vectors ,01

C
and ,02

C
then it follows from definition, that their sum should be 

equal to each of them, i.e. 121 000
CCC
=+ , or 221 000

CCC
=+  and, hence, .00 21

CC
=   Similarly if 

any vector ʭ
C

  has two opposite 1ʭ
C
-  and 2ʭ

C
- the sum )()( 21 ʭʭʭ

CCC
-++-  should be equal 

both  1ʭ
C
-  and 2ʭ

C
- , hence 1ʭ

C
-  = 2ʭ

C
- . 

2) If ,0 
CC
=ʭl then either l, or 0

CC
=ʭ . 

3) Equality ʭʭ
CC

  ml =   is executed for any 1ʭ
C
-  = 2ʭ

C
- . If  0

CC
ʭ̧ , then, after we 

add both parts of equality ʭ
C

 m- we shall obtain  0    
CCCCC
=-=- ʭʭʭʭ mmml  that is 

0)(
CC
=- ʭml , but 0

CC
ʭ̧ ,  hence l - m = 0 и l = m. 

4) Equality ʫʭ
CC

  ll =    is executed for any ʭ
C
and ʫ

C
if  l = 0.If  l  ̧0, then 

0  
CCC
=- ʫʭ ll or 0)(

CCC
=-ʫʭl . Since l  ̧0, then 0

CCC
=-ʫʭ  whence ʫʭ

CC
= . 

 

 

 

 

Ä1. VECTOR SPACE OF MULTINOMIAL S ABOVE FIELD  P  FACTORS 

 

 As know (Book 2, ʛʣ.3, §1) addition on the  multinomial set above the field ʈ 

has the internal law of commutative group. Now we shall define on the set ʈ ʭ  of 

multinomials by means of the field ʈ the external law of a composition. 

Multiplication by an element from R.  Let lÍʈ; we shall put 

;...)( 01 lalalal +++= xxxf n
n   lf(ʭ) is a multinomial, which all coefficients is  

essence of element product l by coefficients of a multinomial f (ʭ). 

  It is obviously that  [] []xPxgxPxf Í"Í" )(  ,)(  и PP Í"Í" ml ,  we have: 

 
  [ ] );()()()( xgxfxgxf lll +=+  

  );( )( )()( xfxfxf mlml +=+  

  [ ] );()()( xfxf lmml =  

  )()( xfxf =e , where e = 1 – is a neutral element of multiplication in 

ʈ. 

  Thus, operations of addition of multinomials and its multiplication by a num-

ber from ʈ transform set []ʭʈ   of multinomials into vector space above the field ʈ of 
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coefficients, and the multinomial in relation to this set is a vector and it can be desig-

nated as 
­

)(xf .  

         
 

  

Ä2. VECTOR SPACES ʈ 
n
 ABOVE FIELD  ʈ 

 

   

Any field ʈ (field R of real or C of  complex numbers) is a vector space above itself 

with addition as the internal law and multiplication as external law (K = L =ʈ). 

            Product of any finite number n of sets ʈ is also vector space above the field P. 

This vector space is designated as  Ô
=

==
n

i
i

n PxPPxPxP
1

....  Elements (vectors) of 

this space are the ordered sets from n numbers (a1, a2, . . ., an),  named components 

or coordinates of a vector: ʭ
C

= (a1, a2, . . ., an), where 
nPxÍ

C
, and 

.,...,2,1, niPi =Ía   Internal and external laws of a composition in this space are as 

follows:  

 

);,...,,(),...,,(),...,,( 22112121 nnnnyx babababbbaaa +++=+Ý+
CC

 

),...,,(),...,,( 2121 nnx lalalaaaall =Ý
C

,                                       (4.1) 

here .,...,2,1,,,,, niPPPPyPx ii
nn =ÍÍÍÍÍ bal

CC
 

 Theoretically the components of a vector can arrange not only in row 

),...,,( 21 nx aaa=
C

, but also in column 
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 Depending on an arrangement these spaces are referred to as space of row ï 

vectors of  length n, or column ïvectors of height n. 

  Let’s consider a case, when P = R and vector spaces P
n 
= R

n
 are real. If n = 

1,2,3, then, how we have already defined, between point set of arithmetic space R
n
  

and point set of oriented geometrical space it is possible to determine the biunique 

mapping which has presentation: R
1­  point set of the coordinate axis; R

2
 ­ point 

set of the coordinate plane; R
3
- point set of oriented geometrical space. Mapping here 

is understood as a way of definition of point coordinates of space. 

By analogy it reasonable to assume, that in geometrical space there are also evident 

vector spaces which can be put in biunique conformity with vector spaces R
n
  above 

the field R where n = 1, 2, 3. Letsô set up such conformity. 
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Ä3. VECTORS IN GEOMETRICAL SPACE 

 

Definition. In geometrical space the directed segment 
­

ɸɺ, which is set by the 

ordered couple of points A and B, is referred to as a vector ()ʘ
C

. The first point is re-

ferred to as origin of the directed segment 
­

ɸɺand the second point B - its extremity, 

and: ʘ
C
 = 

­

ɸɺ.In a designation of the directed segment  
­

ɸɺ  the order of points is de-

fined by the order of their representation: A - the first point, B - the second. If points 

A and B are distinct, the directed segment 
­

ɸɺ is referred to as  nonzero (or 

nondegenerate) and if points A and B coincide the directed segment 
­

ɸɺ  is referred 

to as zero (or degenerate) and it is designated as 0
C

. 

The length of the directed segment describing the numerical value of a vector, 

is referred to as the modulus or absolute value of a vector and it is designated  as 
­

ɸɺ  or ʘ
C

. The direction of a segment determines a straight line on which the vec-

tor is  located. If vectors are located on one straight line, or on parallel straight lines 

such vectors are referred to as collinear vectors, i.e. there is a straight line which they 

are parallel to. If there is a plane relating which the vectors are parallel such vectors 

are referred to as coplanar vectors. 

The zero vector is considered to be collinear to any vector, since it has no the certain 

direction. The length of it is equal to zero. 

Equality of vectors. Two vectors are considered to be equal if their directed 

segments are equal. For equality of the directed segments it is possible to give three 

various definitions. Depending on this vector they are subdivided into three types. 

   

 

   

3.1. Types of vectors in geometrical space 

 

Definition 1. Two directed segments are equal, if the following conditions are 

satisfied: 

1.   The origin of segments is in the same point; 

2.   Lengths of segments are equal; 

3.   Segments belong to one straight line; 

4.   The directed segments have identical directions. 

If for determination of vector equality we base on the given definition then any vector 

represented by the directed segment 
­

ɸɺ-  will be equal to the vector which is repre-

sented by the same directed segment 
­

ɸɺ. Vectors, satisfying this rule, are referred to 

as the bound  vectors. Bound vectors are mapped with the unique directed segment, 

and there is no other directed segment equal to this vector.  
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Definition 2. Two directed segments are equal, if the following conditions are 

satisfied: 

       1) Lengths of segments are equal; 

       2) Segments belong to one straight line; 

       3) The directed segments have identical directions. 

If for determination of vector equality we base on the given definition then a 

set of the directed segments located on one straight line having both identical length 

and  direction (they can be lay off from any point of this straight line) map the equal  

vectors, and, hence, the same vector, such set of equal among themselves (in sense of 

definition 2) directed segments is referred to as a sliding vector. 

Definition 3. Two directed segments are equal, if the following conditions are 

satisfied: 

       1) Lengths of segments are equal; 

       2) The directed segments have identical directions; 

       3) The directed segments are collinear. 

If for determination of vector equality we base on the given definition then a 

set of the directed segments located on one straight line or on parallel straight lines, 

having identical length and direction, map the equal vectors. Such set equal among 

themselves (in sense of definition 3) directed segments is referred to as a free vector. 

A free vectorʘ
C

 is designated and represented with any of the directed segments 
­

ɸɺ 

of that directed segment set which is the  vector ʘ
C
. In each point of the space A ' it is 

always possible to plot the directed segment 
­

¡¡ɺɸ , which belongs to a set of directed 

segments of the given vector ʘ
C
(i.e. 

­

¡¡ɺɸ = 
­

ɸɺ)  and this directed segment for a spe-

cific point A' will be unique. This operation is made by means of parallel shift. 

 Further we shall consider only free vectors, and we shall name them, as far as 

possible, simply vectors. It is closely related with that fact that free vectors are im-

posed constraints on, and all other vectors represent a special case of free vectors 

which are imposed additional constraints.  

 

 

    

3.2. Vector space of free vectors above field R 

 

 

  

On set of free vectors in geometrical space we shall set two operations - addition of 

vectors and multiplication by the number from the field R. Let’ show, that the free 

vector set forms a vector space above the field R with these operations. 

 

Addition of free vectors. Let two free vectors ʘ
C
 and ʚ

C
 be given. Let’s plot the 

directed segments 
­

ɸɺand 
­

ɺʉ which are equal to them (it can be made for any point 

of B space). Then the directed segment 
­

ɸʉ, which belong to a set of directed seg-

ments of a vector ʩ
C
, is referred to as the sum of vectors ʘ

C
  and ʚ

C
  and it is designated 

ʘ
C
 + ʚ
C
.  We shall notice, that all three vectors  ʘ

C
 , ʚ
C
 and  ʘ

C
 + ʚ
C
=ʩ
C
 , belong to the 
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same set of free vectors, i.e. addition is the internal law of a composition. We shall 

find out its properties. 

 

1. Addition of vectors is commutative , i.e. ʘ
C
 + ʚ
C
= ʚ
C
+ ʘ
C
. Really, we shall lay off  a 

vector ʘ
C

  from an any point A : 
­

ɸɺ= ʘ
C
,  and from a point B we shall lay off a vector 

ʚ
C
: 

­

ɺʉ = ʚ
C
. Then ʘ

C
 + ʚ
C
= 

­

ɸʉ. Now, first we shall lay off from a point A a vector ʚ
C
: 

­

ɸD = ʚ
C
. Then by virtue of equality 

­

ɸD=
­

ɺʉ (quadrangle ɸɺʉD – is a parallelogram) 

we have aABDC
C
==

­­

, , i.e. 
­

DC   is a vector ʘ
C

 laid off from the point D. Thus, ʚ
C
+ ʘ
C
 = 

­

ɸD+
­

DC = 
­

ɸʉ and therefore  

 ʘ
C

  + ʚ
C

 = ʚ
C

 + ʘ
C

 . 

 

        2. Addition of vectors is associative, i.e. for any vectors  ʘ
C
 , ʚ
C
 and  ʩ

C
  it is exe-

cuted 

                      ).()( ʩʚʘʩʚʘ
CCCCCC
++=++

 

 

          The proof. Let A – be an any point, and A, B, D – are such points, that 

, , , cCDʚɺʉʘɸɺ
CCC
===

­­­

 then 

­­­­­­

=+=++=++ ADBDABCDɺʉɸɺʩʚa  )( )(
CCC

, 

­­­­­­

=+=++=++ ADCDACʉDɺʉɸɺʩʚa )()(
CCC

. 

2. aa
CCC
=+0 , i.e. 0

C
- is a neutral element. 

3. 0)(
CCC
=-+ aa , a

C
- - is a symmetric element. 

Last two properties are obvious. Thus, addition on a set of free vectors makes Abeli-

an group.  

 Multiplication of a free vector by the number from R. Product ʘ
C
l of the 

number lÍR on a free vector ʘ
C
 in a case of ʘ

C
0
C
¸ ,  l  ̧0,  is referred to as vector 

which is collinear to the  vector ʘ
C
, which absolute value is equal to ʘ

C
 l  and which 

is directed to the same direction as the vector ʘ
C
, if l > 0ʘ

C
 , and in opposite direction, 

if  l < 0. If  l = 0 or ʘ
C
 = 0
C
,then according to the  definition ʘ

C
l  = 0

C
.  

  
 

  

 

 

 

The following condition of vector collinearity  follows from: if two vectors ʘ
C
and ʚ

C
 

are related by the ratio  ʚ
C
 = ʘ

C
l ,  these of a vector are collinear. Such vectors are re-

ferred to proportional vectors.  

  Thus, multiplication of a vector by the number lÍR represents the external 

law of composition. Let’s define its properties. 



 69 

 

1. For any numbers lÍR and  mÍR and any vector  ʘ
C
 ʘʘ

CC
)()( mlml Ö=Ö . 

2. 1·ʘ
C
= ʘ
C
, e = 1 – is a neutral element of multiplication in R. 

3. For any numbers  lÍR and mÍR and any vector  ʘ
C
 

                            ʘʘʘ
CCC

 )( mlml +=+ . 

4. For any vectors ʘ
C
and ʚ

C
 and any number  lÍR 

                             ʚʘʚʘ
CCCC
lll +=+ )( . 

                         

First three properties are obvious. We shall prove property 4. Let’s assume, 

that vectors ʘ
C

  and ʚ
C

  are not collinear. The case of vector collinearity ʘ
C

  and ʚ
C

 is re-

duced to properties 3 and 2. We shall lay off a vector ʘ
C

  from the point A: ,ʘɸɺ
C
=

­

 and 

the vector ʚ
C
from the point ɺ: ʚɺʉ

C
=

­

. Let’s plot vectors ʘɺɸ
C
l=¡

­

 and 

)( ʚʘʉɸ
CC
+=¡l (fig. 2.3). It follows from similarity of triangles ɸɺʉ and АВ'С' 

(both in case if l > 0, and in case if l < 0), that ʚʉɺ
C
l=¡¡

­

. 

  But 
­­­
¡=¡¡+¡ ʉɸʉɺɺɸ , hence ( ) ʚʘʚʘ

CCCC
lll +=+ .  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

                                                            Fig. 2.3 

 

 The following condition vector coplanarity follows from the proof of property 

4. For  three vectors ʘ
C
, ʚ
C
and ʩ

C
, to be coplanar, it is necessary and sufficient that they 

satisfy  the ratio ʚʘʩ
CCC
ml+= , where lÍR and mÍR.. This ratio is read as: the vector 

ʩ
C
 is a linear combination of vectors ʘ

C
  and ʚ

C
 . 
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  Thus, the set of free vectors on which the given operations of vector addition 

and vector multiplication by number from R are set, forms vector space above the 

field R. 

  Now let’s consider, how it is possible to set a vector with the help the Carte-

sian rectangular system of coordinates, and lets’ define their conformity with vectors 

from the space R
3
. 

 

   

3.3. The assignment of free vectors by means of system of coordinates and 

their conformity with vectors from vector space R
3
  

 

 Let’s choose in space Cartesian rectangular system of coordinates x, y, z. Let’s 

consider an any vector ʘ
C

 which is assigned by the directed segment .
­

ɸɺ We shall re-

mind, that the point A can be any point of a space. In the chosen system of coordi-

nates we shall define coordinates of the vector origin - points A and the end of this 

vector - point B (fig. 2.4). 

Let coordinates of a point A be the triple of numbers (ʭ1, ʫ1, z1),  of the point ɺ 

- (ʭ2, ʫ2, z2).  Then coordinates of a vector ʘ
C
 is named the ordered triple of numbers 

(ʭ, ʫ, z), which is calculated by formulas: 

ʭ = ʭ2  - ʭ1;  ʫ = ʫ2 ï ʫ1;   z =  z2 -  z1, (fig. 2.4)  

 It is written as follows ʘ
C
(ʭ, ʫ, z) or  ʘ

C
(ʘʭ, ʘʫ, ʘz). 

If the origin of the directed segment 
­

ɸɺ  coincides with the origin of coordi-

nates ɸ(ʭ1, ʫ1, z1) = ʆ( 0, 0, 0,),  the directed segment is referred to as a radius - vec-

tor of a point B. In this case coordinates (ʭ,y, z) of the vector ʘ
C
с coincide with coor-

dinates ʭ2, ʫ2, z2 of the point B: ʭ = ʭ2,  ʫ = ʫ2,  z = z2. 
 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

                                                                   

Fig. 2.4 
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Thus, having chosen in space the Cartesian system of coordinates, we can establish 

conformity with its help between any vector ʘ
C
,set by the directed segment 

­

ɸɺ  and 

the vector ʘ
C
, from vector space R

3
, which coordinates are determined by the ordered 

triple of numbers (ʭ, y, z). If the specified conformity which represents a way of a de-

fining of coordinates by a method of mapping we designate through f,  then 

f :ʘ
C
­ ʘ
C
¡ = f (ʘ

C
) =  (ʭ, ʫ, z).  

 

Let's show, that f is biunique mapping. For this purpose we shall consider the theorem 

of vector equality.  

The theorem. Two vectors are equal only in the case when their coordinates 

are equal.  

  For the proof of this theorem, firstly we shall show, how it is possible to set a 

vectorʘ
C
 by means of its length |ʘ

C
| and angles which it subtends with coordinate axes. 

Let's consider any directed segment 
­

ɸɺ which belong to a set of the vectorʘ
C
. 

We shall plot on 
­

ɸɺ,  as on a diagonal, a rectangular parallelepiped (fig. 2.5) with 

sides ɸɸ1 = ʭ = ʭ2 ï ʭ1 = ʘʭ;  ɸɸ2 = ʫ = ʫ2 ï ʫ1 = ʘʫ; ɸɸ3 = z = z2 ï z1 = ʘz . 

  It should be noticed, that all points laying on a plane, parallel to any coordi-

nate plane, have equal coordinates of that axis to which this plane is perpendicular. If 

points are located on a straight line parallel to any of coordinate axes, then for these 

points only the coordinate of that axis, which this straight line is parallel to, is 

changed. Two other coordinates are identical. For example, points A and ɸ1  (fig. 2.5) 

lay on a straight line parallel to an axis ОХ, hence, for these points only coordinate ʭ 

changes. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                          g 

                                       b 
                                       
                                       a  
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Fig. 2.5. 

 

Now we shall designate through a, b and g  the angles which the directed seg-

ment 
­

ɸɺsubtends with axes of coordinates x, y, z accordingly or with the sides of 

parallelepiped ɸɸ1, ɸɸ2, ɸɸ3 (fig. 2.5). From rectangular triangles ɸɸ1ɺ, ɸɸ2ɺ and 

ɸɸ3ɺ we find 

 

    ʭ = ʭ2 ï ʭ1 = ʘʭ =|
­

ɸɺ| cosa, 

    ʫ = ʫ2 ï ʫ2 =ʘʫ = |
­

ɸɺ| cosb                 ( 4.2 ) 

z = z2 - z1 = az =  |
­

ɸɺ| cosg 

 where     |
­

ɸɺ| = |ʘ
C
| = 2222222

12

2

12

2

12 )()()( zyx aaazyxzzyyxx ++=++=-+-+- , 

 cosa, cosb and cosg is referred to direction cosine, and for them the ratio takes place  

cos
2a + cos

2b + cos
2g = 1                                ( 4.3) 

  Now on the basis of the obtained formulas we shall prove the theorem of vec-

tor equality. We shall consider two vectors ʘ
C
 and ʚ

C
  with coordinates x1, y1, z1 and  

x2, y2, z2 accordingly.  

Necessity. Letôs show, that if vectors are equal (ʘ
C
= ʚ
C
), also their coordinates 

are equal (x1 =  x2;  y1 = y2;  z1 = z2). It follows from vector equality, that |ʘ
C
| = |ʚ

C
|, 

and also, that cosa1 = cosa2,  cosb1 =  cosb2,  cosg1 = cosg2, since vectors are collin-

earand are equally directed. If vectors are collinear and are oppositely directed, cosa1 
= -cosa2, cosb1 =  -cosb2,  cosg1 = -cosg2. Now it follows from formulas (4.2):  

  x1 =|ʘ
C
| cosa1  = |ʚ

C
| cosa2 = х2, 

     у1 =|ʘ
C
| cosb1  = |ʚ

C
| cosb2 = у2, 

     z1 =|ʘ
C
| cosg1  = |ʚ

C
| cosg2 = z2,  

 that was to be proved. 

Sufficiency. Since coordinates of vectors ʘ
C
and ʚ

C
 are equal, then 

|ʘ
C
| = |ʚ
C
| и cosa1 = cosa2,   cosb1 = cosb2,   cosg1 = cosg2.  

 

The second condition means, that vectors ʘ
C
 and ʚ

C
 are collinear and directed to one 

direction, and taking into account  |ʘ
C
| = |ʚ

C
|  such a vector are considered to be equal, 

i.e. ʘ
C
 = ʚ
C
.   

 

Theorem of vector equality implyies, that mapping ʘ
C
­ʘ
C
¡ = (x, y, z) is biunique. Re-

ally, each vector ʘ
C
 from the vector space of free vectors can be put in conformity 

with  unique vector ʘ
C
¡= (x, y, z) from the vector space R

3 
 and on the contrary, each 

ordered triple of numbers (x, y, z), i.e.  a vector from R
3
, can be put in conformity 

with  unique vector ʘ
C
  from vector space of free vectors. For construction of this vec-

tor it is sufficient to construct a radius - vector of the point B (x, y, z) in the chosen 

system of coordinates. Then the set of all directed segments equal to the directed 
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segment 
­

ʆɺ is the vector ʘ
C
 with coordinates x, y, z. It should be noticed that this con-

formity depends on a choice of system of coordinates. 

If the vector ʘ
C
 is located in one of coordinate planes, then one of coordinates is equal 

to zero, for example, if this plane is  ʍʆʋ, the coordinate z = 0. Such vector can be 

represented by the directed segment laying in any of the planes, which is parallel to 

the plane ʍʆʋ  In this case each vector ʘ
C
located in a coordinate plane can be put in 

conformity with the ordered couple of numbers (ʭ, ʫ), representing a vector from vec-

tor space R
2
  and this conformity is biunique. 

If the vector ʘ
C
 is located on one of coordinate axes, then other two coordinates 

are equal to zero and thus each vector ʘ
C
 located on a coordinate axis can be put in 

conformity with a vector which has coordinate ʭ from the vector space R
1
 and this 

conformity is biunique. Such vector can be represented by the directed segment lo-

cated on any straight line, which is parallel to the corresponding coordinate axis. 

Let's show now, that operations of free vectors addition and their multiplication 

by the number from field R are in full conformity with similar operations on the vec-

tors from R
3
, i.e. relating to the given operations these spaces are isomorphic. We list 

these operations without the proof since all of them are proved in the course of high 

school.  

The sum of free vectors. Coordinates of the sum of two free vectors are equal 

to the sums of corresponding summand coordinates.  

On a coordinate axis: ʘ
C
(х1)  and  ʚ

C
(х2); 

       ʘ
C
(х1) + ʚ

C
(х2) = c

C
(х1 + х2). 

            On a coordinate plane: ʘ
C
(х1, у1)  and  ʚ

C
(х2, у2);                        

     ʘ
C
(х1, у1) + ʚ

C
(х2, у2) = c

C
(х1 + х2, у1 + у2). 

 In space : ʘ
C
(х1, у1, z1) and ʚ

C
 (х2, у2, z2);  

   ʘ
C
(х1, у1, z1) +ʚ

C
 (х2, у2, z2) = c

C
 (х1 + х2 , у1 + у2, z1 + z2) – conformity (see the for-

mula (4.1)). 

