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LINEAR-INVERSIVE CONGRUENTIAL GENERATOR OF PRN’S

Yau Txe Binb. JliHilfiHo-iHBepcHuit KourpyeuTHuii reaeparop IIBY. Iueepcuumii
KOHI'DYEHTHHUI MeTOJ] FeHEePpYBaHHS PIBHOMIPDHO PO3IIO/iJIEHUX IICEBIOBUIIAJIKOBUX YHUCET €
0cOOJIMBO TPUBAOINBOIO AJIBTEPHATUBOIO JIIHINHIM KOHTPYEHTHUM F€HEePpAaTOpaM, siKi BOJIOII-
IOTh HU3KOIO HeDaXKaHUX 3aKoHOMipHocTeil. B maniit craTTi posrisiaerbcs HOBU JIiHIHHO-
iHBepCHMIT KOHI'DYEHTHUII I'eHepaTopP 38 MOJIYJIEM CTEIEHIO ITPOCTOro Yucjia. JlaoThes ominku
TPUTOHOMETPUYHUX CYM JJIsI JIHIHO-IHBEPCHUX KOHI'DYEHTHHX IICEBJIOBHUITAIKOBUX YHCEJI.
Pesgynbratn mokasyiorh, 1o i iHBEPCHI KOHTDYEHTHI IICEBIOBUIIAKOBI YHCIA IPOXOIATDH
S-MIpHUII cepiaJIbHUN TECT Ha CTATUCTUYHY He3aJIE€KHICTh.

KurodoBi cjioBa: iHBepCHI KOHI'DYEHTHI TICEBJO-BUIIAIKOBI YHC/IA, €KCIIOHEHIIHHI CyMu,
JUCKpIiNaHcid.

Yan Txe Bunb. JInHeiiHO-uHBEepPCHBII KOHIpy3 HTHBIN reHeparop IICY. Uu-
BEPCHBIM KOHI'DYIHTHBIN MeTOJ| I€HEPUPOBAHUS PABHOMEPHO DPACHPEIEIEHHBIX IICEBIOCIIY-
YafHbIX YHCEJI SABJISETCA OCOOEHHO IIPHUBJIEKATEIBHON aJIbTePHATUBON JIMHEHHBIM KOHIDY-
SHTHBIM I€HEepPATOpaM, KOTOPbIe 00/I1a/Ial0T PSIJOM HeXKeJlaTe/IbHbIX 3aKOHOMepHOocTell. B Ha-
CTOAIIEN CTaThe PACCMATPUBACTCA HOBBIN JIMHEITHO-UHBEPCHBIN KOHI'PDYSHTHBIN r'eHepaTop 110
MOJLYJTIO CTEIIEHU IIPOCTOrO YHca. JIaroTcst OIeHKH TPUTOHOMETPUYIECKUX CyMM JIJIsl JIMHEHHO-
MHBEPCHBIX KOHI'DYSHTHBIX IICEB/IOCIYYalHbIX YnCe/. Pe3yIbTaThl MOKA3bIBAIOT, YTO STU UH-
BEPCHBbIE KOHIDYSHTHBIE IICEB/IOC/IYYaiiHbIe YMCJIa IIPOXOJAT S-MEPHBINA CEPUAJIBHBIA TECT Ha
CTATUCTUIECKYIO HE3aBUCHUMOCTD.

KuarodeBrblie ciioBa: MHBEpPCHBbIE KOHI'DYIHTHBIE TICEBO-CIIy YAl HbIE YNC/IA, SKCIIOHEHIINAIb-

HbI€ CyMMbI, J€CKPUIIAHCHUA.

Tran The Vinh. Linear-inversive congruential generator of PRN’s. The in-
versive congruential method for generating uniform pseudorandom numbers is a particulary
attractive alternative to inversive congruential generators, which show many undesirable reg-
ularities. In the present paper a new linear-inversive congruential generator with prime-power
modulus is introduced. Exponential sums on linear-inversive congruential pseudorandom
numbers are estimates. The results show that these inversive congruential pseudorandom
numbers pass s-dimensional serial tests on the statistical independence.