Multiplication of a free vector by a number from field R. Coordinates of the product 

ʘ
C
l  of the vector ʘ

C
(x, y, z) and the  number l are equal to the products of this number 

and corresponding coordinates of the vector ʘ
C
. 

z,ʫ,ʭ(ʘ llll
C

) -  conformity (see the formula (4.1)). 

    

 Corollary fact. For two vectors ʘ
C
(ʭ1, ʫ1, z1) and ʚ

C
(ʭ2, ʫ2, z2) to be collinear, i.e. 

ʘʚ
CC
l= ,  it is necessary and sufficient that corresponding coordinates of the vectors to 

be proportional: l===
1

2

1

2

1

2

z

z

ʫ

ʫ

ʭ

ʭ
. 

  In addition to these two operations we shall introduce one more opera-

tion on free vectors which you met in a course of high school but which sense we 

shall consider later. 

3.4. Scalar product of two free vectors 
 

Definition. Scalar product ʘ
C
Ö ʚ
C

 of two free vectors ʘ
C
 and ʚ

C
, if these vectors 

are not equal to zero, is referred to as a number which is equal to the product of their 

magnitudes and cosine of angle between them 
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   ʘ
C
Ö ʚ
C
= |ʘ
C
|Ö |ʚ
C
|cosj                    (4.4)  

   

If  ʘ
C
= 0
C

or ʚ
C
 = 0
C

(or ʘ
C
 = ʚ
C
 = 0
C

), the scalar product ʘ
C
Ö ʚ
C
 , by definition, is con-

sidered to be equal to zero. 

Corollary facts.  

1. If two vectors are perpendicular, their scalar product is equal to zero. 

2. Scalar product of two vectors is expressed by the maximal number if vectors 

are collinear and have the identical direction ((j = 0), and it is expressed by the min-

imal number, if they are collinear, but oppositely directed (j = p ). 

3. Scalar product of the vector ʘ
C
 and ʘ

C
  is equal to the square of the vector 

magnitude ʘ
C
:   ʘ
C
Öʘ
C
= |ʘ
C
|
2
, hence  |ʘ

C
| = ʘʘ

CC
Ö . 

Scalar product of two vectors set by their coordinates is equal to the sum of 

products of their corresponding coordinates:   
 

ʘ
C
 (х1, у1, z1) , ʚ

C
(х2, у2, z2);  ʘ

C
Öʚ
C
= х1· х2  + у1·у2 +z1·z2                          (4.5)   

 

EXERCISES 

 

 
1. With the given vectors ʘ

C
 and ʚ

C
,  construct the vectors 2ʘ

C
 - ʚ
C
 and ʚ

C
- ʘ
C
/2. 

2. Define, at what values a and b , the vectors ʘ
C
(2, a, 1) and ʚ

C
(3, -6, b) are 

collinear. 

3. Ascertain  that points ɸ(3, -1, 2), ɺ(1, 2, -1), ʉ(-1,1,-3), D(3,-5, 3) serve as 

vertexes of a trapeze. 

4. The vector ʘ
C

  makes with axes of coordinates the acute angles Ŭ, ɓ, ɔ, and, Ŭ 

= 45º,   β = 60º. Determine its coordinates, if |ʘ
C
| = 3.  

5. Determine the direction cosines of the direction L, set by the directed seg-

ment 
­

ɸɺ, where ɸ(1,0,-1) and ɺ(3,1,-3). 

6. Define, whether points ɸ,ɺ,ʉ,D  lie in one plane: 

а) ɸ(1,2,3), ɺ(7,3,2),ʉ(-3,0,6) and D(9,2,4); 

b) ɸ(1,1,3), ɺ(5,3,2),ʉ(-3,0,6) and D(9,2,4); 

c) ɸ(1,2,3), ɺ(-2,1,1),ʉ(-1,3,2) and D(3,-4,3.) 

7. The height lowered from the vertex A of the triangle ɸɺʉ, divides the oppo-

site side in the ratio 3:1. Define the coordinates of top A if  ɺ(-1,1),    ʉ(3, 5), the 

length of height is equal to 2. 

8. Vectors ʘ
C
(1,-1,2) и ʚ

C
(2,-2,1) are given. Define a projection of the vector ʩ

C

=3ʘ
C
-ʚ
C

  onto the direction of a vector ʚ
C
. 

 
 

 

 

Ä4. VECTOR SUBSPACE 

Definition. Let there be a vector space K above the field ʈ, and let G  be a sub-

set K which with laws induced from K, makes a vector space above ʈ; then G is re-

ferred to as a vector subspace of the space K or a linear variety in K.  
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It follows from the definition that the sum of any vectors from G is a vector be-

longing to the same set G, and product of a number from the field ʈ and a vector 

from G, belongs to same set G. 

Thus, every vector subspace is a vector space in itself and on the contrary, any 

vector space can be considered as a vector subspace. For example, R 
m
  is a vector 

subspace of the space R 
n 
 for any  m <n and, in its turn, R 

n 
 is a subspace R 

n+1
. 

 

 

4.1. Subspace generated by the linear combination of vectors 

 

Definition. Let any system m of the vectors mʘʘʘ
CCC

,..., 21  be given which be-

long to vector space K above the field P.  Letôs multiply each vector Kai Í
C

  by the 

number Pi Íl ,  i = 1,2,. . .,m  and add the results. The obtained expression 

 ä
=

=+++
m

i
iimm aaaa

1
2211 ...

CCCC
llll   

is referred to as a linear combination of vectors with coefficients l1, l2, . . .lm.  
 

As the coefficients l1, l2, . . .lm  are numbers from field ʈ, which are picked 

out arbitrarily (there may be also zeros among l), then the linear combinations 

formed by system of vectors maaa
CCC

,...,, 21 will be an infinite set. Each linear combi-

nation of vectors determines a certain vector 

mmaʘʘʚ
CCCC

lll +++= ...2211                                         (4.6) 

 

which belongs to the same vector space K. Such vector ʚ
C
  is referred to as a linear 

combination of the given vectors or also we can say, that the vector ʚ
C
  is separated 

into vectors maaa
CCC

,...,, 21 , and that infinite set G which is formed by these of  vec-

tors, will be the vector subspace of the space K. This subspace is referred to as a line-

ar hull  of the system of vectors maaa
CCC

,...,, 21 , or subspace, generated by a linear 

combination of vectors maaa
CCC

,...,, 21  from ʂ. 

Really, let  

 

mmaʘʘʚ
CCCC

lll +++= ...22111  and mmaʘʘʚ
CCCC

mmm +++= ...22112  be two any 

vectors from  G. We have,  

Gaʘʘʚʚ mmm Í++++++=+
CCCCC

)(...)()( 22211121 mlmlml ,   

a neutral element Gaaa mÍ+++=
CCCC

0...000 21 ,  

a symmetric element Gaʘʘʚ mm Í-++-+-=-
CCCC

)(...)()( 22111 lll .  

On the other part, for any  b Í R we have, 

 

 Gaʘʘʚ mm Í+++=
CCCC

) (...) () ( 22111 lblblbb , 
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Hence, GË ʂ has properties of a vector space and consequently it is a vector sub-

space of the space K. 

  We shall consider now the basic properties of vector system and a subspace  

generated by them. 

 

 

4.2. Linear dependence and independence of vectors 

 
 

Definition 1. The system of vectors maaa
CCC

,...,, 21  from ʂ (where m ï is finite) 

is referred to as linearly dependent, and the vectors are referred to as linearly de-

pendent if there will be even one set l1, l2, . . ., lm, of such numbers in field ʈ, but 

not all these numbers are equal to zero, that  

ö
ö
÷

õ
æ
æ
ç

å
==+++ ä

=

m

i
iimm aaʘʘ

1
2211 0  0...

CCCCC
llll        (4.7). 

Definition 2. The system of vectors Kaaa mÍ
CCC

,...,, 21  is referred to as linear-

ly independent, and the vectors are referred to as linearly independent if the linear 

combination from these vectors mmaaa
C

2
CC

lll +++ 2211   is equal to zero vector 0
C

 

ö
ö
÷

õ
æ
æ
ç

å
=ä

=

m

i
ii a

1

0 
CC

l

 only in that case , if 0...21 ==== mlll . 

 

The remark. One vector Ka Í
C

  is linearly independent, if 0
CC
¸ʘ , and on the 

contrary, the vector ʂÍ0
C

 -  is linearly dependent. 

  We shall give to presentation of linear dependence and independence of vec-

tors. We shall consider system of free vectors. 

The theorem 1. For two free vectors 1a
C

and 2a
C

 to be linearly dependent, it is 

necessary and sufficient that they are collinear. 

The proof. Necessity. Vectors 1a
C

and 2a
C

 are linearly dependent. Hence 

02211

CCC
=+ ʘʘ ll , where l1 and l2  are not equal to zero at the same time. Let, for 

example, l1  ̧0, then  2
1

2
1 ʘʘ

CC

l

l
-= ;  this implyies that  1a

C
and 2a
C

 are collinear. 

Sufficiency. Vectors 1a
C

and 2a
C

 are collinear. Hence 21 ʘʘ
CC
l= , from here, 

01 21

CCC
=-Ö ʘʘ l but since  = 1  0, means vectors 1a

C
and 2a
C

are linearly dependent. 

 

The remark. If two vectors are linearly independent, they are not collinear and 

vice versa. 

The theorem 2. For three free vectors 1a
C

, 2a
C

and 3ʘ
C

 to be linearly dependent, it 

is necessary and sufficient that they are coplanar. 
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The proof of this theorem (See. Book 2, Chapter. 4, §3, item 3.2.) 

The remark. If three vectors are linearly independent, they are not coplanar. 

The converse proposition is also fair.  

 

4.3. Theorems about linearly dependent and linearly independent vectors  

The theorem 1. If the system of vectors Kaaa mÍ
CCC

,...,, 21  is linearly depend-

ent, then after adding to it any number of new vectors from K, we will have again a 

linearly dependent system.  

The proof. It follows from equality   
 

0........ 112211

CCCCCC
=++++++ ++++ kmkmmmmm aaaʘʘ lllll , 

in which among  mlll ,....,, 21  are nonzero, but all kmmm +++ lll ,...,, 21  are equal 

to zero. 

  

Let the system of vectors be set, maaa
CCC

,...,, 21  from ʂ. Any part of this vector sys-

tem we shall name its subsystem. Then the theorem 1 can be formulated as follows. 

If any subsystem of the given vector system is linearly dependent, also the sys-

tem is linearly dependent. 

For system of linearly independent vectors the following statement is fair. 

If the system consists of linearly independent vectors its any subsystem also 

consists of linearly independent vectors. 

Corollary facts. 

       ʘ) If there is a vector 0
C

 in the set  maaa
CCC

,...,, 21   , then the set maaa
CCC

,...,, 21  is 

linearly dependent; it is equivalent to the statement, that if the set is linearly inde-

pendent, then each vector  ̧0
C

. 

       b) If there are two proportional vectors in some set, for example, ji aa
CC

 m=  

where PÍm , then the set is linearly dependent, since those is  the partial set ji aa
CC

, ; 

really, ,0)1( =-+ ij aʘ
CG

m  and 01¸-=il . 

The theorem 2. The system of vectors mʘʘʘ
CCC

,..., 21  from ʂ will be linearly de-

pendent in only a case when  one of these vectors can be presented as a linear combi-

nation of other vectors of this system. 

The proof. Necessity. Let mʘʘʘ
CCC

,..., 21  - be a linearly dependent system of vec-

tors. Then there will be a set of numbers PmÍmmm ,....,, 21 , which not all are equal 

to zero, and such, that 0....11

CCC
=++ mmaa mm . Let’s assume for definiteness, that 

0̧im ,  then    

 

m
i

m
i

i

i
i

i

i

ii
i aaaaaa

CCCCCC
ö
ö
÷

õ
æ
æ
ç

å
-++ö

ö
÷

õ
æ
æ
ç

å
-+ö

ö
÷

õ
æ
æ
ç

å
-++ö

ö
÷

õ
æ
æ
ç

å
-+ö

ö
÷

õ
æ
æ
ç

å
-= +

+
-

-

m

m

m

m

m

m

m

m

m

m
........ 1

1
1

1
2

2
1

1

or 
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mmi aaaa
CCCC

lll +++= ....2211 , where 
i

j
j

m

m
l -= , j = 1,2,....,m, and 

j  ̧i. 

Sufficiency. 

mmiiiiii aaaaaa
CCCCCC

lllll ++++++= ++-- ........ 1111221  -  is a linear combina-

tion. Let’s multiply this equality by (-1) and let’s subtract from both parts a vector (-

1) iʘ
C

,  we shall obtain  

 0....)1(....2211

CCCCC
=++-+++ mmi aʘʘʘ lll . 

For coefficients we have non-trivial combination 01¸-=il , hence, the system is 

linearly dependent. 

 

 

 

4.4. Base and rank of vector system. Basis and dimension of vector  

       subspace, generated by vector system  

 

Definition 1. In any system of vectors maaa ,....,, 21
CC

 from ʂ,  containing non-

zero  vectors, always it is possible to choose a subsystem raaa ,....,, 21
CC

,where r ¢ m,  

which consists of the maximal number of linearly independent vectors so, that adding 

of any vector from this system to the specified subsystem makes it linearly depend-

ent; really, since there is a non-vanishing vector in system, and it is always linearly 

independent, then r ² 1.  Such subsystem of linearly independent vectors is referred 

to as base of initial system, and number r of vectors in base - a rank of this vector 

system. 

The remark. The base of system is defined ambiguously, but number of vec-

tors in base (rank) is always equal. For example, one of three vectors 321 ,, ʘʘʘ
CCC

, is 

linearly dependent, it is possible to construct three bases of two vectors: 

213231 ʘ,ʘ  ;ʘ ,ʘ  ;ʘ,ʘ
CCCCCC

. 

Properties of a base. 

1. All vectors of system can be presented as a linear combination of vectors of 

a base. (see the previous item 4.3, the theorem 2). 

           2. Any vector of subspace, generated by vector system, can be presented as a 

linear combination only the vectors forming its base and this decomposition it is 

unique. 

                The proof. Let G – be a subspace, generated by vectors 

maaa
GCC

,...,, 21  and let raaa ,....,, 21
CC

 r < m  (for r = m the statement is obvious) be a 

base of system maaa
GCC

,...,, 21 . Then the rest of system vectors mr aa
CC

,...,1+   can be  

presented as a linear combination of base vectors                    

  ,... 22221212 rrr aaaa
CCCC

bbb +++=+                                                  

(4.8) 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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 .... )(22)(11)( rrrmrmrmm aaaa
CCCC

--- +++= bbb  

Now let’s consider any vector GʚÍ
C

: 

 

 mmrrrr aaaʘʘʚ
CCCCCC

lllll ++++++= ++ ........ 112211 . 

Substituting this equality of a vector mr aa
CC

,...,1+  for  (4.8), we obtain 

 

( )[ ] ( )[ ]rrmrmrrmr aaʚ
CCC

 ...... ... )(111)(1111 --+ ++++++++= bbllbbll   

or rr aaaʚ
CCGC

mmm +++= ...2211 . 

Definition 2. For vector subspace, generated by system of vectors 

maaa
GCC

,...,, 21 ,  the base of this vector system is referred to as a basis, and the rank of 

vector system is referred to as dimension of its subspace. 

  As a striking example we shall consider a subspace, generated by system of 

free vectors. 

 

4.5.  Basis and dimension of  vector subspace,   

generated by system of free vectors 

 

 We shall consider a subspace which element is the linear combination of three 

free vectors 332211 ʘʘʘ
CCC

lll ++ . Let’s assume, that this vector system is linearly 

dependent. The case of linearly independent vectors will be described further. We 

have already determined, that if the linear combination of three free vectors is linear-

ly dependent, it means, that these of  vectors are coplanar, i.e. there is a plane which 

they are parallel to. Obviously, that  also any vectorʚ
C

 will be coplanar, which is  a 

linear combination of these vectors. Therefore a subspace, generated by system of 

such three linearly dependent vectors, represents a set of all vectors, which are copla-

nar to the given ones. Such system of vectors  is represented by the directed segments 

laying in one plane, or in planes parallel to it. Further, since the system of three vec-

tors 321 ,, ʘʘʘ
CCC

  is linearly dependent, then one of these vectors is a linear combina-

tion of two other vectors. Let this vector  be 

 221133 : ʘʘʘʘ
CCCC

bb += , where 
3

2
2

3

1
1 ,

l

l
b

l

l
b -=-= . Let's consider a condition 

when the rest of  vectors are linearly independent, i.e. it means, that they are not col-

linear. Then these two ordered vectors will make basis of subspace of coplanar vec-

tors and dimension of its subspace  is equal to two. Hence, the basis of two-

dimensional subspace of coplanar free vectors represents any two ordered noncol-

linear vectors. Usually as basic vectors of two-dimensional space we choose vectors 

which are represented by the directed segments which are parallel to coordinate axes 

ʆʍ and ʆʋ  on a plane and which are by absolute value to a scale segment of coordi-

nate axes. The first vector directed parallel to an axis ʆʍ is designated as i
C
: its coor-

dinates are (1,0), and the second vector directed parallel to axis ʆY is designated j
C

: 

its coordinates are (0,1).  The choice of such basis is caused by that if we represent 

any vector ʚ
C

 with coordinates (ʭ, ʫ) of two-dimensional subspace through basis the 
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i
C

, j
C
, in this case coefficients of a linear combination of basic vectors will be coordi-

nates ʭ and y of the vector ʚ
C

, i.e. jyiʭʚ
CCC

+= ʚ
C

, and as we already saw, this decom-

position is unique. 

Now we shall consider a case, when vectors  1ʘ
C

 and 2ʘ
C

, (one of which is not equal 0
C

) are collinear, i.e. they are linearly dependent (or 12  ʘʘ
CC
g= ). Naturally  any vector 

being a linear combination of these vectors will be collinear to them. Therefore a sub-

space, generated by system of vectors only one of which is linearly independent, (it is 

the vector which is not equal to 0
C

)  represents a set of collinear vectors. The basis of 

such subspace consists of one nonzero vector, and dimension of such subspace is 

equal to one. One-dimensional subspace is represented by a set of the directed seg-

ments located on one straight line or on straight lines parallel to it. 

Now we shall generalize a concept of basis for a set of the vectors forming all 

the vector space K. 

 

      Ä5. BASIS AND DIMENSION OF VECTOR SPACE 

 

Definition. Let K – be a vector space above the field ʈ; letôs assume, that there 

is a finite number n of such linearly independent vectors n?
C

?
C

?
C

,...,, 21  in this space, 

that every vector one ʘ
C

from ʂ ʘ
C

 linearly depends on n?
C

?
C

?
C

,...,, 21 . Then we shall 

speak, that the set n?
C

?
C

?
C

,...,, 21  forms a basis of the space K  and, that the vector 

space K  has finite dimension n, and it is written down as dimK = n. 

The remark. There are the vector spaces which do not have finite dimension; it 

is said, that they have infinite dimension; there are arbitrarily big sets of linearly in-

dependent vectors in such vector spaces. For example, vector space of multinomials. 

Consideration of such spaces is beyond the course of linear algebra.  

There is no basis also in zero space as the system consisting of one zero vector, 

is linearly dependent. Dimension of zero space is not determined and it is considered 

to be equal to zero. 

Corollary facts from definition.  

1. In  n – dimensional vector space K  the set consisting of more than  n-vectors 

is always linearly dependent.      
 

If  K has some bases, these bases contain identical number of vectors, and this number 

is equal to dimension K; hence, dimK does not depend on a choice of basis. Really, if 

K has the basis which is distinct from n?
C

?
C

?
C

,...,, 21 , the last will have n ' vectors, and 

n' ¢ n. Just as in K no more than  n ' linearly independent vectors can exist, and so  n 

¢ n', and, hence, n = n'. 

 

5.1. Basis construction 

 
  

  Let there be n – dimensional vector space K, i.e. there is even one basis of n 

vectors in it. We shall choose in K an any vector 01

CC
¸ʘ . If  K does not contain the 
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vectors linearly independent on 1ʘ
C

, then for any vector ʂʘÍ
C

 we have 

0)( 1

CCC
=-+ ʘʘ l or 1ʘʘ

CC
l= and 1ʘ

C
 forms a basis of the space K  which has dimension 

1. Let’s assume, that dimension n> 1. We shall designate through 2ʘ
C

 vector from K  

which is linearly independent on 1ʘ
C

. Let’s suppose that in such way linearly inde-

pendent vectors rʘʘʘ
CCC

,....,, 21  are gradually obtained. If r < n, then ʂ contains the 

vectors  linearly independent on rʘʘʘ
CCC

,....,, 21 , otherwise these vectors would from the 

basis K, containing r < n = dimK vectors what is impossible. So, there will be such 

vector Kar Í+1
C

, that 121 ,,....,, +rr aʘʘʘ
CCCC

 are linearly independent. This way we can 

obtain n  linearly independent vectors which will form a basis of the space  K. That 

fact, that  vectors for construction of basis have been chosen arbitrarily, proves that 

always there is an infinite set of various bases of space K (but all of them contain 

identical number of vectors n = dimK). Thus we can consider to be proved also the 

theorem of incomplete basis and a lemma of replacement. 

 

The theorem of incomplete basis. Any linearly independent set of vectors 

ʂʘ,....,ʘ,ʘ rÍ
CCC

21 where r < n = dimK  always can be added with n – r other vectors from 

K so that the obtained system n of vectors forms a basis of the space K. 

A lemma about replacement. Let n?
C

?
C

?
C

,...,, 21   be a basis of the space K. Then any 

vector nii   ,....,2,1, =?
C

 from this basis can be replaced  with other vector a
C
from ʂ, 

which is not a linear combination of other vectors in basis: 

  

nniiiia ?
C

?
C

?
C

?
CC

llll +++++¸ ++-- ........ 111111 . Then 

nii a ??
CC

?
C

?
C

?
C

,....,,,,....,, 1121 +-  -  is a basis ʂ. 

 
 

 
     

5.2. The basic properties of basis 

 
  

  Let ʘ
C

   be  any vector from K of the dimension n; since it linearly depends on 

the basis n?
C

?
C

?
C

,...,, 21 ,then  there will be such numbers l, l1, . . ., ln  which are not 

all equal to zero in ʈ, that 0....2211

C
?
C

?
C

?
CC

=++++ nnʘ llll . And l  ̧0, as other-

wise n?
C

?
C

?
C

,...,, 21 would be linearly dependent. As ʈ  is a field, then ʈÍ
l

1
 exists. 

After multiplication by 
l

1
 we shall obtain:  nna ?

C
?
C

?
CC

bbb +++= ....2211 , where 

l

l
b i

i -= , i=1,2,...,n.  

 

Thus, the vector space K is generated by the basis n?
C

?
C

?
C

,...,, 21 ,  and the given ex-

pression is referred to as  decomposition of the vector ʘ
C
 in terms of the basis 



 82 

n?
C

?
C

?
C

,...,, 21 . Numbers nbbb ,....,, 21   are  referred to as components (coordinates) 

of the vector ʘ
C

  in basis n?
C

?
C

?
C

,...,, 21 . 
 

The theorem. ( Basic property of a basis) Representation of any vector ʘ
C
 from 

the space K  through its  basis n?
C

?
C

?
C

,...,, 21   is unique, or in other words, in the set 

basis the vector components are defined unequivocally. 

The proof. Letôs assume, that the theorem is not true and the vector ʘ
C
  in the 

basis n?
C

?
C

?
C

,...,, 21  has various components nna ?
C

?
C

?
CC

lll +++= ....2211  and 

nna ?
C

?
C

?
CC

bbb +++= ....2211 . Then subtracting these equalities, we shall obtain 

nnn ?
C

?
C

?
CC

)(...)()(0 222111 blblbl -++-+-= . As vectors n?
C

?
C

?
C

,...,, 21 are 

linearly independent, then 0)(,...,0)( 11 =-=- nn blbl  and hence 

nn blblbl === ,...,, 2211 . 

The remark. The same vector in various bases has different components. 

As a striking example we shall consider the space of free vectors. 

 

 

5.3. Basis and dimension of free vector space 

Let's choose the system consisting of three ordered free vectors 321 ,, ʘʘʘ
CCC

. The 

case when this vector system is linearly dependent, is already considered by us in the 

previous paragraph, item 4.5. Now we shall consider a condition when the system of 

three vectors 321 ,, ʘʘʘ
CCC

  is linearly independent, i.e. it is the ordered triple of nonco-

planar vectors. 

The theorem. Adding of any free vector ʘ
C
   to the system of three noncoplanar 

vectors 321 ,, ʘʘʘ
CCC

  makes it linearly dependent, or in other words: any free vector ʘ
C
   

is a linear combination of three ordered noncoplanar vectors and this representation is 

unique. Thus we shall establish, that set of three ordered vectors 321 ,, ʘʘʘ
CCC

  is basis 

of free vector space and his dimension is equal to three.  

The proof. We lay off all vectors a , 321 ,, ʘʘʘ
CCC

 from the same point ɸ:

aaaa AB ;AB ;AB ;AB 2 ==== 433211 . Let F –be  a projection of the point ɺ4  on-

to the plane ɸɺ1ɺ2  parallel to the straight line ɸɺ3  and Q - a projection of the point F 

onto the straight line ɸɺ1  parallel to the straight line ɸɺ2.  Then 

.FBQFAQABʘ 44 ++==
C

 Vectors 4FB ,QF ,AQ   are collinear to vectors 

321 ,, ʘʘʘ
CCC

. accordingly. If we suppose ,
a

FB
,

a

QF
,

a

AQ
3

3

4
2

21
1

ll l === CCC   we shall obtain 

34 32211
aFB ,aQF ,aAQ lll ===   and, hence 332211 aaaa

CCCC
lll ++=   , i.e. 

vectors a
C

 , 321 ,, ʘʘʘ
CCC

  are linearly dependent. 
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 Thus, the basis of free vector space consists of three ordered noncoplanar 

vectors. If as basic vectors we choose three ordered vectors which are represented by 

the directed segments parallel accordingly to three axes of rectangular Cartesian sys-

tem of coordinates x, y, z and the absolute value of each vector is equal to a scale 

segment of these axes such basis is referred to as orthonormal  basis. First two basic 

vectors, as well as on a plane, are designated  ji
CC

, , and the third basic vector parallel 

to the axis OZ, , is designated k
C

, , and these vectors are referred to as a vector orts. 

Coordinates of these vectors will be: ( ) ( )1,0,0  ,0,1,0  ),0,0,1( === kji
CCC

. Such 

choice of basic vectors is caused that in decomposition of any vector( )zyxa ,,
C

on or-

thonormal basis  ji
CC

, , k
C
   coefficients of decomposition are coordinates x, y, z of the 

vector a
C

 : a
C

 = kzjyix
CCC

++ .  

 Let’s consider expression of scalar product of two vectors a
C

 and ʚ
C

, which are 

located on orthonormal basis, i.e. kzjyixa
CCCC

111 ++=  и  kzjyixʚ
CCCC

222 ++= . 

Then  

ʚʘ
CC
Ö=( )( )=++++ kzjyixkzjyix

CCCCCC
222111  

( ) ( ) ( )ikxzxzkjzyzyjiyxkzzjyyixx
CCCCCCCCC

1221122121
2

21
2

21
2

21 +++++++= . but 

since kji
CCC

,,   are mutually perpendicular (orthogonal)  vectors and the modulus of 

them is equal to one, then 

 

0     ;1222 =Ö=Ö=Ö=== kjkijikji
CCCCCCCCC

, then ʚʘ
CC
Ö= x1x2 + y1y2 + z1z2. 

 Thus, scalar product of two vectors is equal to sum of products their corre-

sponding coordinates in the coordinates only in that case if vectors are set by their 

coordinates in orthonormal basis. 
 

 

 

Ä6. ISOMORPHISM BETWEEN n ï DIMENSIONAL VECTOR  

 SPACES K AND ʈ 
n
 ABOVE FIELD  ʈ 

 

 

 Let K  - be a vector space of finite dimension n above the field ʈ. And let 

n?
C

?
C

?
C

,...,, 21  - basis of this space. Let’s  consider vector space Ô
=

=
n

i
i

n PP
1

;which is 

product n of vector spaces ʈ above field P. Let’s put  a vector ),...,,( 21 nx lll=¡
C

from ʈ 
n
  in conformity with vector nnʭ ?

C
?
C

?
CC

lll +++= ....2211  from K  This 

mapping xxf ¡­
CC

: is biunique mapping since decomposition of a vector on basis is 

possible only in the unique way. Let further ʂʫÍ
C

and 

nnʫ ?
C

?
C

?
CC

bbb +++= ....2211 .  
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Let's put in conformity the vector ),...,,( 21 ny bbb=¡
C

from ʈ 
n
. with  a vector 

ʂʫÍ
C

.  

Since 

 nnnyx ?
C

?
C

?
CCC

)(...)()( 222111 blblbl ++++++=+ ,  
 

that is clear, that  the vector yx
CC
+   corresponds the vector yx ¡+¡

CC
from ʈ 

n
,  hence  

  ).()()( yfxfyxf
CCCC

+=+
 

Further, since nnx ?
C

?
C

?
CC

lalalaa  ...   2211 +++= , then the vector x 
C
a corresponds 

to the vector x¡
C

 a  from ʈ 
n
, hence, f( x

C
 a ) = ).( xf

C
a  Thus (see book 2, Chapter.1, 

§3), it is possible to make the following conclusion. 

The vector space K of finite dimension n above the field ʈ is isomorphic to ʈ 
n
.  Iso-

morphism between K  and ʈ 
n 
depends on basis chosen in K, and spaces only of iden-

tical dimension can be isomorphic. 

  Images of vectors of basis n?
C

?
C

?
C

,...,, 21   in    ʈ 
n     

 will be   

)1,...,0,0(  )...,0...,0,1,0(  ),0,...,0,0,1( 21 =¡=¡=¡ n?
C

?
C

?
C

 or ),...,,( 21 niiii ddd=¡?
C

,  

where 0=ijd , if i  ̧j, and 1=iid ; values ijd  are referred to as Kronecker symbols. 

Really, since  

nniiii ?
C

?
C

?
C

?
C

ddd +++= ...2211 ,  then ),...,,( 21 niiii ddd=¡?
C

, where i = 1,2,...n. 

From the mentioned above it follows, that for vectors  rxxx
CCC

,...,, 21  from ʂ to be  lin-

early independent, it is necessary and sufficient that vectors rxxx ¡¡¡
CCC

,...,, 21  from ʈ 
n
, 

has this property, which are correspondent to them in the case of the above-stated 

isomorphism. In particular we shall show, that vectors 

)1,...,0,0(  )...,0...,0,1,0(  ),0,...,0,0,1( 21 =¡=¡=¡ n?
C

?
C

?
C

, are a basis of the pace ʈ 
n
,  

which is named canonical. 

The proof. 

1) Let's prove that vectors n?
C

?
C

?
C

¡¡¡ ,...,, 21  are linearly independent. For this pur-

pose it is necessary to prove, that the vector equation 

0...22111

C
?
C

?
G

?
C

=¡++¡+¡ nnlll has only the trivial solution 

0...21 ==== nlll . The given equation is equivalent to the system of sca-

lar equations l1ÖÖ 1 = 0,  l2  1 = 0, ..., ln Ö 1 = 0,  which has unique solution l1 = 

l2= ...= ln = 0.. 

 

2) It is obviously, that any vector ( )na mmm ,...,2,1=
C

   from   P 
n
  is a linear combina-

tion of vectors n?
C

?
C

?
C

¡¡¡ ,...,, 21   with coefficients  

n
,...,, mmm

21
: 1221 ... nnʘ ?

C
?
C

?
CC

¡++¡+¡= mmm . Hence, the system n?
C

?
C

?
C

¡¡¡ ,...,, 21  is 

the basis P 
m
. 

       Thus, the significance of the isomorphism theorem l consist in the following. 

Vector spaces can consist of everything - columns, multinomials, physical values: 
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speed, force, intensity of an electric field etc. - the nature of their elements is of no 

importance, when only their properties connected to operations of addition and mul-

tiplication by number are studied. All these properties of isomorphic spaces are com-

pletely identical. From the algebraic point of view the isomorphic spaces are identi-

cal. If we shall agree to not distinguish among themselves isomorphic spaces by vir-

tue of the isomorphism theorem, there will be only one vector space for each dimen-

sion and, P 
n
 can serve as this space.  

 

 

Ä7. VECTOR FUNCTIONS OF ONE REAL VARIABLE;  

MAPPINGS R INTO  R 
n 

Vector functions of one real variable put an element of vector space in con-

formity with a real number. Let this space be a vector space R 
n  above the field R. 

Definition. Let P – be some numerical set from R and let any number  tÍ R  be 

put in conformity with the element (vector) from R 
n
. In this case we can say, that a 

function of real variable tÍ R  with vector values in R 
n
 , or in short, a vector function 

from t is determined. 

 A vector function is designated through f
C
 (or by the bold lowercase Latin let-

ter), and its value for t – through 
­

)(tf ; 
­

)(tf  is an element of vector space R 
n
.  Expres-

sion «the vector function from  tÍ R  with values in R 
n
»  has the same sense, as the 

following expressions: a vector function determined on ʈ, or mapping ʈ in R 
n
. 

We shall designate elements of canonical basis of space R 
n
  through n?

C
?
C

?
C

¡¡¡ ,...,, 21   If  

f
C
  - is the vector function determined on ʈ and possessing values in R 

n
, then 

­

)(tf  is 

an element from R 
n
  and, then , it represents a set n of real numbers which value de-

pends on t and which we shall designate through )(),...,(),( 21 ttt njjj ; it will be co-

ordinates or components of the vector 
­

)(tf  on canonical. Thus,  ( )(),...(1 tt njj ).  

=+++=
­

nn ttttf ?
C

?
C

?
C

)(...)()()( 2211 jjj  ( )(),...(1 tt njj ). 

 Hence, for any tÍ R  n numerical functions j1, j2, ... jn of one real variable are de-

termined and, so, f
C

 is the ordered set of n numerical functions j1,j2,...jn of one real 

variable which are determined on the set P. Functions ji are referred to as coordinate 

functions. 

Let’s suppose now, that for f
C
-  mapping of the ʈ from R 

n
  - exists inverse mapping 

­
-1 f ; it means, that for any vector 

nRxÍ
C

, which is value of function f
C

, the set of 

those numbers tÍ R, for which 
­

= )(tfx
C

,  it is reduced to one number. Then 

­
-1 f ; 

will be numerical function n of the real variables (Book 1, Chapter 3, §3). 

 Let’s note, that complex functions of one real variable considered by us in the 

book 2, Chapter 2 §6, item 6.1, can be presented as vector functions of one real vari-

able, or as mapping R into R
2 
, since C  as the vector space is identified with R

2
. 
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In conclusion we shall consider a vector function of one real variable t which value is 

a radius - vector OMr=  of the point M in geometrical space. As it has been already 

mentioned (Chapter 4, §3,  item 3.3) r -  is a vector which origin coincides with the 

origin of coordinates O, and the end is some point  M of geometrical space. Coordi-

nates of a vector r  in orthonormal basis k ,j ,i   and coordinates of the point  M coin-

cide in the Cartesian rectangular system of coordinates, i.e., if M (x, y, z) then 

kzjyixOMr ++== . Let coordinates of the vector r , and, hence, of point M  be  

the function essence of some parameter t, with domain of variation RPË  
 

 

î
í

î
ì

ë

=

=

=

)t(z

)t(y

)t(x

3

2

1

j

j

j

. 

Then k)t(j)t(i)t()t(r 321 j+j+j=  represents a vector function of one real variable 

t or mapping ʈ into R
3
.. When t change, also  x, y, z change,  and the point  M - the 

end of a vector r  - will circumscribe some line in the space which is named  hodo-

graph of vector r = r (t),  and which can be considered as the graph of the vector 

function r (t).  

   Thus, the vector function of one real variable with values in R
3
 is graphically 

represented by a line in geometrical space. 

 

 

  

Ä8. LINEAR MAPPINGS OF VECTOR SPACES 

 

 

Definition 1. Let there be two vector spaces K and L above the same field P. 

Linear mapping of the space  in ʂ into L  is referred mapping f:K­ L ,possessing the 

following properties: 

 

( ) () ( ) ;,; 212121 KxKxxfxfxxf Í"Í"+=+
CCCCCC

 

 ( ) ();xfxf
CC

ll =     .; PKx Í"Í" l
C

 

Images () () ( ) ( ) .   ,   ,  , 2121 Lxxfxfxfxf Í+
CCCCC

           
  

  It should be emphasized, that addition n in the right and left parts of first of 

formulas designate, generally speaking, two various operations: addition in the space 

K and in space L. The similar remark concerns also the second formula.  

Definition 2. If  L = P, then value of a mapping is number from P; in this case 

we can say, that f  is a linear form. 

  So, the orthogonal projection of a free vector onto a plane is a linear mapping 

of the space R 
3
 into R 

2
. 
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0)(...)()()...( 221111

CCCCCC
=+++=++ rrrr xfxfxfxxf lllll ,  

Corollary fact from definition 1. Letôs consider the set f (K), i.e. a set of ele-

ments from L which serve at mapping f as images , at least, of one element ʂʭÍ
C

. f 

(K) is the vector space which is a vector subspace of the  space L and dimension of 

the space f (K) does not surpass the dimension K.  If  rxxx
CCC

,...,, 21  are linearly de-

pendent in K, then there are such rlll ,...,, 21  in ʈ, which are not all equal to zero, 

that 0...2211

CCCC
=+++ rr xxx lll ,  but then 

0)(...)()()...( 221111

CCCCCC
=+++=++ rrrr xfxfxfxxf lllll ,  

and so elements () ( )rxfxf
CC

,...,1    are also linearly dependent. Generally speaking, 

the opposite is not fair. Here we take into account, that () 00
CC
=f  . It follows from 

mapping linearity: ( ) () ()00
CCCC

fxfxf +=+   and, then, () .00
CC
=f   It should be no-

ticed, however, that 0
C

 in ()0
C

f  and 0
C

 differ in the right part of equality, since these 

are the neutral elements belonging to different sets. 

 

 

                          

8.1. A rank of linear mapping 

 

Definition. A rank r of linear mapping f : K ­ L  is referred to as dimension of vec-

tor space f (K). If K has dimension n, then since dimension of the space f (K) cannot 

surpass n, we find, that r Ò n.  
 

If  n?
C

?
C

?
C

,..., 21  is a basis of the space K, then nnx ?
C

?
C

ll ++= ...11  and 

() () ( )....11 nn ffxf ??
CC

ll ++=   Thus, the vector space f (K) is generated by vec-

tors () ff ,...,1?
C

( ),n?
C

 and, hence, r  is a maximal number of linearly independent 

vectors () ff ,...,1?
C

( ),n?
C

 i.e. a rank of the given system of vectors. 

 

 If all vectors () ff ,...,1?
C

( )n?
C

  are linearly independent and form the basis f 

(K), and f (K) exhausts all space L (i.e. f (K) = L), then mapping  f will be biunique. 

Hence, for linear mapping f to be biunique, it is necessary and sufficient that dim K = 

dim L = n, and it is equaled to a rank of r mappings. Thus, biunique mappings are 

possible only between spaces of identical dimension. 

  We shall notice, that if linear mapping f - is biunique, it will be isomorphism. 

 

 

  

8.2. Coordinate notation of linear mappings 

 

 We shall consider two vector spaces K and L of various dimensions above the 

same field P. Let in the space K of dimension m be chosen the basis m?
C

?
C

?
C

,..., 21 , 
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and in space L of dimension h -  the basis hʚʚʚ
CCC

,...,, 21 . Let  f  be a linear mapping K 

into L; it converts ʭ
C
Í K  в ()xfʫ

CC
= Í L. After we decompose vectors ʭ

C
 and ʫ

C
  on 

bases of corresponding spaces, we shall receive 

 

mmx ?
C

?
C

?
CC

lll +++= ....2211 ,   ,...2211 hhʚʚʚʫ bbb ++=
CCC

 Pi Íl и Pi Íb  

 or subject to a linear mapping, we have 

 ä
=

=+++==
m

j
jjmm ffffxfy

1
2211 ).()(...)()()( ?

C
?
C

?
C

?
CCC

llll   

Since elements Lf j Í)(?
C

, then by means of basis hʚʚʚ
CCC

,...,, 21  thee can be present-

ed as  

 

mjʚʚʚf hhjjjj ,...,2,1,...)( 2211 =+++=
CCC

?
C

aaa   

or  ä
=

==
h

i
iijj hiʚf

1

.,...,2,1,)(
C

?
C

a  

Hence, 

ä ä ä ä ä
= = = = =

ö
ö

÷

õ

æ
æ

ç

å
===

m

j

m

j

h

i

h

i
i

m

j
jijiijjjj ʚʚfy

1 1 1 1 1

 )(
CC

?
CC

laall or coordinate-wise, subject to, 

that ä
=

=
h

i
iiʚy

1

CC
b  

 b 1 =a 11 l1 +  a 12 l2 + . . . + a 1m lm  

 b 2 =a 21 l1 +  a 22 l2 + . . . + a 2m lm                                                                                  (4..9) 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 b h =a h1 l1 +  a h2 l2 + . . . + a hm lm 

 

 

It should be noticed, that the given system contains elements lj, bi and aij, which be-

long only to the field P. It allows to consider the specified system also as the charac-

teristic of linear mapping of the space P 
m
 into P 

h
.  Elements of the space P 

m
  are  

vectors  ),...,,( 21 mx lll=¡
C

, and spaces P 
h
  - vectors  ).,...,( 21 hy bbb=¡

C
  Thus, 

any linear mapping f of the vector space K into L can be compared to linear mapping 

of the space P 
m
 in P 

h
,  which will be determined by the identical expressions, de-

scribing the mapping. 

  The received system of expressions to the full characterizes linear mapping f 

vector space To in L. In turn this system is set, if the rectangular table of factors ij 

which are written down as follows is known; 

The obtained system of expressions in full characterizes linear mapping f of the vec-

tor space K in L. In its turn this system is assigned, if the rectangular table of factors 

aij  is known , which is written down as follows; 
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          a 11a 12 . . . a 1m                               i = 1,2,...,h,  

ɸ =    a 21a 22 . . . a 2m      = (aij),  

                . . . . . . . . . . . . . . . . . .                                  j = 1,2,...,m 

          a h1a h2 . . .  a hm 

Such rectangular table of numbers is referred to as a matrix, and numbers aij    are re-

ferred to as its members.. 

  A set of the members which have identical first indexes, is referred to as a 

row, and a set of the members which have identical second indexes, is referred to as a 

column . So, aij j  is a member of the i - row and the j - column.  

  With the help of a matrix A  system of the expressions (4.9) describing linear 

mapping f of the vector space K  in L (or P 
m
 in  P 

h 
) is written down in the following 

way ),(ʭɸʫ ¡=¡
CC

 where  

.),...,,(   ,),...,,( 2121
h

h
m

m PyPx Í=¡Í=¡ bbblll
CC

  

  

The matrix can be also considered  irrespective of spaces K and L. It can be associat-

ed with the assignment of vector system in the space of row - vectors, or in the space 

of column – vectors. Really, let members of the i – row of the matrix (ai1, ai2, . . .  

aim ) represent components of the row -vector ia
C

 in the  space P 
m
,  then 

 

 

 

 

 

          a11a12 . . . a1m                       1a
C

 

ɸ =    a21a22 . . . a2m         =            2ʘ
C

                                                   (4.10)  

                . . . . . . . . . . . . . . . . .                                      : 

                ah1ah2 . . .  ahm                                hʘ
C

  

 

And, hence, the assignment of the matrix A  means the assignment of the system from 

h of row vectors haaa
CCC

,...,, 21  in the space ʈ 
h
. Similarly,   

 

 

         aij                                                  a11 a12 . . . a1m                     

jg
C

=    a2j     Í R
h
,   then ɸ =  a21 a22 . . . a2m       =  ( mggg

CCC
,...,, 21 )          (4.11)  

                    :                                                            . . . . . . . . . . . . . . . . .                                 

                  ahj                                              ah1 ah2 . . .  ahm  

 

                           Hence, the assignment of the matrix A  means the assignment of system 

from m column - vectors in the space P 
h
.  

  Members of  a matrix in these cases are components of vectors. 
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  If  we consider matrix A in expression (4.9) as the assigned system of the col-

umn – vectors in the space P 
h 

, then formulas (4.9) can be written down in the fol-

lowing equivalent form:                            

 

 mmgggy
CCCC

lll +++=¡ ...2211 , 

                     b1                      a1j   

here ʫ¡
C

=    b2   ÍР
h
, jg
C

=   a2j   ÍР
h
, j = 1,2,..., m. 

                                 :                        :    

                     bh                      ahj  

This expression means, that the vector 
hPy Í¡

C
is a linear combination of the column 

–vector system mggg
CCC

,..., 21  from P 
h 

, assigned  by the matrix A with coefficients 

l1,. . . , lm.   It follows from above-stated, that the matrix can be considered separate-

ly as independent value, and on a set of matrixes, as well as on any set,  introduce the 

internal and external laws of a composition. 

 

                        

EXERCISES 

1. prove: ʘ) A linear dependence of vectors 1ʘ
C

(2,-1, 2), 2ʘ
C

(3, 1,-2),  

3ʘ
C

(6,-3, 6); b) a linear independence of vectors 1ʚ
G

 (2,-1,-2), 2ʚ
C

(3, 1, 1), 3ʚ
C

(-4, 2, 1). 

2. Prove, that vectors 1ʘ
C

 (2,-1,-1), 2ʘ
C

 (2,-3, 0), 3ʘ
C

 
 (1, 1,-1) form the basis of geo-

metrical space and define coordinates of the vector ʚ
C

 (-5,-4,-2) in this basis. 

3.  Prove, that vectors kjia
CCCC

22 +-= ,  kjib
CCCC

32 -+= ,  

kjic
CCCC

743 +-=  are coplanar. 