Key words: inversive congruential pseudorandom numbers, exponential sum, discrepancy.

INTRODUCTION. Let p be a prime number, m > 1 be a positive integer. Consider
the following recursion

Yn+1 = aygl +b (mOd pm)7 (avb € Z)7 (1)

where y, ! is a multiplicative inversive modulo p™ for y,, if (yn,p) = 1. The parame-
ters a, b, yo we called the multiplier, shift and initial value, respectively.
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In the works of Eichenauer, Lehn, Topuzoglu [5], Niederreiter, Shparlinski [9],
Eichenauer, Grothe [4] ets. were proved that the inversive congruential generator (1)
produces the sequence {z,}, ©, = ¥, n = 0,1,2,..., which passes s-dimensional
serial tests on equidistribution and statistical independence for s = 1,2,3,4 if the
defined conditions on relative parameters a, b, yo are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo type
application (see, [7-9]). The sequences of PRN’s can be used for the cryptographic
applications. Now the initial value yy and the constants a and b are assumed to be
secret key, and then we use the output of the generator (1) as a stream cipher. By the
works [1], [2] it follows that we must be careful in the time of using the generator (1).

In the current paper we give generalization of the generator (1). This generaliza-
tion is based on the recurrence relation

yn+1 = ay»;l + b + CnYn (HlOd pm) (2)

under conditions
(cn,p) = (yo,p) =1, b=a=0 (mod p).

We call the generator (2) the linear-inversive congruential generator. The compu-
tational complexity of generator (2) is the same as that for the generator (1), but the
reconstruction of parameters a, b, ¢, yo is a tricky problem even if several consecutive
values Yn, Ynitl,---,Yntn are revealed. Thus the generator (2) can be used in cryp-
tographical applications. Notice that the conditions (¢,,p) = (yo,p) =1, b=a=0
(mod p) guarantee that the recursion (2) produces an infinite sequence {y,}.

T. Kato, L.-M. Wu and N. Yanagihara [6] studied a nonlinear congruential pseudo-
random numbers generator with modulus 2™ of the form

Yni1 = ay, t + b+ cyn (mod 2™), (yn,2) =1, n=0,1,2,... (3)

They have obtained a condition at which sequences of the maximal length of the pe-
riod are generated.

P. Varbanets and S. Varbanets [12] considered the generator (2) with conditions
(a,p) = (yo,p) =1, b=c=0 (mod p) and showed that the sequence {z,}, z,, = ;’Z:L
passes tests on equidistribution and statistical independence.

In present paper we investigate generator (2) under conditions ¢ = b =0 (mod p),
(cn,p) =1, n=1,2,... and show that for the sequence {c,} of special type accord-
ing sequence {z,} passes tests on equidistribution and statistical independence (say,
unpredictability).

It will be observed that W.-S. Chou [3] showed that for generator (1) the condi-
tions a = 0 (mod p), (b, p) = 1 produce according sequence {y,} with a period 7 = 1.
It is not alright for applications. Thus in our paper we introduced additional summand
in order extend the period of PRN’s. We will prove that the sequence {y,, }produced
by (2) has reasonably large period. As well, we give the description of y,,, as the poly-
nomial on n and initial value yq. It makes possible to obtain an acceptable estimate
for the discrepancy function Dy .

NoTATION. The letter p denotes a prime number, p > 3. For an integer ¢ > 1
we denote by Z; the residue ring of integers modulo q. Also, we denote Z7 the set
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of invertible elements of Z,. We write gcd(a,b) = (a,b) for notation a great common
divisor of a and b. For z € Z, ged(z,p) = 1 let 2~ be the multiplicative inverse of
a modulo p™. We write vp,(A) if pr(AA p»(DH f A For any t € R and ¢ € IN

we write exp(t) = ef, e(t) = 2™, e, (t) = ¢ (3) We denote an integer part of « by

symbol [z].

AUXILIARY ARGUMENTS. In this section we shall gather some auxiliary results
which we use during the course of proof the main theorems.

Lemma 1. Let p be a prime number and let f(z) € Z[x] be a polynomial of degree
n,n=2,
f(r) = a1z + a2x2 + a3:r3 4o+ apa,

where vp(a;) = vp(az) >0, j > 3.
Then the following estimates

Y em(f(@)] =

xE€Zpm

{ 0 if  vplar) <wplaz),

m+vp(ag)
2 Eif vplar) > wplaz)

hold.

This assertion is a corollary of the estimate of Gauss sum.
We will study the statistical properties of the sequences of PRN’s by the discrep-

ancy of the sequence of points X = (g—,’;, y;%,...,y";i;*l), n=20,1,...,N —1;
s=1,2,....

For the sequence of N points Ps = {(Y1,n,---,Vsn)}s 7 =0,1,...,N — 1 on the
half-opened interval [0,1)* we denote the discrepancy D) (P;) as

AN(A) _ |A|

DY(P,) = N

AC[0,1)

’

where An(A) is the number of points of the sequence Py that hits the box
A= ar, i) x -+ X Jag, Bs) € [0,1)°,

|Al is the volume of A and the supremum is taken over all boxes A.

Let {,,} is a sequence of numbers from [0, 1). Form the sequence of s-dimensional
points X = (Tny Tt 1y Tngs—1)s » = 1,2,..., N. We say that {z,} passes s-
dimensional discrepancy test if for every j = 1,2,...,s the sequence {X7} has a
discrepancy which tends to zero for N — oco.

Consider a point set Py from [0,1)® for which all coordinates of all points are
rational numbers of the form %, 0 < a < ¢. Let us denote C(q) = (—%, %] N7,
C*(q) = {a € C(q)|(a,q) = 1}. Let Cs(q) (respectively, C¥(q)) be the inner product
of s copies of C(q) (respectively, C*(q)).

Lemma 2. (Niederreiter, [8]). For an integer M > 2 and yo,...,yn—1 € Z°,
let P be the point set consisting of the fractional parts {M‘lyo} s {M‘lyN,l}.
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Then

DN(P)<1<1]\14)S+ > Wéjvz_:le(j\zhyn)

heCs (M) n=0

From this lemma it is seen the the non-trivial estimates of exponential sums over

the sequence {X,,(f)} are important for the further investigation we presented.

Next assertion has the paramount importance for estimation of such exponential

sums.

Proposition 1. Let {y,} be the sequence produced by the recursion (2) with the
parameters a =b =0 mod p, (¢,p) = (yo,p) = 1. Denote mg = 2v,(a) +vp(b), m =

[ﬁ} There are exist the polynomial Fy,(u,v) € Z[u,v] such that for n > m + 1

we have L 1
Yn = Fn(Y0,Y0 ) := Aon + Ainyo + Binyg +

+ BQnyo_2 + B3ny8 +---+ Bmlnyo_ml (mOd pm)7
Bjn =0 (HlOd pmo)v .] > 47

where the coefficients Ajy, Bj, defined by the following relations

A1 =b+ cpp1(b+ cnhon-1) =
=b(1+ cpy1) + cnr1cn(b+ cpn_14op—2) =
=b(1+ cnt1 + Cnti1Cn + Cnp1CnCn_1A0n-1) =
=b(1 4 cpy1 + Cnt1Cn + Cne1CnCn1 + -+
coi o Cpg1Cn A1) = bAY(n)

Al pt1 = CpyiCp - - C201.

—1 —1 2
Bl,n—H = G,Aln +cnt1 By = aAln (1 + Cnt1Cn + Cpy1CCn—1 + -+

+ Cn+1ci e Cgcl) = a‘Bi,n+17
n+1 A/
0.
B27n+1 =ab Z AQJ 5
j=1 "
B3 n1 = a*Bj(n) + ab*BY (n),
Bj,n+1 =0 (mOd pm())’ .] = 4:

(4)

()

(6)

where Bj(n), BY(n) have the simple description in terms of coefficients c1,ca, . . ..