     

4.  Determine the components and write down decomposition of the vector a
C
 in 

orthonormal basis kji
CCC

,, , if a
C

=2 and this vector forms  with axes the absciss and 

ordinates angles on-the-miter on 45̄ . 

5.  Find out, whether  the given set of vectors  in ʧ-dimensional vector space K 

above field ʈ is a vector subspace  and determine its dimension: ʘ) the set of vec-

tors, which all coordinates are equal among themselves; b) set of vectors, which sum 

of coordinates it is equal to 0; c) the set of vectors, which sum of coordinates it is 

equal to 1. 
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CHAPTER 5 

 

MATRIXES  

 

 

Definition 1. The matrix A above the field ʈ, consisting of k - rows and m - 

columns, is the rectangular table of elements ,Pij Ía  where 

.,...,2,1;,...,2,1 mjki ==  
 

Definition 2. Product of k- row number and  m- columns of the matrix kĬm (k 

by m), which is equal to number of matrix members ija , is referred to as the size of a 

matrix. 
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  It should be noticed, that matrixes with identical number of members can have 

different dimension. For example, dimensions of matrixes from m - rows and n - col-

umns (m Ĭ n) and both n rows and m columns (nĬm)  are not identical. 
  

 

Ä 1. MATRIX RANK. ELEMENTARY 

MATRIX TRANSFORMATIONS  

   

As it has been already mentioned, the matrix A of the size kĬm can be considered as 

the assignment of system from m  column - vectors in the space ʈ
k
  or from k row -

vectors in the space P
m
. It is possible to show (the proof of this theorem is omitted), 

that ranks of systems of column-vectors and row –vectors are identical.  

Definition. The general value of a rank of column – vector system (or row –

vector system), assigned by the matrix A, is referred to as a rank of this matrix and it 

is designated as  r (A). 

  Being based on conclusions of theorems of linearly dependent and linearly in-

dependent vectors, it is possible to establish, that r (A)  min (k, m), and also the fol-

lowing elementary transformations of a matrix which do not change its{her} rank. 

 

 Elementary matrix transformations: 

1. Multiplication of a row (column) of a matrix by the number which is distinct 

from zero; 

     2. Addition of one row (column) of a matrix to another row (column) of this 

matrix; 

3. Permutation of two rows (columns) of the given matrix. 

Combining elementary transformations, we can add  any row  (column) ma-

trixes to a linear combination of other rows (columns) and thus a matrix rank also 

does not change. By means of elementary transformations any matrix 

 

  =ɸ    

kmkk

m

m

aaa

aaa

aaa

....

..................

....

....

21

22221

11211

 

can be transformed into the form  

  ɺ =   

0......0........0

..................

0...........0

.................

0......0....11

rrʚ

ʚ

      or      ɽ =    

0....0....0

.............

0....1....0

..............

0....0....1
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Where ʚii   ̧0,  i = 1,2,...r,  r  ¢  min( k,m ). It is clear, that number r of nonzero 

members is equal to a matrix rank: r = r (A) = r (B) = r (E). In such a way it is possi-

ble to define a rank of any matrix.  

Now we shall consider a matrix A of the size k³m as the characteristic of linear map-

ping ),(ʭɸʭ
CC

­  where 
m

ʈʭÍ
C

, and .)( kPxA Í
C

 In this case a matrix rank is equal 

to a rank of this linear mapping. Really, the system from column - vectors of a matrix 

A  consists of m vectors belonging to ʈ
ʢ
, and the set of mappings )(ʭɸ

C
  is a linear hull 

of column –vector system of the matrix  A. Thus, dimension of subspace is mapped 

)(ʭɸ
C

  (a rank of linear mapping) is equal to a rank of column – vector (a matrix 

rank), generating this subspace. 

As we already have determined, mapping 
km PPɸ ­:  will be biunique if 

and only if  dimensions of spaces coincide k = m and are equal to a rank of r map-

ping, i.e. r = k = m. Hence, the matrix determining biunique mapping should have the 

size m×m (square), and its rank r (ɸ) be equal to  m. 

 

Ä2. ALGEBRAIC OPERATIONS ON MATRIXES. VECTOR 

SPACE OF MATRIXES  

 

Since the matrix is associated with vector system s, and operations of compari-

son and addition are introduced only for  vectors belonging to a single space, there-

fore we can compare and add only matrixes of the identical sizes. 

Equality. Two matrixes of the identical sizes, which corresponding members 

are equal among themselves, are referred to as equal.  

 Addition. Sum of two matrixes A and B of the identical sizes is referred 

to as  matrix C of the same size which members are equal to the sums of correspond-

ing members of added matrixes. 

=ɸ     

kmkk

m

m

aaa

aaa

aaa

....

..................

....

....

21

22221

11211

   = (aij),   =ɺ    

ʢmʢʢ

m

m

ʚʚʚ

ʚʚʚ

ʚʚʚ

....

................

....

....

21

22221

11211

  = (ʚij) 

 

ʉ = ɸ + ɺ =   

       ....   

...........................................

....  

....  

22

2222222121

1112121111

kmkmkkkiki

mm

mm

ʚʘʚʘʚʘ

ʚʘʚʘʚa

ʚʘʚʘʚʘ

+++

+++

+++

(ʩij  ) = (aij+ʚij), 

 

                           where i = 1,2,...., ʢ; j = 1,2,....m. 

Addition is associative and commutative as exists for addition aij + вij  ʈ; there is a 

neutral element - a zero matrix, designated O or (0), which all members are zeros, 
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and 
ʢʈʭʆ Í=0)(

CC
,whatever  

mʈʭÍ
C

 may be. Each matrix A from members aij has 

opposite (symmetric), designated – A  which all elements are essence - aij и ɸ+(-ɸ)  = 

O. Thus, operation of addition on set of matrixes of the identical sizes forms Abelian 

group. 

Multiplication of a matrix by a number from  P. Product of a matrix by a number 

(or numbers by a matrix) is referred to as a matrix which members are products of 

members of the given matrix by this number: 

 

 lA = Al = l(aij ) = (laij ) =   

kmkk

m

m

aaa

aaa

ʘʘʘ

lll

lll

lll

.... 

........................

.... 

.... 

21

22221

11211

   , 

 

                                   where i = 1,2,...,к;    j = 1,2,...,m. 

We can see, that multiplication by number is commutative and the obtained matrix 

has the same dimension, as multiplied matrix. Besides: 
 

 

 

l(ɸ+ɺ) = l ɸ+lɺ, since l(ʘij+ʚij  ) = l ʘij+l ʚij ; 

(l+m) ɸ = l ɸ+mɸ, since (l+m) ʘij = l ʘij+m ʘij ; 

l(m ɸ) = (l m) ɸ, since l(m ʘij  ) = (l m) ʘij ; 

e ɸ = ɸ, since e ʘij  =  ʘij , where e = 1Í ʈ – is a neutral element of mul-

tiplication in ʈ, whatever matrixes  ɸ and ɺ may be, from  ʢ rows and m columns, 

and whatever lÍ ʈ and mÍ ʈ may be. 

   

  Thus, the set of matrixes A, consisting of k  rows and m columns  forms a vec-

tor space above the field ʈ. 

  We shall designate through I ij   a matrix of k rows and m columns, which all 

elements are zero, except for a member of i – row and j - that column - equal to  e = 

1;  = 1; i.e. we shall put  

 

 

 

I ij  =    

0....0....0

.............

0....1....0

..............

0....0....0

   i. 

                                                                      j  
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Quantity of such matrixes is equal to number of members in a matrix, i.e. to product 

kĀm. 

  Then any matrix ɸ = (aij )  consisting of k rows and m columns  takes form of: 

 

     ä ä
= =

ö
ö

÷

õ

æ
æ

ç

å
=

k

i

m

j
ijij IA

1 1

,a  

And this representation is unique. Hence, matrixes I ij   form a basis of matrix vector 

space of k rows and m columns that is, this vector space has the finite dimension 

which is equal to product kĀm, that forms the general number of elements in a matrix. 

Multiplication of two matrixes. Product of two matrixes A, with the size mĬk 

and B, with the size kĬn, is referred to as the matrix C, with the size mĬn  which el-

ement ʩij  is equal to the sum of member products i - row of the matrix A by corre-

sponding elements of the  j - column of the matrix B. 

Let be given matrixes  

 

   =ɸ    

mkmm

k

k

aaa

aaa

aaa

....

..................

....

....

21

22221

11211

  and =ɺ   

ʢnʢʢ

n

n

ʚʚʚ

ʚʚʚ

ʚʚʚ

....

................

....

....

21

22221

11211

   , 

 

then, their product 

ʉ = ɸĀɺ =    

mnmm

n

n

ccc

ccc

ccc

....

.................

....

....

21

22221

11211

   =  (cij  ) , 

 

Where cij = ʘi1, ʚ1j +  ʘi2 ʚ2j + . . . +  ʘik ʚkj = ä
=g

gg

k
,

j
ʚ

i
a

1
 

i = 1,2,..., m,   j = 1,2, . . ., n. 

The remark. Two matrixes A  and B, taken in the certain order, can be multi-

plied only if  column number of the first matrix is equal to row number of the second 

matrix, i.e. they have the sizes m³k and k³n. Such matrixes are referred to as con-

sistent. 

  For multiplication of matrixes the following properties are fair: 

1.   Product of any matrix by consistent with it zero matrix  is equal to zero ma-

trix. 

2.   Product of matrixes is not commutative, i.e. generally ɸɺ ̧ɺɸ.  
  

Thus it is supposed, that ɸĀɺ and ɺĀɸ make sense. If ɸĀɺ = ɺĀɸ, then matrixes are re-

ferred to as  commutative (permutable). 
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3.   Let A, B and C  be matrixes which can be added or multiplied, and l - some 

number from P 

 

(ɸĀɺ)Āʉ = ɸĀ(ɺĀʉ) 

lÖ(ɸÖɺ) = (lÖɸ)Öɺ = ɸÖ(lÖɺ) 

ɸÖ(ɺ+ʉ) = ɸÖɺ+ɸÖʉ. 
 

 

        

Ä3. ISOMORPHISM BETWEEN VECTOR SPACE OF 

MATRIXES AND VECTOR SPACE  ʈ
ʧ  

ABOVE FIELD  ʈ 

 

 

 As we already mentioned, the matrix A with the size kĬm can put in conformi-

ty the ordered system of m column vectors ),...,,( 21 maaa
CCC

 in the space ʈ 
m
,  or of k  

row - vectors ),...,,( 21 ʢʚʚʚ
CCC

 in the space ʈ 
m
. Both ordered systems of vectors 

),...,,( 21 maaa
CCC

 and ),...,,( 21 ʢʚʚʚ
CCC

  - are elements of same vector space ʈ 
n
, where n 

= kĀm which is isomorphic for vector space of matrixes with the size kĬm. Really, 

 

Ô
=

Ö ==Í
m

i

nmkk
im PPPaaa

1
21 ),...,,(
CCC

 and    Ô
=

Ö==Í
k

i

nkmm
iʢ PPPʚʚʚ

1
21 ),...,,(
CCC

. 

  

We shall consider now the system consisting of one vector 
n

n Px Í= ),...,,( 21 aaa
C

 

. It is obvious, that this vector through the components in matrix space will be associ-

ated with matrixes of the size 1³n, or n³1;  ),...,,( 21 nʍx aaa=­
C

 a matrix of the 

size 1³n; 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=­

n

ʍx

a

a

a

....

2

1

C
     matrix of the size n³1. It is clear, that mapping ʍʭ­

C
 

is isomorphism, since 

 

                                  
.     ,   ,

,    and   

21

2121

PPxPx

ʍʭʍʍʭʭ

nn Í"Í"Í"

=+­+

l

ll
CC

CCC

 

  

Using the specified isomorphism, we shall show, how mapping )(ʭɸʫ
CC

=  is present-

ed in the matrix space, where 
km Pyʈʭ ÍÍ

CC
, . 

  Let the mapping A of the space ʈ 
m
 into ʈ 

ʢ
  is determined by formulas: 

  b1 = a11l1 + a12l2 +. . . +a1mlm 

  b2 = a21l1 + a22l2 +. . . +a2mlm 
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  . . . . . . . . . . . . . . . . . . . . . . . . . . 

  bк  = aк1l1 + aк2l2 +. . . +aкmlm 
 

Let’s put  vector ʫ
C
with components (b1, b2, . . .,bк) from ʈ 

ʢ
  in conformity with a 

matrix: 

 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

k

Y

b

b

b

...

2

1

of the size к³1, and vector ʭ
C
 with components  (l1 ,l2,. . . ,lm) matrix 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

m

X

l

l

l

...

2

1

 of the size m³1. Then mapping, ),(ʭɸʫ
CC

=  determined by matrix 

  ɸ =  

kmkk

m

m

aaa

aaa

aaa

....

..................

....

....

21

22221

11211

   of the size k×m in the matrix space is determined 

by the same matrix ɸ and it is represented in the form  

 )(ʭɸʫ
CC

= ­

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

kb

b

b

...

2

1

 =  

kmkk

m

m

aaa

aaa

aaa

....

..................

....

....

21

22221

11211

 · .
...

2

1

AXY

m

=­

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

l

l

l

 

 

 Finally we shall consider, howthe scalar product of two vectors from space 
nR    

is mapped in the matrix space. 

 

 

 

Ä4. SCALAR PRODUCT OF TWO VECTORS  

FROM SPACE R
n 

Definition. We shall consider mapping ű of the vector space R
n
³R

n
 into R 

wherein the following conformity is established 

   
ä
=

+++==­
n

i

nnii ...)y,x()y,x(
1

2211 babababaj
CCCC

 

,  

Here ;nRy  ,nRx ÍÍ
CC

 the ordered couple )y,x(
CC

 is an element of the vector space 

R
n
³R

n
;  (l1 ,l2,. . . ,ln) and (ɓ1, ɓ2, . . . , ɓn)  are components of vectors 
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ä
=

n

i
iiʫʭ

1

    ; ʠ ba
CC

is number from R.. Such mapping j is referred to as scalar product 

of two vectors ʫʭ
CC

 and   from the space R
n
  and it is designated ʫʭ

CC
Ö . 

 Mapping j is not a linear mapping. Really, since R
n
³R

n
 is a vector space,  

);,...,,( x where),,(),(),( 11211121212211 nyyxxyxyx aaa=++=+
CCCCCCC

 

),...,,();,...,,();,...,,( 222212112111222212 nnn yyx bbbbbbaaa ===
CCC

 
. It is 

easy to show, that  

 [ ] [ ] )y,x()y,x()yy,xx()y,x()y,x( 2211221212211

CCCCCCCCCCCC
jjjj +¸++=+  and, hence, mapping j is 

not linear mapping. 

We define now how scalar product is represented in matrix space. Let two vectors be 

given .),...,,( and ),...,,( 2121

n

n

n

n RyRx Í=Í= bbbaaa
CC

Now letôs put the vector x
C

  in con-

formity with a matrix ),...,,( 21 nX aaa=   of the size 1³n,  and the vector ʫ
C

 -  with 

a matrix 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

k

Y

b

b

b

...

2

1

  of the size n³1.  Then product ʫʭ
CC
Ö  in the matrix space is equiva-

lent to the product 

 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=Ö

n

nYX

b

b

b

aaa
...

),...,,(
2

1

21 = a1b1 + a2b2 + . . . + anbn. 

We ca see, that in vector space of matrixes the mapping j is not linear map-

ping  

 

.
...

),...,,(
...

),...,,(
............

).... (

1

22

21

22221

1

12

11

11211

21

2212

2111

2122122111

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

+

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

Ö¸

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

+

+

+

Ö+++

n

n

n

n

nn

nn

b

b

b

aaa

b

b

b

aaa

bb

bb

bb

aaaaaa  

 

 

 

 

 

 

 

 

 

 

Ä5. SQUARE MATRIXES 
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Definition. A matrix which  row number is equal to column number is referred 

to as square; the equal number of n rows and columns is referred to as the order of  

matrix. 

  The set of elements aii   is referred to as  main diagonal, and a matrix which all 

members are located outside of the main diagonal is zero aij  = 0, if i   ̧ j,  it is re-

ferred to as  diagonal.  

 

 ,

....0....0

..............

0.......0

..............

0...0...11

ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ

ç

å

=

nn

iiiiA

a

a

a

 If all elements of a diagonal matrix are equal aii  = l, 

such matrix is referred  to as scalar. 

  

 The diagonal matrix, which all members are equal to one, is referred to as 

identity matrix and it is designated ɽn (or In).  

 

ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ

ç

å

=

1...0...0

...........

0...1...0

...........

0...0...1

nE or En = (dij  ), where i = 1,2,...,n; j = 1,2,...,n; d ij  ï is Kronecker 

symbol. 

Identity matrix En  represents a neutral element concerning multiplication of matrixes 

A of order  n: ɸEn = Enɸ = ɸ.  

  The sum and product of two matrixes of n - order are always determined and 

the result  will be matrixes of n order. However product of square matrixes is not 

commutative: ɸĀɺ  ̧ɺĀɸ . For example, 

 

.
0 1

3 4

0 1

3 2

1 0

2 1
   and  ,

2 1

7 2

1 0

2 1

0 1

3 2
ö
ö
÷

õ
æ
æ
ç

å
ö
ö
÷

õ
æ
æ
ç

å
ö
ö
÷

õ
æ
æ
ç

å
ö
ö
÷

õ
æ
æ
ç

å
ö
ö
÷

õ
æ
æ
ç

å
ö
ö
÷

õ
æ
æ
ç

å
=Ö=Ö  

  

Square matrixes of  n order determine  linear mappings ʈ 
n
 into ʈ 

n
, and identity ma-

trix En is associated with system of vectors of canonical basis 

)1,...,0,0()....0,...0,1,0(),0,...,0,1( 21 === n?
C

?
C

?
C

 of  the space ʈ 
n
. 
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                        5.1. Inverse matrix 

 

   

We shall consider a matrix A which sets the mapping ).(ʭɸʭ
CC

­  Inverse mapping 

exists, if this is biunique mapping ʈ 
n
 onto ʈ 

n
.  But for this purpose it is necessary 

and sufficient that the matrix A be square one of the order n and which  rank r (A)  is 

equal to n. Therefore the inverse matrix exists only for  square matrix A which rank r 

(A) and the order n are identical. 
 

   Definition. The square matrix representing inverse mapping for  matrix A, is 

referred to as inverse matrix for a matrix A and it is designated ɸ
-1
;  matrix ɸ

-1
 is a 

symmetric member for  matrix A concerning multiplication.  

 

Really, let biunique mapping )(ʭɸʭ
CC

­   of space ʈ 
n
 onto ʈ 

n
  be given. Inverse map-

ping for it will be [ ]ʭʭɸɸʭɸ
CCC
=­ - )()( 1

,  therefore ɸ
-1
ɸ=ɽn ;  just as ɸɸ

-1
=ɽn  

and, hence, ɸɸ
-1
= ɸ

-1
ɸ=ɽn . If  ɸ

-1
  exists, we can say, that the matrix A is invertible. 

Inversely, if A -  is an invertible matrix, the mapping )(ʭɸʭ
CC

­   is biunique. 

  Let A and B - two invertible matrixes of the order n; by virtue of associativity 

                             ɸɺɺ
-1
ɸ

-1
 = ɸ(ɺɺ

-1
)ɸ

-1 
= ɸɽnɸ

-1
 = (ɸɽn)ɸ

-1
 = ɸɸ

-1
 = ɽn.  

 

Hence, (АВ)(В
-1
А

-1
) = ɽn  so, product of two invertible matrixes - is invertible matrix 

and (ɸɺ)
-1
 = ɺ

-1
ɸ

-1
. 

 

  

5.2. The transposed square matrix. 

Symmetric matrixes 

 

Definition 1. We can say, that matrix ɸ
Т
  of elements ija¡ is transposed in rela-

tion to a square matrix A of members ija¡, if ija¡= jia , for i = 1,2..., n; j = 1,2..., n. 

 

ɸ =   

nnnn

n

n

aaa

aaa

aaa

.... 

................

.... 

.... 

21

22221

11211

   ,          ɸ
ʊ
 = 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

nnnn

n

n

aaa

aaa

aaa

... 

................

... 

... 

21

22212

12111

. 

  

Members of the matrix ɸ
ʊ
  are symmetric to members of a matrix A concerning 

the main diagonal. The operation converting a square matrix into transposed one, is 
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referred to as transposition. For this purpose members of every row of matrix A are 

set down in the same order into the columns of the matrix  ɸ
ʊ
,  and number of a col-

umn coincides with number of a row. It is clear, that thus i - row ɸ
ʊ
  consists of the 

same members, in the same order, as i - column of a matrix A. 

Matrixes ɸ  and  ɸ
ʊ
 have an identical rank r (A) = r (Aʊ), and also 

(lɸ)
ʊ
 = lAʊ;     (ɸ+ɺ) ʊ 

= ɸ
ʊ
+ɺ
ʊ
;      (ɸÖɺ) ʊ=  ɺ

ʊ
ɸ
ʊ
;    if  A  is invertible, then 

(ɸ-1) ʊ = (ɸʊ)-1. 

Definition 2. The square matrix A of members aij is referred to as symmetric, if 

ɸ= А
Т
. If  aij  = aji  i.e. members of  matrix A which are symmetric relative to its main 

diagonal are equal each other. All diagonal matrixes are symmetric, for example, Е = 

Е
Т
. 

 

EXERCISES 

 

 

1. Define ranks of matrixes with the help of elementary transformations: 

 

;

 1   3  2   6  2

3  1- 3   2- 5

2- 2  1   4   3

2  6  4  12  4

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=ɸ         .

3   1   1   1  3

2  2  2   2  2

2  1  3   4  4

0  2  2   1   1

4  1  1  0   2

ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ

ç

å

=ɺ  

2. Prove, that for any matrix A, the matrix S=A+Aʊ -  is symmetric. 

Show, that product of matrix A by transposed matrix is always a symmetric 

matrix. 

 

3. Let .
6-  5

4-  2
   ,

4- 3-

2   1  
öö
÷

õ
ææ
ç

å
=öö

÷

õ
ææ
ç

å
= ɺɸ  Determine ʉ = ɸ + ɺ + ɸ

ʊ
 + ɺ

ʊ
. 

4. Are these matrixes öö
÷

õ
ææ
ç

å
=öö

÷

õ
ææ
ç

å
=

0  2-

3  1 
 and 

2-  4

1   2
ɺɸ  transposed?. 
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CHAPTER 6 

 

DETERMINANTS  

 

Ä1. DEFINITION AND THE PROPERTIES OF THE DETERMINANT FOL-

LOWING FROM DEFINITION  

  

Definition. Letôs consider a vector space of square matrixes A of the order n 

above the field P. We shall set such mapping D of space of these matrixes in the field 

ʈ, wherein each square matrix  

 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

nnnn

n

n

aaa

aaa

aaa

A

.... 

................

.... 

.... 

21

22221

11211

 is put in conformity with number D(A) from P by law  

 

() ()()ä

ö
÷

õ
æ
ç

å=

ÖÖÖÖ==
!