Proof. By (2) we infer consequently

yi=ay,' +b+cyo (mod p™),

Yo = # + bZ + CQ((Z]Jil + bl + ClyO) =
ayy ' +b+yoct 0

= acl_lyo_l(l — acl_lyo_2 — bcl_lyo_1 + a201_2y0_4 + 2abcl_2y0_3 + b261_2y0_2 +-)+

+ by + ca(ayg ' + b1 + c1yo) = Aoz + A12yo + Biayy ' Baoyy 2 + Baayg S+,
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where
Ap2 = b(1 + ¢2),
A1p = crea,
By = ac; ! + acy = a7 4 ),
Bosy = —abcl_27
Bsy = —a®c;? + ab’c;?,
By = 2a%be;® — abPer

Bj2 =0 (mod pmin (2a+b,a+3b)).

In general case
Yn = Aon + A1nyo + Binty ' + Banyg S+ -+, (Anp) = 1.

= Y1 = aAL e (1= Aon AL yg " — Bun A g ' -
—Bon vy — AL ATy + BL AL ]
+ b+ cny1(Aon + Ao + Binyy ' + Bonyy” + Bsnyy S + Banyg b+ +0) =
= Ao i1 + AL ns1bo + Bung1ty - + Bont1¥o o+ Banayo o
where
Ao nt1 = b+ cnp1Aon;
A1,n+1 = Cn+1A1n;
By i1 = @A} + 1 Bing
Bani1 = aAonAL% + Bay;
B3 i1 = —aB1, AL? — aA3 AL + i1 Ban;
Bj, =0 (mod p™), j>4.

Hence, we have

AO,n+1 =b+ cn+1(b + CnAO,n—l) = b(l + Cn+1) + Cn+lcn(b + Cn—lAO,n—2) =
= b(l + Cn+41 + Cn+1Cn + Cn+1cncn71A0,n71) =

/
- b(]- + Cn+1 + Cn+1Cn + Cn+1CnCn—1 +---+ Cn+1Cnp " " - CQAO,I) = bAO(TL)
A1,n+1 = Cp+4+1Cp -+ - C2C1.

—1 —1 2
Bl,n+1 = aAln + Cn+1Bn = aAln (1 + Cnti1Cn + Cpt1CCp—1 + - F
2 2 /
+ Cpy1Cp oo Ch01) = aBl,n+17
n+1 A/

0,5
BZ,nJrl = abz AQ_ )
j=1 "li

Bs 41 = a®Bj(n) + ab®Bj (n),
Bjny1 =0 (modp™), j =4
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Corollary 3. Let {y,} be the sequence produced by the recursion (2) with vy(b) =
B <uvpla)=a andlet c; =c, i=1,2,.... Then we have modulo p™

Yn = Yo +n(b+pHi(yy ")) — nab(1 + p* P Hy(ys "))+ (7)
+ plpmin (2a+5’a+3B)Hg(yal,n), if e=1 (modp™),

Yn = Yo + ”(b + paGl((s’ 2, y(;l)) - n2ab(1 _|_p04—,3G2(57 = y(;l))+ (8)
+ p3pmin (2a+ﬂ’a+35)G3(5, z,yo_l,n), if ¢Z1 (modp™),

where H;, G; are polynomials on its own variables with integer coefficients.

Proof. For ¢ =1 (mod p™) we obtain

Aopn=nb, A1, =1 (mod p™),

By, =na, By, = —ab% (mod p™)

Bs, = —ab% —a?(n—1) (mod p™)

Bjn =a®b- gi(n) +ab’ - ga(n), g1(n),g2(n) € Zn).

9)

From this follows that there are polynomials H;, ¢ = 1, 2, 3, such that the relation
(7) holds.

If ¢ # 1 (mod p™) we denote throughout ¢ an index ¢ (mod p). Let us assume
that n =00+ 2,0<2<6—1,£=n6"1+ 251 (mod p).

Mindful that

0 —1
A=1+pu)er=(1 —l—pu€+p2u2y+~--)c‘z,

2
(-1
c’”E(l—puﬁ+p2u2%+~--)c%,

we also obtain

Yn = Yo +n(b+p*G1(8, 2,95 ")) — n®ab(1 + G2(3, z,y5 " )p™)+

10
+713va3(572’961)’ ( )
where v = min (2a + 3, + 35).
The corollary is established. |
Corollary 4. In notation above with ¢, = c+np, n =1,2,..., we have modulo
pm
yn = b(n+pfo(n)) +yo(1 4+ pnfi(n))+
-1H(2n—-1
+y! <n+p<n(n)6(n)+2n2 —n) +p2f21(n)> + (11)

+ g 2 (abfaz(n)) + yg > (—ab® f3(n)) + p” fa(n),

where fo, f1, fo1, fo2, f3, f4 € Zn)].
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Proof. In virtue of Proposition 1 we can write

Aon =b[1+ (¢+np) + (c+np)(c+ (n—1)p) +
+(ct+np)c+ (n—1)p)---(c+p)] =

b 1+cn+pcn1n(n2 znzz”+ _
1,7=1
i#j

=b(1+ "p"Fi(n)) = bA{

On>
where Fy(n) =14+ ain+asn?+---,a; =0 (mod p*),i=1,2,....
Ay =(1+p) A1 +2p+ - +1+4np) =
nn—+1 n(n+1)(6n%> —n —2
(1Y) | pnto ) =0 =2

The similar reasoning shows that

By, = aAj (L+din+den® +---), (dl,p) =1, vp(d;) =1, j=2,3,....

Further we have

B, — { ab (n )) if ¢#1 (modp™)
2n
b(n+nF4( ) if ¢=1 (modp™),

2

(1 + (c+np)(c+ (n—1)p))+

= —a*(2¢® + Ppn + ¢'p*n® (1 4 pgi (n))) -
— ab®(n +2¢" + )1 + pnga(n)),
Bjn =p7g;(n) (mod p™), j >4
where g1(n), g2(n), g;(n), j > 4, are polynomials with integer coeflicients.

Hence, by Proposition 1 we obtain Corollary 2.
From Proposition 1, Corollaries 1 and 2 we deduce

+p3F2(n), Fg(n) eZ.

(13)

(14)

(15)

(16)

(17)

Corollary 5. Let 7 be the least of periods for the sequence {y,} generated by the
congruential recursion (2) with v,(b) = B < vp(a) = a. Then 7 =p™~ P, ifc, =c or

cn =c+mnp, (¢,p) = 1.

Proof. Indeed, from formulas for Aoy, Ain, Bjn, j = 1,2,..., we can conclude

that
Aints =Aiz, Bjnis=DBj3 (modp™), i=0,1; j=1,2,...,

if and only if n =0 (mod p™~#).
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Let {y,} be the sequence produced by (2). For h,hy,he € Z and k,£ € N U {0},

we denote
N-1

2 Yn,
~ (o) :E:em o

n=0

hiyr + R
Uk,é(hth? Z <M)

Z

Proposition 2. Let we have the linear-inversive congruential generator produced by
relation (2) with f = v,(b) < vp(a) = a, 26 < m, and let (h,p™) = s. The we have
the following estimates

0 if N=71, m>f8+s,
Sl <3 N if m<Bs
2™ - (141logp™?) if m>p+s.

Proof. First we assume that N = 7 = p™#, i.e. N is a period of the sequence
{yn}. The Corollaries 1 and 2 from Proposition 1 show that the behavior of the
exponential sum S-(h,yo) on the sequences of PRN’s for the cases ¢, = ¢ and ¢,, =
¢+ np are identical. Thus, we consider the sequence generated by (2) with ¢, = c.

By Corollary 1 we have

"y I heF(n)
n 0
|S7—(h7y0)‘ = Z € <p'm—3) = Z € <p'm—s—3> )
n=0 n=0

where h = hop®, F(n) =Co+Cin+ -+ Cpyn™

Cy=b (mod pi*t),
Cy = —ab (mod p**tA+l),
C; =0 (mod p"),

moreover,
a=vy(a), B=rp), y=min(2a+F,a+38) >a

Now, applying Lemma 1 we obtain

shanl={ 5 mSETY

In the case N < 7 we use the well-known estimate of uncomplete exponential sum
by means of the complete exponential sum (see, [7], Ch. 1, Th. 2)

$ ani)

By virtue of the fact that the congruence

|Sn(h, yo)| < max (1+logT).