,...2,1m
n .., . . . ,2,1

332211

21

2221

11211

...1-

.... 

................

.... 

.... 

n

nmm
f

nnmmmm
f

nnnn

nn

n

aaaa

aaa

aaa

aaa

AD
n

 

    (6.1) 

  

   

This number is referred to as a determinant of matrix  A. Designation D (A) or |A |. 
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  It follows from the given definition, that mapping D represents the numerical 

function prescribed on a set of square matrixes and consequently the square matrix A 

acts as a variable in it .Thus, a determinant, i.e. value D (A) of numerical function D 

can be considered as the numerical characteristic of the square matrix  A. Matrix or-

der is referred also to as the order of a determinant which it corresponds to. 

  The sum of the right part of equality is taken on transpositions of the second 

indexes of matrix members  aij, where j=1, 2.... n. It means, that each transpostion of 

the second indexes aij, where  j=1, 2,....n. , or öö
÷

õ
ææ
ç

å
=

nmmm

n
f

,.. ,

  ... 2,   ,1

21

  is conformed to a 

summand. Every summand consists of product n of members taken on one and only 

to one member from each row and each column. Products are added with signs de-

termined by number of inversions n(f) of corresponding transpositions 

.
,...,,

 ., .  .. 2,  1,

21
öö
÷

õ
ææ
ç

å
=

nmmm

n
f  

 Number of such summand is equal to number of transposi-

tions 1,2,....n, i.е. n!.  

 

 

Examples.  

 

1. ä
ö
÷

õ
æ
ç

å=

-==
!

m,m
2   ,

f

mm .aaaaaa(-1)
aa

aa (f)
2

1

2112221121

2221

1211

21

21

n

 

Really, there are only two transpositions m1,m2 from 1,2   

.1)(,
1,2

2,1
 and 0)(,

2.1

2.1
2211 =öö

÷

õ
ææ
ç

å
==öö

÷

õ
ææ
ç

å
= ffff nn  

2. ä
ö
÷

õ
æ
ç

å=

=ÖÖ-=
!3

321

3  ,2  ,1
332211

)(

333231

232221

131211

)1(

mmm
f

mmm
f aaa

aaa

aaa

aaa
n

  ʘ11ʘ22ʘ33 ï  

- ʘ12ʘ21ʘ33 + ʘ12ʘ23ʘ31 ï ʘ13ʘ22ʘ31 + ʘ13ʘ21ʘ32 ïʘ11ʘ23ʘ32.  There are only 3 transposi-

tions m1, m2 , m3  from 1, 2, 3 ! = 6. 

( ) ( ) ( )

( ) ( ) .1  ,
2 3 1

3 2 1
 2,)( ,

2 1 3

3 2 1
  ,3   ,

1 2 3

3 2 1

  ,2  ,
1 3 2

3 2 1
   ,1  ,

3 1 2

3 2 1
   ,0   ,

3 2 1

3 2 1

665544

332211

=öö
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õ
ææ
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å
==öö
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õ
ææ
ç

å
==öö

÷

õ
ææ
ç

å
=
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õ
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õ
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ç
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The properties of a determinant following from definition:  

1. The determinant of the transposed matrix is equal to initial D(A
T
) = D(A). 

It follows from equality of rows and columns in relation to a determinant. 

2. If we transpose two columns (rows) of a determinant, the determinant will reverse  

a sign. Really, if columns (rows) are interchanged, it result in permutation 
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2. ,
,...,

  2,....    1,

21
öö
÷

õ
ææ
ç

å
=

nmmm

n
f  and transposition, as we have determined, results in 

change of permutation parity (book 1, Chapter.2, § 2, item 2., 3). Hence, all 

summands of a determinant reverse a sign. 

2. Determinant which two rows (columns) are identical, is equal to zero. Really, 

if we permute in a determinant two identical rows (column), then, on the one hand, 

we shall change nothing, and on the other hand, according to item 2, we shall reverse 

a sign of a determinant, i.e. D (A) = - D (A), hence D (A) =0. 

3. If we multiply all elements of a column (row ) of a determinant by the same 

number, then the determinant also will be multiplied by this number. 

 

 

          .
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Thus, if all elements of some row (column) contain common multiplier it can be tak-

en out a sign of the determinant.  

3. If each element of any column (row) is the sum of two summands, then the 

determinant is equal to the sum of two determinants which columns (rows) are corre-

sponding summands, and the others coincide with columns (rows) of the given de-

terminant: 
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nnnjni
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1

1

11111

+=

+

+

+

   

Properties 4 and 5 result from distributivity of multiplication concerning addition. 

Property 5 can be considered as a rule for addition of determinants. 

Corollary facts. 1. The value of a determinant will not change, if  elements of 

any column (row) are added the corresponding elements of other column (row) mul-

tiplied by the same number. 

2. If And – is a matrix of order  n, D(lA)=ln 
D(A).. 

3. D(A)ĀD(B)=D(AĀB).  Even if A Ā B  ̧B Ā A, then, nevertheless  

 D(A Ā B)= D(A) Ā D(B) = D(BĀA). 
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Ä2. DECOMPOSITION OF A DETERMINANT ON ROW (COLUMN) ELE-

MENTS. THE THEOREM OF ANOTHER'S A DDITIONS  

 

Definition 1.  Complementary minor of some member  ʘij   of the square matrix 

A of order n, is referred to as determinant Dij  of a matrix of order n-1 which results 

from deletion of  i - rows and j -  column (intersected on this member). 

Example. 

 a a

a a
D  ;

ʘʘʘ

ʘʘʘ

ʘʘʘ

ɸ
2322

1312

31

333231

232221

131211

=
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=  

-  complementary minor of the member 
ʘ31. 

Definition 2.  Algebraical complement ɸij  of the member ʘij  is referred to as 

its additional minor Dij  multiplied by  (-1)
i+j

 

   ɸij  =  (-1)
i+j
· Dij  

 

 

  

It is valid the following statement which we shall postulate: if we multiply members 

of some row (column) by their algebraical complements, and we add these products, 

then we will have the value of a determinant. 

ä
=

=+++=
n

j

ijijininiiii AaAaAaAaAD
1

2211 row. - iin  ion decomposit- ...)(  

ä
=

=+++=
n

i

ijijnjnjjjjj AaAaAaAaAD
1

2211 column. - jin ion decomposit - ...)(  

  The given decomposition allow us reduce the calculation a determinant of the 

n – order to the calculation n determinants of the order n - 1. In addition to these for-

mulas frequently also the following theorem can be useful. 

The theorem (about another's complements). If we multiply elements of some 

row (column) by algebraical complements of corresponding members of other row 

(column) and then we add these products, the sum will be equal to zero. 

ä
=

==+++
n

j
kjijkninkiki AaAaAaAa

1
2211 .0...  

 

aij  , where j = 1,2,...,n – members of  i – row, and ɸʢj, where j = 1,2,...,n algebraical 

complements of k –row members. 

The proof. We shall consider a determinant of the matrix B which results from 

a matrix A by substituting k – row members for i – row members. As it is a determi-

nant with two equal rows, it is equal to zero 

    

ä
=

==
n

j
kjkjBbBD

1

.0)(  
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Let's notice, that ʚʢj = ʘij, а ɺʢj = ɸʢj, then ä ä
= =

==
n

j

n

j
kjijkjkj AaBb

1 1

0,  s was to be 

proved. 

 

Example. 3567253
2- 4 

1    1 
1

1 4 

2 1 
2

1  2-

2  1  
3

1 2- 4

2  1   1

1- 2  3

=+Ö+Ö=--=  

 Now we shall give geometrical interpretation to a determinant. 

 

 

 

 

 

Ä3. GEOMETRICAL REPRESENTATION OF A DETERMINANT 

 

  We shall consider the ordered triple of noncoplanar free vectors ʩʚʘ
CCC

,,   and we 

shall put it in conformity with the ordered triple of the directed segments 
­­­

DCDBDA ,,   

originated from one point in the oriented space. On these directed segments as on the 

sides, we shall construct a parallelepiped (fig. 2.6). 

                                                       

 

                                                      у 
Z 

                  С 

                              В      

                ʩ
C
        ʚ

C
        

 

                          ʘ
C
 

             D                    А 

                                  

          j
C

                                              

   k
C

          i
C

                                     х                                                      

                                                             

Fig.2.6 

There is an infinite set of oriented parallelepipeds, each of them is put in con-

formity the same ordered triple three ʩʚʘ
CCC

,,  of vectors. These parallelepipeds turn out 

carryovers of any of them and have on this the same volume Vp.  If vectors are copla-

nar, the volume of such degenerate parallelepiped is assumed to be equal to zero. 

  Let’s determine volume Vp of the parallelepiped constructed on vectors ʩʚʘ
CCC

,, , 

in coordinates. For this purpose we shall choose in space an orthonormal basis ,,, kji
CCC

 

and connect with it system of coordinates x, y, z (fig. 2.6). And let three vectors spec-

ified by their coordinates be given concerning this basis: 
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 ;111 kzjyixa
CCCC

++=  ;222 kzjyixʚ
CCCC

++=   kzjyixc
CCCC

333 ++= .   

  

We shall introduce two operations on free vectors. 

 

 

3.1. Vector product of two free vectors 

 

Definition. Vector product of two vectors ʚʘ
CC

 and  is referred to as vector ʨ
C

  so, 

that ʘ) jj     where,sinʚʘʨ
CCC

= - an angle between vectors ʚʘ
CC

 and ,  b) ,   and   ʚʨʘʨ
CCCC
^^  c) 

if  0
CC

ʨ̧ , then vectors ʚʘ
CC

, ,ʨ
C

 form the right triple. Vector product is designated  

[ ].ʚʘ
CC
³   

According to  condition ʘ) 0
CC
=ʨ   only if, vectors ʚʘ

CC
 and  are collinear. Therefore for 

a set of vectors of the space R ' vector product will consist only of one zero vector. If 

0
CC

ʨ̧ , then |ʨ
C

|  is numerically equal to the area of the parallelogram constructed on 

vectors ʚʘ
CC

 and , reduced to  common origin (fig. 2.7). It should be noted, that as 

against the scalar product ),( ʚʘ
CC
Ö   which is a mapping R  into 33 RR ³ ,  vector product, 

as well as addition, represents the internal law of a composition for space of free vec-

tors R
3
.  

The basic properties of vector product are reduced to the following: 

 
        ʨ

C
 

 

 

 

 

                        ʚ
C
 

 

 

                                 pS
C

=  

                    j 

                                             ʘ
C
      

                                                                     

Fig. 2. 7. 
 

1. [ ] [ ]ʘʚʚʘ ³-=³
CC

 - is noncommutative; 

2. [ ][ ][ ];ʚʘʚʘʚʘ
CCCCCC
lll ³=³=³  

3. ( )[ ][ ][ ]ʩʘʚʘʩʚʘ
CCCCCCC
³+³=+³  - is distributive relative to the addition. 

4. Neutral element does not exist. 

Let’s consider how the vector product is represented in coordinate form. 

[ ] ( )( )[ ].222111 kzjyixkzjyixʚʘʨ
CCCCCCCCC

++³++=³=  

We oped the brackets taking into account that  
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[ ][ ][ ] ,0
CCCCCCC
=³=³=³ kkjjii  а  

[ ] [ ] [ ] [ ] [ ] [ ] ,,,,,, jkijikijkikjkijkji
CCCCCCCCCCCCCCCCCC
-=³=³-=³=³-=³=³  we obtain 

( ) ( ) ( ).212121211221 kxyyxjzxxzizyzyʨ
CCCC

-+-+-=  

Hence ,

    

   

222

111
22

11

22

11

22

11

zyx

zyx

kji

k
yx

yx
j

zx

zx
i

zy

zy
ʨ

CCC

CCCC
=+-=                                   (6.2) 

Here 4
22

11
4

22

11
4

22

11
  ;  ; z

yx

yx
y

zx

zx
x

zy

zy
==-= , coordinates of vector 

kzjyixp
CCCC

444 ++= . 

 

 

3.2. The mixed product of three free vectors 
 

 

Definition. If we multiply a vector [ ]ʚʘʨ
CCC
³=   scalar by vector ʩ

C
, the ob-

tained number is referred to as the mixed product of three vectors ʚʘ
CC

,  and ʩ
C

. It is 

designated [ ]ʩʚʘ
CCC
Ö³ . 

 

  It is not difficult to show, that absolute value of the mixed product of three 

vectors is equal to volume Vp of the parallelepiped constructed on these vectors, i.e. 

[ ]ʩʚʘ
CCC
Ö³  = Vp  Really, [ ]ʚʘʨ

CCC
³= -  is area S of the parallelogram constructed 

on vectors ʚʘ
CC

 and , and ( )cpc
p

cp CCC
C

CC
cos  =

Ö
-  is height h of a parallelepiped 

which basis is a parallelogram with area S since ap
CC
^ и ʚp

CC
^ . Hence, [ ]ʩʚʘ

CCC
Ö³  = 

=Ö=Ö hScpʩʨ ) cos( 
CCCC

 Vp - volume of a parallelepiped. 

Let’s express the mixed product [ ]ʩʚʘ
CCC
Ö³  (and volume Vp of a parallelepiped) 

through coordinates of vectors. Taking into account (6.2), and also, that 

  1=Ö=Ö=Ö kkjjii
CCCCCC

and 0=Ö=Ö=Ö kjkiji
CCCCCC

  we obtain  

 

[ ]ʩʚʘ
CCC
Ö³ = =Öcp

CC
k

yx

yx
j

zx

zx
i

zy

zy CCC
   

22

11

22

11

22

11
+-  ·( )=++ kzjyix

CCC
333  

= =+-
22

11
3

22

11
3

22

11
3

yx

yx
z

zx

zx
y

zy

zy
x

333

222

111

zyx

zyx

zyx

 and Vp =   

333

222

111

zyx

zyx

zyx

 

Thus, absolute value of a determinant of the third order is equal to volume of 

the parallelepiped constructed on three vectors which coordinates in unite orthonor-
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mal basis kji
CCC

,,   are row -  vectors  of a corresponding matrix and, accordingly, ele-

ments of rows of a determinant. Basically, vector coordinates can be placed in col-

umns of a matrix (determinant), since value of a determinant in transposing of a ma-

trix does not change. Hence, we can make the following conclusion.  

For three vectors to be coplanar, it is necessary and sufficient that the determi-

nant of the matrix specified in coordinates of these vectors, in orthonormal basis be 

equal to zero.  

The concept of a parallelepiped and a determinant as its volume, is distributed to the 

vector space R 
n
, which dimension n> 3. Similar formation from n vectors of the 

space R 
n
  and a set of points of this space, enclosed in borders of these vectors which 

are considered as volume and  limited to these vectors, is referred to as parallelotope. 

Let parallelotope  be formed by  n vectors ʧʘʘʘ
CCC

..., 21 , which decomposition 

by canonical basis ʧ?
C

?
C

?
C

,..., 21  of the space R 
n
 is of the form of  

,...2211 nnjjjja ?
C

?
C

?
CC

aaa +++=    ,,. . . ,2,1 nj =    then the volume pV   of such 

parallelotope  is equal to absolute value of determinant D (ɸ), where A – is a square 

matrix  which ja
C

  are column - vectors ( row - vectors), i.e. 

 

 

       ( )n

nnnn

n

n

nnnn

n

n

p aaaADV
CCC

2

2

2

...,

...

...................

...

...

A   and   
.................

)( 21

21

22221

11211

21

2
2221

1
12

11

=

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

===

aaa

aaa

aaa

aaa

aaa

aaa

 

 

 

 

Ä4. APPLICATION OF DETERMINANTS FOR THE DETERMINING OF A   

MATRIX RANK  

 

 We shall consider a matrix A above the field ʈ which has size m³n  and we 

shall present it as system of n column –vectors in the space P 
m
. 

 ,

....

.................

....

....

),...,,(

21

22221

11211

21

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

==

mnmm

n

n

n

aaa

aaa

aaa

aaaɸ
CCC

 

 

Elements of a matrix ʘij  - numbers from P.  To determine  rank r of the given system 

of vectors or matrixes A, specified in the coordinates of these vectors, it is necessary 

to define possible greatest number of linearly independent vectors which can be cho-

sen from this system, or, in other words, number of basic vectors of this system. 
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  Before we shall consider a special case, when m = n. Let’s show, that for such 

square matrix of the order n the following theorem is valid. 

The theorem 1. For n of vectors naaa ,...., 21
CC

 from Р 
n  to be linearly inde-

pendent, it is necessary and sufficient, that a determinant of a square matrix A, 

formed of coordinates of these vectors D(A) = D( naaa
CCC

,...., 21 )  ̧0. 

The proof. Necessity. Let naaa ,...., 21
CC

 be linearly independent, the the matrix 

A - is invertible (book 2, Chapter.5, §5, item 5.1) that is, there is a matrix invertible to 

it - matrix ɸ
-1
, such, that ɸĀɸ

-1
 = ɽ, where ɽ - an identity matrix. Then having taken 

an advantage of property of determinant multiplication, we shall receive: D(ɸɸ
-1
) = 

D(ɸ)ĀD(ɸ
-1
) = D(ɽ) = 1, and, so, D(ɸ) ĀD(ɸ

-1
) = 1, hence D(ɸ)  ̧  0. 

Sufficiency. The statement, that if D(A) ̧  0,  then system of vectors  is linearly 

independent, is equivalent to the statement, that if D (A) =0,  then the system of vec-

tors is linearly dependent. We shall prove the last. Since D (A) =0 , then either one of 

rows or one of columns of a determinant are equal to zero, or two rows (columns) of 

a determinant are equal or proportional, and, at last, one of rows (columns) of a de-

terminant is a linear combination of other rows (columns) of a determinant. For sys-

tem of vectors naaa
CCC

..., ,21   it means, that in system there is either a zero - vector, or 

two equal or proportional vectors, or a vector which is  a linear combination of other 

vectors of system. In all these three cases as it follows from theorems of linearly de-

pendent and linearly independent vectors, the system of vectors naaa
CCC

..., ,21   will be 

linearly dependent, as was to be proved. 

Thus, it follows from the above-stated theorem, that if determinant D (A) of the 

square matrix A of the order n is not equal to zero, then rank of the matrix A is equal 

n: r (A) =n. If  D (A) = 0, then r(A)< n. 

  Now we shall generalize the obtained result to specify the process, allowing to 

determine the exact value of rank r (A) by means of determinants for a matrix A of 

any size. This process is based on the theorem for which we shall give only the for-

mulation, and we shall omit the proof. But before we give the formulation of the the-

orem, we shall introduce a concept of the basic minor and minors bordering it for a 

matrix A. 

 

Definition 1. A minor of the order h of the matrix A is referred to as the deter-

minant from h rows and h columns which is obtained as a result of deletion of rows 

and columns of this matrix so that only h rows and h columns remained, or in other 

words, the minor is a determinant of a square matrix formed with of elements located 

at intersection of  h various rows and h various columns of the initial matrix. 

  It is obvious, that the best order of a minor of a matrix in the size m³n  is equal 

to the minimal number from m or n, hmax = min( m, n). 

Definition 2. If  h < min( m, n), then matrix of the order h can be added some  

 i- rows and i ï columns of the initial matrix where  i = 1,2,..., min( m, n)-h  

and we can obtain the minors of higher orders h + i. Such minors are referred to as 

bordering for the basic minor h. 

Definition 3. If as the basic minor of a matrix  
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n
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aaa

aaʘ

ɸ
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...............
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....

21

22221

11211

, 

we shall choose the minor of the 1-st order located in the upper left corner ʘ11, all mi-

nors bordering minors of the higher orders obtained by addition of the next rows and 

columns, are referred to as the main minors of a matrix A. 

 

,

...

...............

...

...

)( ,,)( ,)( ,)(

21

22221

11211

333231

232221

131211

3
2221

1211
2111

SSSS

S

S

S

aaa

aaa

aaa

AD

aaa

aaa

aaa

AD
aa

aa
ADaAD ==== 2

  

where S = min( m, n). 

The following theorem is valid. 

The theorem 2. If there is a minor of the r - order which is not equal to zero in 

the matrix A, and all minors of the (r+1)  - order, bordering this minor, are equal to 

zero, then  r  is a rank of the matrix A: r = r (A). The minor of the order r, distinct 

from zero is referred to as basic. 

The remark. If all minors of the (r+1)  - order are equal to zero, also all minors 

of higher orders also are equal to zero. 

  In view of this theorem the process of definition of a matrix rank is reduced to 

the following. It is necessary to choose in a matrix as the basic a minor of any order 

which is distinct from zero. Then it is necessary to calculate minors of higher orders 

which are bordering it. Then the highest order of the bordering minor which is dis-

tinct from zero, also will be a rank of a considered matrix 

Example. Define a rank of a matrix 
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

5  1-  4    3

1  1-  3    1

3  1    2-  1

ɸ  .  Let’s choose as the basic, 

a minor of the 1-st order located in the upper left corner |1| ̧  0. A bordering minor 

bordering  of the second  

 order ,05
3    1

21
¸=

-
 and bordering minors of the third order 

 

,0541
4 3

3 1
1

1-  3

1-  1
2

1- 4

1- 3
1

 1-  4    3

13     1

1   2   1

=-+=++=-

-

,015411
4 3

3 1
3

5 3

1 1
2

5  4

1  3
1

5 4   3

1  3   1

3  2- 1

=-+=++=  

Hence, a matrix rank ɸ: r(A) = 2. 

The remark. If as the basic minor we choose other minor distinct from zero, 

but located in the other place of a matrix, the result will be the same. 
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Ä5. ARRAYING OF INVERSE MATRIX  

 

We already saw, that for the matrix A to be convertible, it is necessary and sufficient 

that it be square and its rank r (A) should be equal to the order n of the matrix A. 

Now, using a determinant of a matrix, we can formulate this statement as follows. For 

the square matrix A have the inverse matrix ɸ
-1
,  it is necessary and sufficient, that its 

determinant D(A) ̧  0. Members of inverse matrix ɸ
-1
  are defined by the formula: 
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Here, D (A) -  is a determinant of a matrix ɸ = (ʘij),  where i = 1,2,...,n, j = 1,2,...,n. 

ɸij   - are algebraical complements of the member ʘij  of the matrix ɸ. It should be no-

ticed that  ɸij   are not located  on a place of the member ʘij, but they are located on a 

place of the member ʘji . Hence, matrix ɸ
-1
  is transposed to a matrix ö

ö

÷

õ

æ
æ

ç

å

)(AD

Aij
,which 

members ɸij   are located on a place of members ʘij   which algebraic complements 

they are, then  
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We shall prove, that arrayed matrix ɸ
-1
  is inverse to ɸ. For it we need to show, that 

ɸɸ
-1
 = ɽ. 
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Members of the transposed matrix .?? jj AA =¡  It follows from the theorem of an-

other's complements that if i  ̧j, then  
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We obtained a diagonal matrix with equal members on the main diagonal, and it is a 

scalar matrix, therefore 
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Example. Define a matrix, inverse for a matrix  .

3- 2- 5

4  3  6

7  5  2

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=ɸ   First let’s  show 

that the given matrix has inverse matrix . .1

3- 2- 5

4  3  6

7  5  2

)( -==AD  Since 

D(A)  ̧0, then the given matrix has inverse one. Let’s calculate algebraical comple-

ments: 

 

 

,27    ,38
3-  5

4   6
)1(    ,1

3- 2-

4  3  
)1( 13

21
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11
11 -==-=-=-= ++ ɸɸɸ   

 

.24  ,34,1  ,29  ,41  ,1 333231232221 -==-==-== ɸɸɸɸɸɸ  

Thus,  
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Let’s test 

.

1 0 0

0 1 0

0 0 1

24  29-  27 

34- 41  38-

1     1-  1   

3- 2- 5

4  3   6

7  5   2
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EXERCISES 

 

1. Solve the equations 
 

 

 

;0

   ʭ1    1

1    ʭ   1

1    1ʭ   

=    .0

1ʭ     -   1

1-     ʭ   1

2    2-ʭ   

=  

 

      

2.  Are points А(1,1,2), В(-2,1,2), С(3,0,2), Д(2,2,1) lying in one plane? 

     3. Prove  that addition the members of any determinant column to corresponding 

members of other column of the same determinant, multiplied by the same number 

which is not equal to zero, does not change volume of a determinant. 

      4. Do vectors  )1,3,0(  and  )2,1,1(  ),1,2,3( ʩʚʘ
CCC

--  form the basis of vector space R
3 
? 

If they do, determine the coordinates of a vector d
C

(1,2,3)  in this basis. 

      5. Vectors are given: .43   ;221 kiʚkjia
CCCCCCC

-=+-=  Define their vector prod-

uct, angler between them and the area of the parallelogram constructed on these vec-

tors. 

     6. To calculate volume Vp of the parallelepiped constructed on vectors:  

).3,0,2(   ),1,1,4(    ),6,4,3( ʩʚʘ
CCC

 
 

7. To define a matrix rank 
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3  5  1-  2-  3  

4  4  6  12   2  

2   2   3  6  1   

1   3   2  4  2

ɸ  

       8. Is  matrix 
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6 4 1 2

0 0 1 1

 4 1 3 3

5 0 1 2

ɸ  invertible? If it is, define its inverse matrix.   
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CHAPTER 7 

 

LINEAR EQUATION SYSTEMS  

 

Ä1. DEFINITIONS. CONSISTENT AND INCONSISTENT SY STEMS 

 

 

  

Linear system k of the equations with n unknown ʭ1, ʭ2, . . . , ʭn, is referred to as a set 

of equalities  
 

  

 ʘ11ʭ1 + ʘ12ʭ2 + . . . +ʘ1nʭn = ʚ1       

 ʘ21ʭ1 + ʘ22ʭ2 + . . . +ʘ2nʭn = ʚ2                                                               (7.1) 

 . . . . . . . . . . . . . . . . . 

 ʘʢ1ʭ1 + ʘʢ2ʭ2 + . . . +ʘʢnʭn = ʚʢ 
 

Coefficients ʘij   and free members ʚi, i = 1,2,..., ʢ, j = 1,2,..., n - are known and be-

long to the field R of real numbers or to the field C of complex numbers. Further we 

shall consider the field R of real numbers as this field. 

Solve system (7.1) means to determine the ordered set of numbers ɚ1, ɚ2, . . ., ɚn  

from R (or ʉ) so, that in substituting at replacement ʭ1,ʭ2 ,. . . .,ʭn  for ɚ1, λ2, . . ., ɚn,  

accordingly, each equation of the system becomes correct equality. The ordered set of 

numbers ɚ1, ɚ2, . . ., ɚn, is referred to as  solution of system (7.1).  

  The system of the linear equations is referred to as consistent  if it  has solu-

tions, and, inconsistent  if it has no solutions. 

  If two consistent systems have identical solutions, such systems are referred to 

as  equivalent systems  . 

  The consistent system of the linear equations is referred to as certain if it has 

only one solution and to  uncertain if there is a set of solutions. 

  Gaussian method gives answers to these questions. 

 
 

 

 

Ä2. GAUSSIAN METHOD  

 

With system (7.1) of linear equations it is possible to make the following operations 

which do not break equivalence of system of the equations: 

  ʘ) to add to both parts of the equation  corresponding parts of other equation 

multiplied by on some number; 

  b) to permute the equations in system; 

  c) to exclude from system  the equations  0х1 + 0х2 + . . . +0хn = 0.  As this 

equality is identity, and any values х1, х2,. . . , хn  satisfy it.  

  With the help of these operations any system of the linear equations can be re-

duced to triangular  
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 с11х1 + с12х2 + . . . + с1rхn + . . . + с1nхn = d1       

                      с22х2 + . . . + с2rхr  + . . . + с2nxn = d2                                             (7.2) 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                                   сrrхr + . . . + сrnхn = dr  

                                            . . . . . . . . . . . . . . . . . . 

                                                             + сnnxn = dn 

or trapezoid  form 

 с11х1 + с12х2 + . . . + с1rхn + . . . + с1nхn = d1 

            с22х2 + . . . + с2rхr  + . . . + с2nxn = d2                                              (7.3) 

                         . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                                   сrrхr + . . . + сrnхn = dr. 

At reduction of system to triangular or trapezoid form there can be equations 0хi + 

0хi+1 + . . . + 0хn = di, i = 1,2, . . .,n   If  di = 0,  these equations are identities and they 

are excluded from system, but if di  ̧0, then this equation is not satisfied with any 

values хj .  In this case the system has no solutions, it is inconsistent. 

The consistent system of the equations reduced to a triangular kind (7.2) has the 

unique solution and, hence, it is certain. If the consistent system is reduced to trape-

zoid kind (7.3), and r< n, then giving to xr+1, xr+2, . . . , xn any values, from system 

(7.3) we can  define х1, х2,. . . , хr and construct the solution of system. However, tak-

ing into account, that xr+1, xr+2, . . . , xn  can take any values from R, we obtain uncer-

tain system, and number of its solutions is an infinite set. Unknown which take any 

values, are referred to as  free, auxiliary, independent and their quantity is equal to  

n - r. 

 

Examples.  
 

1. Solve the system by Gaussian method  

 

4х1 + 2х2 +  х3 = 4 

  х1 + 3х2 + 2х3 = 2 

2х1  -   х2  + х3 = 5.      

Let's exclude from the 2 - nd and 3 – rd  equations of the given system the unknown 

х1. For this purpose we multiply the second equation by -4, and the third equation by 

-2 and add to the first one: 

 

  4х1 + 2х2 + х3 = 4 

        -10х2 –7х3 =-4 

           4х2  -  х3 =-6. 

Now we shall multiply the third equation of the obtained system by 5/2 and we shall 

add the second equation to it: 
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 4х1 + 2х2 + х3  =  4 

                    -10х2 –7х3 =-4 

                          3
2

19
ʭ- =-19 

The system is reduced to a triangular kind. From last equation of system we define ʭ3 

= 2, from the second ʭ2 =-1, from the first ʭ1 = 1. The system has the unique solution 

(1,-1, 2). 

2. The system is given 

 

          2х1 - х2 + х4 = 4 

4х1 – 2х2 + х3 + х4 = 7 

6х1  -  3x2 +2x3 - x4 = 8 

8x1 -  4х2 +3х3 – х4=11 

The remark. In solving the system by Gaussian method the unknowns in the 

equations of system can be excluded not only from the beginning, but also from the 

end. 

  Thus we do in solving of the given system. For this purpose we shall multiply 

the last equation by 1, 1,-1 consistently, and we shall add it with three first ones; we 

shall obtain an equivalent system  

 

  8х1 – 4х2 + 3х3 – х4 = 11 

 10х1 – 5х2 + 3х3       = 15 

 12х1 – 6х2 + 4х3       = 18 

 -2х1 +   х2  -   х3        = -3  

Now we shall multiply the last equation by 3 and by 4 consistently, and we shall add 

it to two previous ones; we shall obtain an equivalent system: 

 

 

 

 8х1 – 4х2 + 3х3 – х4 = 11 

-2х1 +   х2 -    х3        = -3 

  4х1 -  2х2                   = 6      

  4х1 -  2х2                   = 6 

 Then, we shall multiply  the penultimate equation by-1 and add it to the last equa-

tion, we have: 

 

 8х1 – 4х2 + 3х3 – х4 = 11 

 -2х1 +   х2 -    х3           -3 

  4х1 -   2х2                   = 6      

  0х1 -   0х2                   = 0 
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Last equation is identity and it can be excluded from system. Finally 

 

8х1 – 4х2 + 3х3 – х4 = 11 

 -2х1 +  х2 -    х3        =  -3 

  2х1 -   х2                  =   3     

Thus, the system is reduced to resulted to a  trapezoid  kind. If we suppose ʭ1 the aux-

iliary unknown and give to it any values, for example, b, we find the solution of sys-

tem (b, 2b-3, 0, 1). Since b can take any values from R, the system is not certain and 

it has infinitely many solutions. 

 

 

 

 

 

 

   

Ä3. MATRIX AND VECTOR FORMS OF NOTATION OF  LINEAR  

EQUATION SYSTEMS. KRONECKER ï CAPELLI THEOREM  

 

It is possible to connect the following matrixes with system (7.1) of linear equations: 

1. Matrix A of coefficients ʘij j  if unknowns of the system are x1, x2, . . . , xn. 

 

( ) 1,2,...n.j   ,,...2,1   ,

...

...............

...

...

21

22221

11211

===

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

= kia

aaa

aaa

aaa

A ij

knkk

n

n

 

 

This matrix is named basic matrix. 

1. If  we add a column of free members  ʚ1,ʚ2,...ʚʢ  of the system to the basic 

matrix A we shall obtain the so-called  expanded matrix ɸ* of the given 

system 

.

...

...

...

21

222221

111211

*

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

ʢknkk

n

n

ʚaaa

ʚaaa

ʚaaa

ɸ
22222
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1. Matrix – column of free members ,
...

2

1

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

ʢʚ

ʚ

ʚ

ɺ  matrix format ʢ³1. 

2. Matrix – column of unknowns 

,
...

2

1

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

nx

x

x

X  matrix format n³1. 

  

Using definition of matrix product, system (7.1) can be written down  as  

     ɸʍ = ɺ                                                 (7.4) 

 This form of notation of  the linear equations system is referred to as matrix . If 

thus  we consider the matrix A  as some mapping of the space R 
n
 into R

k
, and if we 

associate matrixes X and B  with column - vectors 
nRxÍ

C
and .kRʚÍ
C

accordingly.  

Then the solution of system (7.1) can be reduced to a problem of determining of vec-

tors ,n
j Rx Í
C

which are prototypes of a vector 
kRʚÍ

C
 if mapping R 

n
 into R 

k
, set by 

a matrix A, i.e. .)( ʚʭɸ j
CC
=  

Besides of  matrix, the system of the linear equations can be written down also in the 

vector form. For this purpose a matrix A is connect with system from n column - vec-

tors naaa
CCC

,...,, 21  in the space R 
ʢ
. 

  

 ( ) .,...2,1  ,
...

   ,,...,,

...

...............

...

...

2

1

21

21

22221

11211

nj

a

a

a

aaaa

aaa

aaa

aaa

A

kj

j

j

jn

knkk

n

n

=

ö
ö
ö
ö
ö
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õ

æ
æ
æ
æ
æ

ç

å

==

ö
ö
ö
ö
ö
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õ

æ
æ
æ
æ
æ

ç

å

=
CCCC

 

Then the system (7.1) will become ,...2211 ʚxʘʭʘʭʘ nn
CCCC
=+++                   (7.5)  

Here  .
...

2

1

k

ʢ

R

ʚ

ʚ

ʚ

ʚ Í

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=
C

 

 

In terms of the equation (7.5) the problem of solution of system (7.1) can be 

reduced to a problem of determining  of linear dependence of vector system 

ʚaaa n
CCCCC

,,...,, 21 . So the system (7.1) has the solution  if the vectors ʚaaa n
CCCCC

,,...,, 21  

are linearly dependent. Really, it follows from (7.5), that the vector ʚ
C

  is a linear 
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combination of vectors naaa
CCCC

,...,, 21   and, hence, it belongs to the subspace, generat-

ed by vectors naaa
CCCC

,...,, 21 . If the vector ʚ
C

 does not belong to the subspace, generat-

ed by vectors naaa
CCCC

,...,, 21 , i.e.  vectors  ʚaaa n
CCCCC

,,...,, 21   are linearly independent, 

the system (7.1) has no solutions. In other words the system (7.1) has the solution if 

the rank r
*
(A

*
) of vector system of vectors ʚaaa n

CCCCC
,,...,, 21   does not exceed the rank 

r(A) of vector system naaa
CCCC

,...,, 21 , and it means, that they should be equal. Now if 

we connect system of vectors ʚaaa n
CCCCC

,,...,, 21   with expanded matrix A
*
, then the 

aforesaid can be considered as the proof of the following theorem. 

Kronecker-Capelli Theorem (a consistency condition of the linear equation sys-

tem): the linear equation system is solvable (consistent), only if the rank r (A) of the 

basic matrix A is equal to the rank r
*
(A

*
) of the expanded matrix A

*
 : r(A) = r

*
(A

*
) .  
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Ä4. KRAMER'S SYSTEM 

 

  

We suppose, that the number of the equations in system (7.1) is equal to number of 

unknowns (k = n) and that column – vectors na...a,a
CCC

21  from R 
n
 are linearly independ-

ent; in this case (7.1) is referred to as  Kramer's system. 

    Since column – vectors na...a,a
CCC

21  are linearly independent, they form basis of 

the space R
n
, hence, any column - vector 

nRʚÍ
C

 is represented by unique way, in the 

form (7.5). Thus, Kramer's system always has the solution, and moreover it is unique. 

For defining of this solution we shall write down Kramer's system in the matrix form 

(7.4): ɸʍ = ɺ. Basic matrix A of the Kramer's systems – is square, of the order ʧ, and 

its determinant is distinct from zero: D(A) ̧  0 , since column – vectors of a matrix are 

linearly independent. Therefore the matrix A has inverse matrix A-1. We shall multi-

ply both parts of the equation (7.4) by A-1  from the left: 

A
-1
AX = A

-1
B. 

Since  A
-1
A = E  and  EX = X,  then  X = A

-1
B  or 
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Multiplying   A
-1 

by B, we obtain 

 

ö
ö
ö
ö
ö

÷

õ
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æ
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ö
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ʭ

ʭ

ʭ
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...

...

)(

1

...

2211

2222112

1221111

2

1

                                     (7.6) 

Hence ( )nnjjijj ʚAʚAʚA
AD

x +++= ...
)(

1
221 , 

where j=1, 2,...n, and  A1jʚ1 + A2jʚ2 +....+ Anjʚn  -  a matrix determinant which is ob-

tained from the basic A by substituting of members j- column, i.e. coefficients at the 

determined unknown xj  for column of free members ʚ1, ʚ2,...ʚn of system. Thus, 
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A

A

aaaaa

aaaaa

aaaaa

aaʚaa

aaʚaa

aaʚaa

x
j

nnjnnjjnn

njjj

njjj

nnjnnjnn

njj

njj

j ==

+-

+-

+-

+-

+-

+-

......

.................................

......

......

......

................................

......

......

)1()1(1

2)2(22)1(221

1)1(11)1(111

)1()1(1

2)1(22)1(221

1)1(11)1(111

 . 

Now all aforesaid we shall formulate as the following rule.  

Kramer's rule. If determinant D (A) the basic matrix A of the system of n  line-

ar equations with n unknowns is distinct from zero (D(A)̧ 0), then system has the 

unique solution and this solution is defined by the formula: 

 

  
)(

)(

AD

AD
x

j
j = ,  j= 1,2, ..., n,                                                            (7.7) 

where D( Aj )  - is a determinant obtained from D(A)  by substituting  j- column for 

column of free members of system.   

   

 . An example. Solve system of the equations. 

 

 

 

  3x-3y+2z=2, 

  4x-5y+2z=1, 

  5x-6y+4z=3.  

Let's calculate a determinant of the basic matrix A: 

 

 421824
6-   5

5-  4
2

4  5

2  4
3

4   6-

2  5
3

4  6-  5

2  5-  4

2  3-  3

)( -=++-=++
-

==AD . 

Since D(A) ̧  0, then this is Kramer's system and, hence, it has one solution which we 

determine be the formula:  

 

.3 ,2 ,1 ,
)(

)(
== j

AD

AD
x

j
j  
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;1
4

4

4

18616

4

6-  3

5-  1
2

4  3
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3

4  6-
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1 =
-
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=
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=
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==x  
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2

3 5
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1 5-
3
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1 5- 4

2 3- 3

;1
4

4

4-

3 5

1 4
2

4 5

2 4
2

4 3

2 1
3

4

4 3 5

2 1 4

2 2 3

3

2

=
-

-
=

++

==

=
-

-
=

+-

=
-

=

ʭ

ʭ

 

 

Answer: х1 = х = 1; х2 = у = 1; х3 = z = 1. 

 

 

 

Ä5. HOMOGENEOUS SYSTEM OF THE LINEAR EQUATIONS 

 

 The system of the linear equations is referred to as homogeneous if the right 

parts of these equations are equal to zero: 

 

  a1x1 + a12 x2 + ... + a1n xn = 0, 

  a21x1 + a22 x2 + ... + a2n xn =  0, 

  ......................................                                                            (7.8) 

  ak1x1 + ak2 x2 + .... + akn xn =  0. 

  

The homogeneous system is always consistent, since the expanded matrix differs 

from the basic one with a column representing a zero - vector. As the system contain-

ing a zero - vector, is always linearly dependent, the rank of the expanded matrix co-

incides with a rank of the basic matrix. Consistency of homogeneous system is obvi-

ous, as it always has the trivial solution ʭ1 = ʭ2 =.....= ʭʧ = 0.  This solution will be 

the unique if the homogeneous system is Kramer's system i.e. when k = n and deter-

minant D (A) of basic matrix A is distinct from zero. In other words, when the rank 

r(A) of the basic matrix is equal to number n of the unknowns of system: r (A) = n. If  

r (A) <n, the homogeneous system of the linear equations has uncountable set of so-

lutions and a set of solutions of system forms a vector subspace. We shall show it. 

For this purpose we shall write down system (7.8) in the vector form in space R n  of 

row - vectors. In this case each equation of system represents scalar product of two 

vectors 
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from  R
n
:  ( ) kiaaaa iniii ,..2,1,,...,, 21 ==
C

 и ( )nx,...x,xx
21

=
C

:        

0

.............

0

0

2

1

=Ö

=Ö

=Ö

xa

xa

xa

k
CC

CC

CC

                                                                                             (7.9) 

Let's prove, that if vectors  ö
÷

õ
æ
ç

å= 00
2

0
1

0
nx,....x,xx

C
  and  ö

÷

õ
æ
ç

å= 00
2

0
1

0
ny,...y,yy

C
  are solu-

tions of system (7.9) then 
00 yx
CC
+  and 

0x
C
l  will be solutions of this system. Really, 

since scalar product is distributive relative to addition of vectors also is associative 

relative to multiplication by number, we have: 

 

  
( )
( ) ( ) .,...,2 ,1    0,

,0

00

0000

kixaxa

yaxayxa

ii

iii

===

=+=+

CCC

CCCCCCC

ll
 

This implyies that 
00 yx
CC
+  and 

0x
C
l  are also solutions of homogeneous system. Be-

sides neutral (0,0...., 0) and symmetric ö
÷

õ
æ
ç

å --- 00
2

0
1 nx,....x,x  elements also belong to 

the space of solutions. Thus, a set of solutions of homogeneous system forms a vector 

subspace. Now we shall define subspace dimension of system solutions we shall con-

struct its basis. As we have already mentioned, a subspace of solutions contains non-

zero  vectors, if  r(A) < n. The condition r (A) <n is always satisfied, if the number k 

of the system equations is less than number n of unknowns. That fact, that a rank of 

basic matrix A is equal to  r (A), means, that matrix A contains a minor of the order r, 

distinct from zero; nevertheless minors of higher orders are equal to zero, including 

(if it exists) minor of the order n. Without limiting a generality, we can consider that 

this minor is the main minor of matrix A of the order r. 

0

...

...............

...

...

)(

21

22221

11211

¸=

rrrr

r

r

r

aaa

aaa

aaa

AD . 

We can  always obtain this, by permutation of the equations in system. Then the oth-

ers ʢ-r  equations of system are linear combinations of the first r equations of system 

and consequently, without breaking equivalence of the system, these equations can be 

excluded from the system. The rest r equations of the system we shall write down in 

the following form 
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î
î
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1)1(2211

21)1(22222121

11)1(11212111

.            (7.10) 

Let's notice, that if we give some numerical values to the unknowns  xr+1, . . ., ʭn  in 

the system (7.10) we shall receive Kramer's system since 0)( ¸ADr  and, hence, other 

unknowns ʭ1, ʭ2, . . ., ʭr can be determined unequivocally by Kramer's rule (7.7). 

Let’s define unknowns ʭ1, ʭ2, . . ., ʭr  giving consistently following values (1,0..., 0), 

(0,1,0..., 0)..., (0,0..., 1) for unknowns  ʭr+1, ʭr+2, . . ., ʭn  . Such choice is caused by 

that each set from n-r numbers is a vector of canonical basis of the space R 
n-r
. Let’s 

suppose, that for each specified set of values ʭr+1, ʭr+2, . . ., ʭn for ʭ1, ʭ2, . . ., ʭr the fol-

lowing n-r sets from r numbers ),,...,,( 11211 raaa  ),,...,,( 22221 raaa   are obtained 

accordingly.... . . ( ) ( ) ( )).,...,,( 21 rrnrnrn --- aaa    

It is obvious that vectors 
 

 

( )

( )

( ) ( ) ( )( )1,...,0,0,,...,,

........................................

,0,...,0,1,0,,...,

,0,...,0,1,,...,,

21

222212

112111

rrnrnrnrn

r

r

y

y

y

---- =

=

=

aaa

aaa

aaa

C

C

C

                                      (7.11) 

are solutions of the system (7.10). Number of coordinates of vectors rnyyy -
CCC

,..., 21   

is equal to n and they belong to the space R 
n
. 

  We shall prove, that vectors rnyy -
CC

,...,1  are linearly independent. Really, if 

we write down the equality 0...11

CCC
=+ -- rnrn yy ll   in the scalar form 

 

  ä
-

=

==
rn

i
iji y

1

n1,2,...,  j  ,0l , 

using components (7.11)  it is satisfied only under condition of l1 = l2=.....=ln-r = 0. 

It is immediate from the equations, for which j  r+1 . It is not difficult to show that 

any solution ),,,( 21 ny bbb 2
C
=  of homogeneous system (7.10) is a linear combina-

tion of vectors rnyyy -
CCC

,..., 21   with coefficients 

 ,,....,, 2211 nrnrr bgbgbg === -++  i.е. 

 rnrnrnnrr yyyyyyy ---++ +++=+++=
CCCCCCC

gggbbb ...... 22112211 ,       (7.12)  
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where nrnr bgbg == -+,...,11   can take any values from R. For the proof of it if we 

solve the system (7.10) for unknowns  xr+1,...,xn  we suppose values (br+1, 0...., 0), (0, 

br+2,, 0,..0),......(0,0,...,bn). 