1<t

hb+t=0 (mod p**¥)
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have only one solution under condition 1 < ¢ < 7, we deduce (by Lemma 1), that

m+4B—s m+B+s

ISn(hoyo)| <p*-2p" 2 (L+logp™P)=2p" 2 (L+1logp™?).

Remark. Similar bound for Sy (h,yo) is valid for case ¢, = ¢+ np.

Proposition 3. Let (hy, ha,p) =1, vp(h1+he) = s1, vp(h1k+hal) = sy and let {y,}
be the sequence produced by (2) with ¢, = ¢ or ¢, = ¢+ np. The following estimates

hays + hay 0 if s1<$s2+ B, m—s3 —sy >0,
1Yk + haye mists ]

Z 6<pn) <4 e if s1=zsa+f8, m—s1—s2>0,
Yo €L m p"Yp—1) otherwise,

hold.
Proof. Let c=1+pu, u# 0 (mod p™~1). By Corollary 2 we have modulo p™
hayk + hoye = Bo+ Biyo + B_1yg + Bayg 2 + -,
where
By = b [(h1 + ha) + (hac*p* Py (k) + hac'p"Fy(£))] = bBy, (Bj,p) = 1;

By = (hi+ha)+p <h1k(k;L D) +h2€(€;r D) +> ;
B_1 = a[(h1 + ha) + di(hik + hol) + do(h1k® + hol?) + -+ -];
hi + ho) — (hicF 4 hoct)
c—1
B_5 = —a® (2¢*(h1 + h2) + *p(hik + hol)+
+ctp? (hn (k* + pg(K)) + ha (€ + pg(0)))) —
— ab® [k + hal + 2(hic® + hac’) + (hici® + hac®®) (hy + ho)+
+p(hakg(k) + hatlg(€))];
B_;=0 (modp?), j=4,5,....

B_o=ab [C( + p(h1F3(k) + h2F3(€))] ;

Substituting c* and ¢’ by the polynomials on k and ¢ and applying Lemma 1 we
obtain requisite statement. |
This conclusion of Proposition 3 stays behind also for ¢,, = ¢+pn, ¢ Z 1 (mod p™).

MaAIN REsSULTS. The properties of equidistribution and statistical independency
of sequences of PRN’s {y,} generated by (2) we will study using bounds for the
discrepancy of certain points produced by the sequence {x,}, , = g—,’; We say that
the sequence {z,} passes the s-dimensional test on equidistribution and statistical
independency if every sequence {XT(Lj)}, Xn = (Zn,...,Tntj-1), J = 1,...,s has the

discrepancy DN(X,(,,]-)) such that DN(XT(Lj)) — 0 for N — oo. From Lemma 2 it follows
that we should have non-trivial estimates for sum

N-1
3 hayn + -+ Py 1\
< 1Yn + -+ jYn+j 1>7 i=1,2,....s
pm

n=0
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Theorem 1. Let {X,(Lj)}, n=201...,N—1, x9 = (@, -, Tnyj—1) be the
sequence of points x9 e [0,1)7 produced by (2). Then for every j, 1 < j < 4, the
following estimate

D(j) ::D(j)(Xo X1 XN 1)<i+ 1 1+i zlogpm+z J
N N ) ) ) — \pm p%_ﬁ pB T 5

holds.
Proof. Let h- X,(lj) denote the inner dot of A and X,(lj), ie.
h - XT(LJ) = hl.%'n + h2-75n+1 + -+ hjxn—}—j—L

In order to apply Lemma 2, we should have an estimate for the sum

T—1

Z e (hlyn + h2yn+1 +--- hjyn+j—1)

n=0 pm

Without loss of generality, we can suppose that (hi,hs,...,h;,p) = 1. From the
representation y, as a polynomial on n (by Corollaries 1 and 2) we have

hayn + -+ hjynyj—1 = (hayo + - - - hjyo)+

+(han +ha(n+1) + -+ hj(n+j — 1)b+np* PG (yg 1)~

J
—ab(1+ p* PG (y 1)) S ha(n + i — 1)+
=1

n (z han i 1)3) PG (o, hy).