   Thus, vectors rnyyy -
CCC

,..., 21  with components (7.11) form a subspace basis of 

homogeneous system (7.8) solutions of dimensions n-r. The expression (7.12) deter-

mining all set of subspace solutions, is referred to as general solutions of homogene-

ous system. Set of linearly independent solutions rnyy -
CC

,.....1   of the system is re-

ferred to as  fundamental system of decisions. Variables xr+1,...xn are referred to as  

free, x1,...xr - basic.  

The remark. The definition of the fundamental solutions indicated above, is 

not obligatory and in solving of specific problems a choice of values xr+1,...xn can be 

another.  

Example. 

 Let the homogeneous system of the equations be given 

 

  x1 +  2x2 -  5x3 + 3x4 = 0, 

           2x1 +  5x2  - 6x3 -   x4 = 0, 

           5x1 + 12x2 - 17x3 + x4 = 0, 

in which number of unknown is n = 4, and number of the equations is k = 3. Since ʢ < 

n  then r(A)< n  and, hence, the system has infinite number of solutions. For defini-

tion of fundamental and the general solutions of the system we shall define a rank r 

(A) of the basic matrix 

 

     .

1   17-  12  5

1-  6-   5   2

3   5-   2   1

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=ɸ  

Let's consider the principal minors: ;01
5 2

2 1
)(2 ¸==AD .0

17-  12  5

6-   5   2

5-   2   1

)(3 ==AD  

For matrix ɸ there is one more minor of the third order ,

1  12 5

1- 5  2

3  2  1

)(3 =¡AD it is also 

equal to zero. Thus, all minors of the third order of the matrix A are equal to zero, and 

among minors of the second order there is a minor distinct from zero. Hence, the rank 

r (A) of the matrix A is equal to 2. It means also, that the third equation of system is a 

linear combination of first two ones and it can be excluded from the system. Really, 

we can obtain the third equation, if we multiply the second equation by 2 and add it 

with the first one. After deletion of the third equation from the system of the third 

equation, we shall rewrite the rest two equations in the following form 
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    х1 + 2х2 = 5х3 – 3х4 

                              2х1 + 5х2 = 6х3 +   х4 

Supposing х3 = 1, а х4 = 0,  we shall obtain the fundamental solution 1ʫ
C

 of the system  
 

 

 

    

             х1 + 2х2 = 5 

                                   Ý  х1 = 13,     х2 = - 4,    1ʫ
C

 = (13, - 4, 1, 0).   

           2х1 + 5х2 = 6 

Supposing х3 = 0, and х4 = 1, we shall define 2ʫ
C

 

 х1 + 2х2 = -3 

                                 Ý  х1 = - 17,  х2 = 7, 2ʫ
C

= (-17, 7, 0, 1).        

          2х1 + 5х2 = 1 

The general solution of the system 

 

  =-+-=+= )1,0,7,17()0,1,4,13( 212211 gggg yyy
CCC

 

 ), , ,74 ,1713( 212121 gggggg +--=  

where 21  and gg  are any numbers from R. 

 Where 21  ʠ gg  
 any numbers from R. 

 So,  system solutions make a vector subspace of the dimensions n - r =  4 - 2 = 2.  
 

 

 

Ä6. HETEROGENEOUS SYSTEM OF THE LINEAR EQUATIONS 

   

If in system of the linear equations (7.1) only  one of free members ʚi  is distinct from 

zero such system is referred to as heterogeneous.  

  Let be given the heterogeneous system of the linear equations which in the 

vector form can be presented as  

 

ii ʚxʘ =
CC

, i = 1,2,...,ʢ,                                                                                       (7.13) 

  ( ) .),...,,(   ,,,...,, 2121
n

n
n

iniii RxxxxRaaaa Í=Í=
CC

 

Let's consider corresponding homogeneous system       

(7.14).                                                            1,2,...k.  i  ,0 ==xai
CC

  

Let the vector ( )nx aaa ,...,, 211=
C

  be the solution of heterogeneous system 

(7.13), and the vector ),...,,( 21 ny bbb=
C

  be the solution of homogeneous system 

(7.14). Then, it is easy to see, that the vector yxz
CCC
+= 1  also is the solution of heter-

ogeneous system (7.13). Really 
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Now, using the formula (7.12) of the general solution of the homogeneous equation, 

we have  

  

   ,...2211 rnrn yyyy --+++=
CCCC

ggg  

and therefore 

  ,...22111 rnrn yyyxz --++++=
CCCCC

ggg                                      (7.15) 

where rn-gg,...,1  are any numbers from R, and  rnyy -
CC

,...,1  - are fundamental solu-

tions of homogeneous system. 

  Thus, the solution of heterogeneous system is s set of its partial solution and 

the general solution of corresponding homogeneous system. 

  The solution (7.15) is referred to as   the general solution  of heterogeneous 

system of the linear equations. It follows from (7.15), that the consistent heterogene-

ous system of the linear equations has the unique solution if the rank r (A) of the 

basic matrix A coincides with number n of unknowns of the system (Kramer's sys-

tem) if r r(A) < n, the system has infinite number of solutions and this number of so-

lutions is equivalent to solution subspace of corresponding homogeneous equation 

system of dimension n-r.   

Examples. 

   1. Let be given the heterogeneous system of the equations, in which the num-

ber of the equations is k = 3, and the number of unknows is  n = 4. 

 

х1 – х2 + х3 –2х4 = 1 

х1 – х2 + 2х3 –х4 = 2 

5х1 – 5х2 + 8х3 –7х4 = 3 

  

We shall determine ranks of the basic matrix A and expanded matrix  ɸ* of the given 

system. As A and ɸ* are not zero matrixes and k = 3  <  n,   therefore 1 ¢ r (A), r
*
( 

ɸ
*
) ¢ 3. Let’s consider minors of the second order of matrixes A and ɸ*: 

 

  .
2 1

1 1
)*A(D)A(D   ;

1- 1

1- 
)*A(D)A(D 01

22
0

1

22
¸==¡=¡===  

Thus, among minors of the second order of matrixes A and ɸ* there is a minor 

distinct from zero, therefore 2 ¢ r(A), r
*
(A

*
) ¢ 3. Now we shall consider minors of the 

third order 

 



 130 

0

8    5-   5

2    1-   1 

1     1-  1 

)()( *
33 === ADAD , since the first and the second column are propor-

tional. Similarly to the  minor 0

7-  5-   5

1-   1-   1

2-   1-  1 

)()( *
33 ==¡=¡ ADAD . 

0426
8  5-

2  1-
2

7-  5-

1-  1-
1

7-  8

1-  2
1

7-   8   5-

1-   2   1-

2-   1   1-

)()( *
33 =--=---==¡¡=¡¡ ADAD . 

And so all minors of the third order of the basic matrix A are equal to zero, hence, r 

(A) = 2. For expanded matrix ɸ* still there are minors of the third order  

 

 .05

3  8  5-

2  2  1-

1  1  1-

)(''''     ;0

3 5-  5

2  1-  1

1  1-  1

)(''' *
3

*
3 ¸==== ADAD  

Hence, among minors of the third order of expanded matrix ɸ* there is a minor dis-

tinct from zero, therefore r * (A *) =  3. It means, that ), r(A) ̧  r
*
(A

*
)  and then, on the 

basis of Kronecker-Capelli theorem, we can conclude, that the given system is incon-

sistent. 

2. Solve system of the equations 

 

3х1 +2х2 +х3 +х4 = 1 

3х1 +2х2 - х3 - 2х4 = 2 

For the given system 42 =<= nk   and consequently 1 ¢  r(A),  r
*
(A

*
) ¢  2. Let’s con-

sider for matrixes A and A* the minors of the second order 

.06
1-  3

1    3
)()(    ;0

2  3

2  3
)()( *

22
*

22 ¸-==¡=¡=== ADADADAD  Thus, r (A) = r 

* (A *)  = 2, and, hence, the system is consistent. As basic variables we shall choose 

any two variables for which the minor of the second order formed of coefficients of 

these variables is not equal to zero. Such variables can be, for example 

х3 and х4, since. .01
2- 1-

1   1  
)(2 ¸-==¡AD  Then we have  

 х3 + х4 = 1 – 3х1 – 2х2 

-х3 - 2х4 = 2 – 3х1 – 2х2. 

Let's define the partial solution 1ʭ
C

 of the heterogeneous system. For this purpose we 

shall put х1 = х2 =0. 

 х3 + х4 = 1 

                                        -х3 - 2х4 = 2     
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The solution of this system: ʭ3 = 4, ʭ4 = - 3, hence, 1ʭ
C

= (0,0,4,-3). 

Now we shall define the general solution of the corresponding homogeneous equation 

 

 х3 + х4 = -3х1 – 2х2 

                                        -х3 - 2х4 =  – 3х1 – 2х2  

  We put: х1 =1, х2 =0 

 х3 + х4 = -3 

                                        -х3 - 2х4 = -3 

Solution of this system х3 = -9, х4 = 6. 

Thus  ).6,9,0,1(1 -=ʫ
C

 

Now we shall put х1 =0, х2 = 1 

 

 х3 + х4 = -2 

                                        -х3 - 2х4 = -2 

Solution: х3 =-6, х4 = 4, and then ).4,6,1,0(2 -=ʫ
C

  

   After we determined the partial solution 1ʭ
C

, of the heterogeneous equa-

tion and fundamental solutions  21 у and 
CC

ʫ   of the corresponding homogeneous equa-

tion, we write down the general solution of the heterogeneous equation. 

 

 =-+-+-=++= )4,6,1,0()6,9,0,1()3,4,0,0( 2122111 gggg yyxz
CCCC

 

),463,694,,( 212121 gggggg ++---=    where 21    and  gg  are any numbers from 

R. 

EXERCISES 

 

1. Solve system of the equations by Gaussian method and with the help of de-

terminants  

 

 

2х1 + х2 +3х3 +4х4 = 11; 

7х1 +3х2 + 6х3 +8х4 = 24; 

3х1 + 2х2 + 4х3 +5х4 = 14; 

  х1 + х2 + 3х3 +4х4 = 10; 

 

2. Define basis and subspace dimension, formed by set of solutions of homo-

geneous equation system: 

 

 

а)   3х1 + 5х2 - х3 +2х4 = 0;               b)   х1 + 4х2 - 3х3 +6х4 = 0; 

      2х1 + 4х2 - х3 +3х4 = 0;                    2х1 + 5х2 + х3 + 2х4 = 0; 

        х1 + 3х2 -  х3 +4х4 = 0;                     х1 + 7х2 - 10х3 +20х4 = 0;  

 

 

3.Is  the system of the equations consistent t? If it is consistent, solve it: 
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а)   х1 + х2 + х3  = 3                    b)    х1 - 2х2 - 3х3 = -3 

      х1 + х2 - 3х3 = -1                           х1 + 3х2 - 5х3 = 0; 

     2х1 + х2 - 2х3 = 1                           -х1 + 4х2 + х3  = 3 

      х1 + 2х2 - 3х3 = 1                        3х1 + х2 - 13х3 = -6 

 

c)   2х1 + х2 - х3 - х4 + х5 = 1                   d)    2х1 - х2 + х3 - 5х4 = 4                                                  

   х1 -  х2 + х3 + х4 -2х5 = 0                         2х1 + 3х2 - 3х3 + х4 = 2  

  3х1 + 3х2 - 3х3 - 3х4 + 4х5 = 2                   8х1 - х2 + х3 - х4 = 1 

  4х1 + 5х2 - 5х3 - 5х4 + 7х5 = 3                   4х1 - 3х2 + 3х3 + 3х4 = 2 

  

e)     х1 + 2х2 + х3 - х4 + х5 = -1                       

             2х1 + 5х2 + 6х3 - 5х4 + х5 = 0  

               х1 - 2х2 + х3 - х4 - х5 = 3  

               х1 + 3х2 +2х3 - 2х4 + х5 = -1 

               х1 - 4х2 + х3 + х4 - х5 = 3 

4. Define the solution of the system with the help of inverse matrix  
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CHAPTER 8 

 

MATRIX REDUCTION  

Let K be a vector space of finite dimension n above the field ʈ. And let f be a linear 

mapping of the space K into K.  With the help of usual isomorphism of spaces K and 

P 
n
 we come to linear mapping P 

n
 into P 

n
.  This mapping determines a square ma-

trix from n rows and n columns, dependent on chosen basis in K. We shall try to find 

in K such concrete basis relative to which bounded with f the matrix would have the 

most simple form.  

 

 

 

Ä1. A MATRIX OF TRANSITION FROM ONE BASIS TO ANOTHER  
 

 Let ʧ?
C

?
C

?
C

,..., 21   - initial basis of the space K, and ʧ?
C

?
C

?
C

¡¡¡ ,..., 21  - its new basis. 

We shall express vectors ʧ?
C

?
C

?
C

¡¡¡ ,..., 21   through the vectors ʧ?
C

?
C

?
C

,..., 21 , forming the 

first basis. We have nnjjjj ?
C

?
C

?
C

?
C

ttt +++=¡ ...2211 ,   j = 1, 2..., n. Coordinates ijt  

of vectors j?
C
¡  in the basis ʧ?

C
?
C

?
C

,..., 21   can be written down as a matrix:  

 

  

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

ʧʧʧʧ

ʧ

ʧ

ʊ

ttt

ttt

ttt

...

...............

...

...

21

22221

11211

, - 

here matrix columns – are coordinates of vectors ʧ?
C

?
C

?
C

¡¡¡ ,..., 21  on basis ʧ?
C

?
C

?
C

,..., 21 . 

Definition. Matrix ʊ, which column - vectors are formed of the vector coordi-

nates of new basis expressed through initial basis, is referred to as a matrix of transi-

tion from one basis to another. 

  The matrix of transition ʊ possesses the following properties: 

1. As ʧ?
C

?
C

?
C

¡¡¡ ,..., 21  and ʧ?
C

?
C

?
C

,..., 21 - are bases of the same space K,  the number of 

them is identical, and decomposition in terms of the basis is unique. Therefore matrix 

ʊ is always square also is defined unequivocally. 

2. Column – vectors of the matrix ʊ are linearly independent (these are vectors of 

the basis). Thus, the rank r (T) of the transition matrix T is equal n; it means, that de-

terminant D(T) ̧  0  and matrix T is always has inverse T
-1
,  which will be a matrix of 

transition from ʧ?
C

?
C

?
C

¡¡¡ ,..., 21  to  ʧ?
C

?
C

?
C

,..., 21 . 

The matrix of transition ʊ represents a biunique mapping )(ʭʊʭ
CC
¡=  of the 

space paces P 
n
  onto itself. Really, let ʘ

C
  - be any element from K. We 

have 
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  ;2212211 nnnna ?
C

2?
C

?
C

?
C

2?
C

?
CC

¡¡++¡
¡

+¡¡=+++= llllll  

if we express i?
C

?
C

 throughj¡  and ʊ, we shall obtain 

 .,2,1   ,2211 njnjnjjj 22 =¡++¡+¡= ltltltl  

Vectors ),,( 21 nx lll 2
C
=  and ),,( 21 nx lll ¡¡¡=¡ 2

C
  belong to the space P 

n
, and 

thus )(ʭʊʭ
CC
¡= . Decomposition in terms of bases is unique and invertible (there is 

inverse matrix ʊ
-1
 ), hence )(ʭʊʭ

CC
¡= - is a biunique mapping. 

  As an evident illustration of a transition matrix we shall consider it for geo-

metrical space in which the matrix of transition is connected to transformation of co-

ordinate system and it defines linear mapping R
3
 onto R

3
. 

 

 

1.1. The matrix of transition connected to the system of coordinateôs 

transformation in geometrical space 

 

  

We shall write down a transition matrix in geometrical space for orthonormal bases. 

Let’s choose as the first basiskji
CCC

,,  and we shall connect it with it system of coordi-

nates x, y, z, and as the second kji ¡¡¡
CCC

,,  and connected to it the system of coordinates 

x ', y ', z ' (Fig. 2.8). Then 

                    z'                                   y' 

 

z 

 

 

                                                                                     x`  

 

                                

                             у  ʢ
C
¡   j
G
¡      i

C
¡   

 

                                            0            

ʢ
C
    j
C
                                   

              i
C
    

 

0                                                      x 

 

Fig. 2.8 
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kjii
CCCC

312111 ttt ++=¡    

             kjij
CCCC

322212 ttt ++=¡                                           (8.1) 

                                        kjik
CCCC

332313 ttt ++=¡ . 

If we multiply the first row  by  kji
CCC

,,  in sequence,  taking into account, that  

                                 ,0=== kjkiji
CCCCCC

and ,1=== kkjjii
CCCCCC

 

then we shall obtain  
).kcos(  ); cos(  ); cos(

312111

GCCCGCCCCC
ijijiiiii ¡=¡=¡=¡=¡= ttt  

 

If we do the same with the second and third rows of equality, we can define:          

);i cos(12

CC
j¡=t   );j cos(22

CC
j¡=t   );k cos(32

CC
j¡=t  );cos(13 ik

CC
¡=t   

);cos(23 jk
CC
¡=t   ). cos(33 kk

CC
¡=t  

  Thus, the transition matrix ʊ of one orthonormal basis to another orthonormal  

basis, connected with transformation of coordinate system in geometrical space, has 

the form 
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ç

å

¡¡¡

¡¡¡

¡¡¡

=
ö
ö
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õ
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ç

å

=

)cos()cos()cos(

)cos()cos()cos(

)cos()cos()cos(

333231

232221

131211

kkkjki

jkjjji

ikijii

T

CCCCCC

CCCCCC

CCCCCC

ttt

ttt

ttt

                            (8.2) 

And its members are determined by cosines of angles which are formed in turning of 

new system of coordinates relative to the previous one. If turn of coordinate system at 

their transformation does not occur, and it is observed at parallel shift of coordinate 

system then =¡)cos( ii
CC

,1)cos()cos( =¡=¡ kkjj
CCCC

 and other cosines are equal to zero. 

Therefore the transition matrix for parallel shift of coordinate system is identity ma-

trix 

ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ

ç

å

==

1  0  0

0  1  0

0  0  1

22

333

22

222

22

ET . 

 

Now we shall consider transition matrix ʊ as a matrix of linear mapping 

)(vTv ¡=
CC

  of the space R
3
  onto itself. Let kzjyixr ¡¡+¡¡+¡¡=

CCCC
 - a radius - vector 

of some point  M in the system of coordinates zyx ¡¡¡ ,, . In the system of coordinates 

x, y, z the same vector has decomposition:  
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( ) ( ) ( ),000 kzzjyyixxr
CCCC

-+-+-=  

where x0, y0, z0  are coordinates of the origin of coordinates zyx ¡¡¡ ,,  in the system of 

coordinates x, y, z. Then the vector ( )000 ,, zzyyxxv ---=
D

, and ( )zyxv ¡¡¡=¡ ,,
C

 

and they belong to the space R
3
. Therefore mapping )(vTv ¡=

CC
 in the coordinate form 

is represented as: 
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0

 or  XTXX ¡Ö=- 0                                                     (8.3) 

From here we obtain the formula for coordinate change of the point  M  in transfor-

mation of coordinate system generally, when we have both parallel shift, and turn of 

coordinate system.  
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   or  0XXTX +¡=                                               (8.4) 

 In formulas (8.3) and (8.4) we  assume as known 
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i.e. coordinates of the point  M in new coordinate system are known and coordinates 

of a point in old system should be defined.  

  The inverse problem is more natural when ʍ0 и ʍ  are known, and it is re-

quired to define X¡ . For this case we assume 

),,(   a  ),,,( 000 zzyyxxvzyxv +¡+¡+¡=¡=
CC

 
 and then 

  )XXT(Xor    0
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0
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÷
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whence 
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T                             (8.5) 

 

1.2. Orthogonal matrixes of transition 

 

  

If we raise to the second power all rows of the equations (8.1) or multiply by each 

other we shall obtain following equality system:  

           t1aÖt1g + t2a Ö t2g + t3a t3g = da g,,                                                    (8.6) 
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Where dag,, - is Kronecker symbol, a = 1, 2, 3,  g = 1, 2, 3. 

  Hence, in matrix ʊ (8.2) sum of squares of the elements located in each col-

umn,  is equal 1, and the sum of products of corresponding elements of two any vari-

ous columns (a  ̧g)  is equal to zero. Matrixes of such type are referred to as orthog-

onal. 

The equality system (8.6) which exists for elements of orthogonal matrix ʊ can be 

rewritten also as following condition ʊ
ʊ
ĀT=E  or T

T
=T 

-1
, where T

T
-  is transposed 

matrix, and T 
-1
 – is inverse matrix to ʊ.  

  Then, if jt
C

 is j- column vector in ʊ with components ( )jjj 321 ,, ttt , the ratio 

(8.6) means, that scalar product jiij dtt =Ö
CC

,  j = 1, 2, 3, i = 1, 2, 3 and, so, column –

vectors  jt
C

, j = 1, 2, 3 of the orthogonal matrix ʊ form the orthonormal basis.   

  The given definition of orthogonal matrixes is applied not only for transition 

matrixes of the third order ʧ = 3, but also for  matrixes of the order n> 3.  

Definition. Square matrix S  =  (sij ),   where    i = 1, 2, ..., n,               

 j = 1, 2, ..., n,  for which S
T
ĀS=E (or s 1is 1j + s 2is 2j + ......+ snisnj = d ij , 

where    d ij  – Kronecker symbol), is referred to as orthogonal.  

  It also follows from this definition, that for the matrix to be orthogonal, it is 

necessary and sufficient, that either its column-vectors (or row - vectors) form or-

thonormal  basis in R 
n
. 

  Determinant D (S) of the orthogonal matrix S is equal to  +1 or-1. Really, 

since the determinant of the matrix product is equal to product of multiplier determi-

nants, then D(SĀS
T
) = D(S) Ā D(S

T
) = [D(S)] 

2 
= D(E) = 1 and, hence, D(S) = °1.  

Values +1 and-1 correspond to various orientation of column - vectors, forming basis. 

So, if  as column – vectors in S  we choose canonical orthonormal basis 

),0,...,0,1(1=?
C

 )0,...,0,1,0(2 =?
C

,........, )1,.....,0,0(=n?
C

,  we shall obtain S=E and 

D(S)=+1. If we take orthonormal basis ),0,...,0,1(1=?
C

 )0,...,0,1,0(2 =?
C

,......., 

( ) ( )1,...,0,0,0,1,...,0,01 -=-=- nn ?
C

?
C

, then orthogonal matrix SË adequate to it will 

have determinant D (S') =-1. 

 

Ä2. CHANGE OF LINEAR MAPPING  MATRIX  

AT CHANGE OF BASES 

Let's consider linear mapping f of n-dimensional space K above the field P in 

m-dimensional space F above the field P and let if in the space K the basis 

mvvv
CCC

,...,, 21  is set, and in the space F the basis mvvv
CCC

,...,, 21 , then mapping f is as-

sociated with the matrix A, representing linear mapping )(xAy
CC

=  of the space P 
n
 into 

P 
m
, ., mn PyPx ÍÍ

CC
 Let’s pass in these spaces on to other bases, accordingly 

n?
C

?
C

?
C

¡¡¡ ,..., 21  and mvvv ¡¡¡
CCC

,...,, 21 , which are connected to initial bases with matrixes of 

transition ?
C

?
C
­¡:S  и vvT

CC
­¡: . Our task is to determine, what kind the matrix A 

will take in bases ?
C
¡and v¡

C
. Let’s designate this transformed matrix B. 
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We shall consider  any vector x
C

 from the space P 
n
, and its image )(xAy

CC
=  from the 

space P 
m
 in bases ?

C
 and v

C
. In changing  of space bases P

n
 and P

m
  are mapped into 

itself by means of transition matrixes S and T. Thus vectors x¡
C

and y¡
C

 will be 

preimages of the  vectors accordingly ()xSx ¡=
CC

 and ()yTy ¡=
CC

. Then the matrix B  

is set by means of the ratio and, then,  

B=T
-1
AS. is also  the required formula for determination  of interrelation between ma-

trixes A and B, representing the same linear mapping f of the space K into the space 

F, in changing of the bases in them, determined by matrixes of transition S and ʊ. 

  If  F=K , and initial, and also new bases in spaces K and F coincide, then  A 

and S = ʊ will be square matrixes of the same order. Then we shall obtain ɺ=ʊ 
-1
ɸʊ;  

B is referred to as matrix transformed from A by means of ʊ; matrixes B and A are re-

ferred to as similar matrixes. If  A is invertible, then  ʊ 
-1
(ɸ 

-1
)ʊ=(ʊ 

-1
ɸʊ) 

-1
=ɺ 

-1
. 

Now we shall try to define in K such concrete basis relative to which the square ma-

trix connected with f  which is determining mapping P 
n
  into P 

n
  would have the 

most simple form. 

 

2.1. Eigenvalues, eigenvectors  of the square matrix 

We can easy show, that equality ɺ = ʊ 
-1
ɸʊ  results in equality of determinants: D (B) 

=  D (A). Really, from the rule of determinant multiplication, we have 

   D(B) = D(T 
-1
)ĀD(A)ĀD(T) = D(A)D(E) = D(A)Ā1 = D(A). 

  On the other hand, the matrix transformed from identity matrix, is identity ma-

trix: ʊ 
-1
ɽʊ = ɽ;  hence, for any r Í R, we have  

                     ɺ - rɽ = ʊ -1
(ɸ - rɽ)ʊ, 

and then, determinant D(ɸ - rɽ) depends only on linear mapping f and does not de-

pend on a choice of concrete basis in ʂ. 

If     

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

nnn2n1

2n2221

1n1211

  

. . . . . . . . . . .

  

  

aaa

aaa

aaa

2

2

2

A ,  

then 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

-

-

-

=-

raaa

araa

aara

r

nn

n

n

EA

3

3

3

              

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

          

            

n2n1

22221

11211

 and  

D(A-rE) = (-1) 
n
r

n 
+ qn-1r 

n-1 
+ qn-2r

n-2 
+ . . . + q1r + D(A),   is a multinomial of the 

r  power, which is  exactly equal to n. We have no need to write down, what coeffi-

cients  qi,  are equal to. 

Definition 1. Multinomial D(A-rE)  is referred as  characteristic multinomial 

of the mapping f. 

Its coefficients depend only on linear mapping f and do not depend on a choice of ba-

sis in K. The same will concern  to zeros  of this multinomial and to their multiplicity. 
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Definition 2.  Eigenvalues or characteristic numbers of the mapping f are re-

ferred to as zeros of characteristic multinomial D(A-rE)  i.e. roots of the equation 

D(A-rE) =0  - this equation is referred to as characteristic. 

If  ʈ  is the field C of complex numbers, the multinomial of the power n has precisely 

n  zeros belonging to C; if we count each zero many times, as its multiplicity is (fun-

damental theorem of algebra). Therefore henceforth we shall assume, that ʈ t is the 

field C.  

  Let r1 be an eigenvalue, so such real or complex number, that D(A-r1E) =0.  

Then matrix A-r1E is noninvertible, and let there be, at least, one such nonzero vector 
nCu Í¡1

C
, so that 1111 )uA(  i.е.  ,0))(( uuEA ¡=¡=¡-

CCGC
rr . Inversely, if there is such nonzero 

vector nCu Í¡1
C

, so that 111)uA( u¡=¡
CC

r , then the reasoning which is inverse to the 

mentioned, we ascertain, that r1 is an eigenvalue. 

Definition 3. The vector 1u¡
C

 is referred to as eigenvectorr of the matrix A, be-

longing the eigenvalue r1, if  111)uA( u¡=¡
CC

r , with .0u1

GC
¡̧  

 If  1u
C

is a vector from K, adequate to the vector 
nCu Í¡1

C
, then 111)( uuf

CC
r= , that 

shows, as  1u
C

 and r1 depend only on f. 

  The vector 1u
C

  is referred to as  eigenvector of linear mapping f. 

  Let’s list some properties of eigenvectors and eigenvalues of the matrix A 

which are also the properties of eigenvectors and eigenvalues of linear mapping f. 

1. Each eigenvector corresponds to the unique proper number. 

2. If u¡
C

- is eigenvector of the matrix A with proper number r, then any vector 

lu¡
C

  which is collinear to the vector u¡
C

, also is eigenvector of the matrix A  with the 

same numberr. 

3. If  1u¡
C

 and  2u¡
C

  are eigenvectors of the matrix A with same proper numberr, 

then their sum 1u¡
C

+ 2u¡
C

  also is eigenvector of the matrix A  with same number r. 

It follows from the properties 2 and 3, that each proper is correspondent to the 

infinite set of (collinear) eigenvectors. This set together with a zero vector which al-

ways is eigenvector, forms a subspace of the space ʉ 
n
 if it concerns  u¡

C
eigenvectors 

of the matrix and the space K  if it concerns  u
C

eigenvectors of linear mapping f. 

4. If eigenvectors kuuu
C

3
CC

¡¡¡ ,,, 21  (or kuuu
C

3
CC

,,, 21 ) belong to various eigen-

values they are linearly independent. 

Last item allows to solve the problem of  square matrix reduction to more sim-

ple form.  

 

   

 

 

 

 

 



 140 

2.2.  Reduction of a square matrix to the diagonal form 

 

  

Eigenvectors nuuu
C

2
CC

,,, 21  of linear mapping f, belonging to various eigenvalues of 

this mapping, and being linearly independent, can form a basis of the space K of the 

dimension n. It is possible, for example, if mapping f has n various eigenvalues; let’s 

suppose, that it exists; we shall designate them through r1,r2, . . .,rn. All of them 

serve as simple zeros of a characteristic multinomial.  

  Let iu
C

- eigenvectors belonging to eigenvaluesfor  ir ni ,,2,1 2= ,  form a basis 

of the space K. Theoretically it can happen, that linear mapping has less than n eigen-

values, but nevertheless it has basis from eigenvectors. 

Let nnuuux
C

2
CCC

lll +++= 2211  be any vector from K, and nx lll ,,, 21 2
C
=¡  - a 

corresponding vector in ʉ
n
. We have 

.)()()( 22211111 nnnnn uuuufufxfy
C

2
CCC

2
CCC

rlrlrlll +++=++==  This 

implyies, that a corresponding vector in ʉ 
n
 will be a vector 

( )nny rlrlrl ,,, 2211 2
C
=¡ ; so, it turns out from x

C
¡by means of a diagonal matrix 

 

   ;  

00

. . . . . . . . . . . . .

00
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i
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÷

õ
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=
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r

r

22

22

22

U    ).(xUy
CC
¡=¡   

 Thus, if  we take eigenvectors  nuuu
C

2
CC

,,, 21  as basis in K , then mapping of 

space 

 ʉ 
n
 into ʉ 

n
,  corresponding to the mapping f, is set by diagonal matrix U. If 

n?2?
C

?
C

,,, 21 -  any basis in K, then 
 

  nnjjjju ?
C

2?
C

?
CC

aaa +++= 2211  for j =1,2, . . ., n and transition matrix 

    

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

nnn2n1

2n2221

11211

 . . . 

. . . . . . . . . . . . . . . . .

 . . . 

. . .  

aaa

aaa

aaa n

T . 

  

Let A -  be a matrix representing the mapping f when n?2?
C

?
C

,,, 21  are taken as ba-

sis in K; then U=T
-1
AT. Hence, there is such invertible matrix ʊ, that the matrix trans-

formed from A by means of ʊ, will be diagonal matrix U. Matrix U is not unique 

since it is possible to change the order of vectors nuuu
C

2
CC

,, 21 ; however, if there is 

diagonal matrix 



 141 

 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

n

2

1

0....   0

............

..0   0

0....0

b

b

b

W , transformed from ɸ, then ( ) ( )EADEWD rr -=- , 

i.e. (book 2, Chapter.3, §4), (-1)
n
(r-b1)(r-b2)Ö...Ö(r-bn)=(-1)

n
(r-

r1)Ö(r-r2)Ö...Ö(r-rn),  so, numbers b1, b2 ,...,bn accurate within the sequence order of 

are eigenvalues, and W there is one of matrixes of kind U. 

  We shall notice, that vector subspace vector of eigenvectors belonging to one 

eigenvalue, has the dimension equal to one. Really, if 1u
C

 and 1v
C

- are two eigenvec-

tors belonging to eigenvalue r1, then they both  belong to the vector subspace, which 

is complement of the n-1-dimensional the vector space generated by vectors 

nuu
CC

,...,2 , so, to the vector subspace of the dimension, is one. Hence 11 uv
CC
l= , CÍl ( 

if l  ̧0 ).  

 If all eigenvalues are not distinct, the it is not always possible to define the di-

agonal matrix representing a linear mapping. However and in this case it is possible 

to define a matrix revealing eigenvalues and having has the form, which is easy for 

calculations. For consideration of this case we refer the reader to the special litera-

ture.  

For real space R
n 

 complex roots of the characteristic equation cannot be eigenvalues 

since they do not need equality () ʭʭɸ
CC
l= , as coordinates of the vector ʭ

C
  and mem-

bers of the matrix A belong to the field R of real numbers. Therefore linear mapping 

R 
n
 into R 

n
 ,  set by the matrix A above the field R of real numbers, for which the 

characteristic equation has only complex-conjugate roots (i.e. none real root), has no 

eigenvalues (a power of such characteristic multinomial should be even). However, if 

linear mapping R 
n
 into R 

n
  is set by a symmetric matrix A, then all roots of the char-

acteristic equation of such matrix are real; all eigenvectors belonging to them can be 

chosen as real. In this case eigenvectors of the matrix A form a basis, and in this basis 

the matrix of linear mapping has a diagonal kind. Let's consider it by the example of 

reduction of symmetric real matrix A to a diagonal kind, which determines the 

square-law form on R 
n
. 

 

 

Ä3. REAL LINEAR AND SQUARE-LA W FORMS 

 

  

Let’s consider the vector space R 
n
 above the field R in which the basis n?

C
?
C

?
C

,...,, 21   

is given and let nnx ?
C

?
C

?
CC

mmm ...2211 ++=  - be any vector of this space, miÍR. 

Definition 1. Real linear form j  is referred to as linear mapping of space R 
n
 

into R,  which every 
nRxÍ

C
 puts in conformity with number ä

=

=
n

i
iix

1

)( mlj
C

from R, 
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where l i  and m i  - are numbers from R . The linear form also is named the homoge-

neous simple form, and it is mostly written down in the following form: 

() nnxʘʭʘʭʘʭ +++= ...2211
C

j , where ( ) n

n Rx,...,x,xx Í= 21

C
. 

Definition 2. Real square-law form w is referred to as linear mapping R 
n
 into R, 

which each 
nRʭÍ

C
  puts in conformity number ()ää

= =
ö
ö

÷

õ

æ
æ

ç

å
=

n

i

n

j

jiijx
1 1

mmsv
C

 from R where 

ʢm - are coordinates of the vector ʭ
C

, ijs  - are numbers from R for which the equali-

ty jiij ss = is satisfied. 

  From definition follows, that ( ) ()xx
CC

wllw 2=  . Therefore the square-law form 

is the homogeneous form of the second power.  

  An example.    

 ( ) ()ää
= =

=ö
ö

÷

õ

æ
æ

ç

å
==

n

i

jiij

n

j

xxx    ;  x,x,xx 
1 1

321 sw
CC

 

= . 222 322331132112
2
333

2
222

2
111 xxxxxxxxx ssssss +++++   

 

  

3.1. Reduction of the square-law form to the canonical type 

 

  The square-law form can be written down also by means of a matrix. For this 

purpose let’s put the vector( )nx mm,...,1=
C

 from R 
n
  in conformity with two matrix-

es: a column - matrix 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

=

n

X

m

m

m

4  

2

1

 and row - matrix X 
Т
 = (m1, m2, . . ., mn). It is obvi-

ous, that X 
Т
  is the transposed matrix to X. For coefficients sij   of the square-law 

form we shall introduce the real matrix 
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sss
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. Then 

ä ä äää
= = ===

=Ö=
ö
ö

÷

õ

æ
æ

ç

å
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ö
ö
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õ

æ
æ

ç

å
=

n

i

n

i

n

i

T
i

n

j
jiji

n

j
jiij AXXXAx

1 1 111

)( mmsmmmsw
C

. 

The matrix A is referred to as a matrix of the square-law form and since for factors 

of square-law form sij  = sji , then the matrix A is symmetric. 
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  We shall consider, how the matrix A changes when transition into R 
n
  from 

one orthonormal basis to another. Let’s designate a transition matrix through ʊ, and 

coordinates of the vector ( )nx mm,...,1=
C

 in new basis through ),,,( 21 ny bbb 2
C
=

. Then )(yTx
CC

= , or in matrix form X = TY, where ʊ is an orthogonal matrix. There-

fore for the square-law form we have  

 BYYATYTYATYTYAXXx TTTTT ==== )()(
C

w , where ɺ = ʊ
Т
ɸʊ.  

But since. ʊ is orthogonal, then ʊ
ʊ
 = ʊ

-1
 ; and ɺ = ʊ

-1
ɸʊ,  i.e. B is transformed from A  

by means of matrix T. Besides the transformed matrix B – is also symmetric, since  

 

  ɺ
ʊ
 = (ʊ

-1
ɸʊ)

ʊ 
= (ʊ

ʊ
ɸʊ)

ʊ
 = ʊ

ʊ
ɸ
ʊ
(ʊ
ʊ
)
ʊ
 = ʊ

ʊ
ɸʊ = ɺ. 

As ɸ
ʊ
 = ɸ. 

As the matrix A is symmetric, then  R
n
  possesses at least one orthonormal ba-

sis nuuu
C

2
CC

,,, 21 , made of eigenvectors of the matrix A; then if we choose basis 

nuuu
C

2
CC

,,, 21 , as new basis, then  the transformed matrix in this basis UB=   and has 

a diagonal kind 

  ,

   0  0

0 0 

0  0 

n

2

1
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å
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r

2

2222

2

2

U  

 Here eigenvalues  ri of the matrix A can be both distinct and the same, but all they 

are real. If a matrix of the square-law form is diagonal, then the square-law form be-

comes: 

 

 () nn
T zzzUZZx 2

2
2

21
2

1 ... rrrw +++==
C

, where z1, z2, ... zn – are coor-

dinates of the vector x
C

, decomposed on the basis nuuu
CCC

,..., 21 .  

  Thus, concerning the basis nuuu
CCC

,..., 21 , made of eigenvectors of a matrix of 

the square-law form, the square-law form has only members with squares; we can 

say, that it is reduced to the canonical kind.  

 

An example. Reduce the square-law form to canonical type 

                 ()ʭ
C

w  = 3х
2
1 + 4х1х2 + х

2
3, where ( )321 ,, ʭʭʭʭ=

C
. 

 

1. We make up a matrix of the square-law form: 

  

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

1  0  0

0  0  2

0  2  3

ɸ   (see the example in the beginning of the paragraph) 

2. We write down the characteristic equation 
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0

-  1   0      0   

0  -  0   2   

0     2   -  3

=

r

r

r

, where ( 1-r)(r 2 - 3r - 4) = 0 .  

Solving the last equation, we define proper numbers: r1 = 1;  r2 = 4;  r3 = -1. We 

shall designate coordinates of the vector ʭ
C

  in system of eigenvectors of a matrix 

through  z1, z2, z3.  Then the square-law form becomes  

  () 2
3

2
2

2
1 4 zzzx -+=

C
w  . 

1. We define orthonormal eigenvectors of a matrix: 

),,( 1111 mku ?
C
= ; ),,( 2222 mku ?

C
= ; ),,( 3333 mku ?

C
= . For this purpose the 

equation А(u
C

) = u
C

 r is written down in the coordinate form: 

 

î
í

î
ì

ë

=++

=++

=++

mmk

mk

kmk

r

r

r

000

,002

,023

?

??

?

or 

î
í

î
ì

ë

=-++

=+-+

=++-

.0)1(00

,00)0(2

,002)3(

mk

mk

mk

r

r

r

?

?

?

 

Let's suppose 11==rr . Then the system becomes: 

 

í
ì
ë

=¡-¡

=¡+¡

02

022

11

11

?

?

k

k
 

This system has the unique solution 01=¡k , 01=¡? . Value of the component 1m   is 

any. For the vector 1u
C

 to be  normalized i.e. that 11 =u
C

,  we shall assume 11 =m . We 

have )1,0,0(1=u
C

.  

Since 42==rr ,  the system becomes: 

.  

 

î
í

î
ì

ë

=¡-

=¡-¡

=¡+¡-

.03

,042

,02

2

22

22

m

k

k

?

?

 

Hence  tk 22 =¡ , t=¡2? , 02 =¡m , where -t  is any real number. Bt normalizing, we 

obtain 12
2

2
2

2
22 =++= mku ?

C
 Ý 

5

2
2 =k ; 

5

1
2 =? ; 02 =m . So, 

)0,
5

1
,

5

2
(2 =u

C
. 

For the third proper number 13 -==rr  we have system: 
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î
í

î
ì

ë

=¡

=¡+¡

=¡+¡

.02

,02

,024

3

33

33

m

k

k

?

?

 

From here tk -=¡3 , t23 =¡? , 03=¡m , where t - is any real number. Normalizing 

)0,2,(3 ttu -=¡
C

, we define 
5

1
3 -=k , 

5

2
3 =? , 03=m , i.e. the vector is 

)0,
5

2
,

5

1
(3 -=u

C
. Thus, eigenectors of the square-law form are: )1,0,0(1=u

C
,  

)0,
5

1
,

5

2
(2 =u

C
, )0,

5

2
,

5

1
(3 -=u

C
, and a canonical form of the square-law 

form is: 
2
3

2
2

2
1 4)( zzzʭ -+=

C
w . 

 

 

3.2. Definite square-law form. Sylvester criterion  

 

Definition. The material square-law form ()ʭ
C

w   is referred to as positively 

Definite form, if for any 0̧ʭ
C

from R 
n
 ()ʭ
C

w  > 0,  and negatively definite 

form, if for any 0̧ʭ
C

 from R 
n
 ()ʭ
C

w  < 0. 

If for all vectors ʭ
C

 from R 
n
 the inequalities are not strict, i.e. ()ʭ

C
w  ² 0 or 

()ʭ
C

w  ¢ 0, the square-law form is referred to as accordingly nonpositively or 

nonnegatively definite form or semidefinite form. Definite and semidefinite square-

law forms are referred to as  refer to sign-definite forms. 

Square-law forms for which any of these conditions is not satisfied, are re-

ferred to as indeterminate square-law forms. In other words, the square-law form 

()ʭ
C

w   is referred to as nondefinite if 
nRxÍ

C
  are distinct from zero  and the square-

law form takes both positive, and negative values.  

Examples. The square-law form ()
2

2
2

2

2
1

b

x

a

x
x +=
C

w  is positively definite, since 

for anyone 0̧ʭ
C

 ()ʭ
C

w  > 0; the square-law form ()
2

2
2

2

2
1

b

x

a

x
x -=
C

w   is indeterminate 

since the sign on the right part for 0̧ʭ
C

  can be both positive, and negative. 

 

As each square-law form can be written down in canonical form, the square-

law form will be positively definite; if all proper numbers of the matrix specifying the 

square-law form, will be positive, and negatively definite if all proper numbers are 

negative. Sylvester Criterion also gives the answer to a question about definiteness of 

the square-law form. For the square-law form with a symmetric matrix to be positive-

ly definite, it is necessary and sufficient that the principal minors of matrix to be posi-

tive, i.e.  
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> 0,  

333231

232221

131211
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sss

> 0 ,..., 

nnnn

n

n

sss

sss

sss

...

..................

...
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21

12221

11211

> 0. 

Criterion of negatively definite form  follows from Sylvester principle.  

If  0)( >x
C

w , то 0)( <- x
C

w  and inversely. Then, according to Sylvester crite-

rion, for )(x
C

w-   we have 
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-

-

-

>

-

-
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2

333333
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or 

.

  

  

  

)1(,,0

  

  

  

,0
 

 
,0

nnn21

2n2221

1n1211

333131

232221

131211

2221

1211
11

sss

sss

sss

sss

sss

sss

ss

ss
s

2

33333

2

2

3

n

n-<><  

Thus, if signs of the principal minors of the square-law form alternate, the 

square-law form is negatively definite. 
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 EXERCISES 

 

1. Define proper numbers and eigenvectors of linear transformation set by the ma-

trix 
.

4- 4 6

4- 5 4

3- 2 5

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=ɸ
 

2. Show , by the example of the matrix öö
÷

õ
ææ
ç

å
=

2 5

4 3
ɸ , that characteristic numbers of 

inverse matrix ɸ
-1
  are inverse values of characteristic numbers of the matrix A. 

3. Define proper numbers and eigenvectors of a symmetric matrix 

 

.

5   2- 0  

2- 6   2-

0   2- 7 

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=S   

Show, that eigenvectors are orthogonal 
 

      4. Matrixes are given 

 

  
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

0   1  2-

1-  3  1 

1   0  2 

Т  and  

6 4- 5 

5 4- 10

3 2- 2 

ɸ  

Show by the example of matrixes A and B = ʊ 
-1
ɸʊ

 
, that similar matrixes have iden-

tical characteristic numbers. 

        5. Form the orthonormal basis kji
CCC

,,   from eigenvectors of the matrix: 

 

 а) .

1   2- 4-

2-  2- 2 

4-   2  1 

А  b)      ;

5    2-  0  

2-  6    2-

0   2-  7  

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=ɸ  

6. Reduce square-law forms to the canonical kind and define their eigenvectors, if 

 

       а) ,27483)( 22 yxyxz +-=
C

w   );,( yxz=
C

 

       b) ,7160130481299)( 2
332

2
23121

2
2 xxxxxxxxxx +-++-=

C
w   

           );,,( 321 xxxx=
C

 

       c) ,)( 2
221

2
1 xxxxx ++=

C
w  ).,,( 21 xxx=

C
 

 
 

 

 