=1

Hence, the sum Ay, + -+ + hjyn4,—1 represents a polynomial of special type

m

P
f(n) such that the exponential sum 3} e (%) is appreciable by Lemma 1:
n=1
T—1
Ze <h1yn+:hjyn+]l> < 2pm+2ﬁ+@7
n=0 p

if (hl —+ h2 4+ ... —I—hj,pm) Ipz.
Now, using the connection between complete and uncomplete exponential sums
and Lemma 2, we deduce the assertion of theorem. |

Corollary 6. The sequence of PRN’s produced by (2) passes s-dimensional test
on equidistibution and statistical independency for s =1,2,...,p — 1.

Theorem 2. Let the sequence {yn} be produced by (2) with (¢,p) = (yo,p) = 1,
0< B =vp(b<a=uvy(a)). Then for h € Z, vy(h) = s, we have

1
(r™)

Sn(h) = S Sw(hoyo)l < NF 4+ Np~ ™% (2 + Vap).

YEZLym
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Proof. Without loss of generality we will assume that s = 0. By the Cauchy-
Schwarz inequality we obtain

N-1
5 1 1 h(y — ye)
BxmP < s 3 Iswlmnlf = L Y X (M) <
<p(p ) ?JUEZ;m <p(p ) k=0 yoEZ;m p
1 0 N-1
< )| ( )Z Z |Uk2(h_h’p )‘_
H 0 PP 0 ko
vp(k—0)=r
1 m—1 N-1 1 N—1
= ‘Uk,f(hv 7h7p’m)| + |0k,k(h7 h7pm)| =
p™) = k;() e(p™) kzzo
l’p(k*e):’Y k=4
= Z Z ok, (hy —=hi p™).
v=0 k,£=0
vp(k—£)="

Using Proposition 3 we infer

m—1 N—-1

_ 1
|SN(h)|2 <N+ ( m) Z Z |0’]f7g(h7,h;pm) +
L ~y=0 k=0

k?é[(lmod 2)
vp(k—£)=y
N-1 1 m—1 N
+ Y loke(h,—hip™)| | S N+ —— [Qp? > =+
k,0=0 p(m) o pY
k=£(mod 2)
vp(k—)=y
N—-1
+ >+ > > Joke(h, —h;p™)| | <
y<m—B m—pBL<y<m—1/ k=0
1 iy N,
p(m =0 p
N—-1
+1 >+ ). > oka(h,—hip™)| p <
y<m—B m—BLy<m—1 k,£=0
vp(k—€)=y
1 m m N N
SN+——{aNp% +2 3 pHET 4 =
w(m) y<m—p b v2m—p P
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1 m m
<N+ —— (2Vp¥ +2Np™H 4 Npmp ) <

p(m)
<Np% (145p%).

Thus, for (h,p) = 1:

Sn(h)| < N* + Np~% (2 + ﬁp%) .

If (h,p™) = p*, s < m, then similarly to the previous, we have

Yn
P

m-+s
4

Sn(h) < N+ Np~*5 (24 VBpi )

|
Theorem 3. Let Dy (yo) denotes the mean of discrepancy of the sequence points

} produced by the recursion (2) with initial value yo. Then the following bound

for value averaged over all yy € Z;m

— 1

1 m—pf
Dy=—— Dy(yo) < — +3p~ "7 logp™
(™) (¥0) pm

YoEZym

holds.

it is

This assertion follows immediately from Theorem 2 and Lemma 2.
The last theorem shows that for 5 > %m upon the average an estimate of Dy (yo)
preferable than individual estimate Dy (yo) given by Theorem 1.

CoNCLUSION. In the presented paper a new linear-inversive congruential genera-

tor with prime-power modulus was introduced. Exponential sums on linear-inversive
congruential pseudorandom numbers were estimated. The obtained results show these
inversive congruential pseudorandom numbers pass s-dimensional serial tests on the

stat

istical independence.
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