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Abstract

The approach of global isomorphism between the fluid and the Ising model is
applied to obtain an expression for the surface tension of the Lennard-Jones
fluid on the basis of the information about the Ising model. This is done in
a broad interval of temperatures along the phase coexistence, and is valid
both in a 2D and a 3D. The relation between the critical amplitudes of the
surface tension of the fluid and the Ising model is derived in the vicinity of
the critical point. The obtained theoretical estimates agree well with the
literature results for the surface tension. The methodology is demonstrated
for the 2D LJ fluid on the basis of the exact solution of the 2D Ising model
and is tested for the 3D LJ fluid. As a result, an expression for the surface
tension without any fitting parameter is derived.

Keywords: Surface tension, lattice gas, global isomorphism
PACS: 64.70, 68.40

1. Introduction

The surface tension is one of the most vivid properties of a fluid. Theoret-
ical descriptions, which employ methods of homogeneous statistical mechan-
ics, are challenging to use due to lack of symmetry at the phase boundary,
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where the system is spatially inhomogeneous. The seminal square gradi-
ent approximation of van der Waals [1] (see also [2] for historical survey) and
more sophisticated approaches [3–5], along with the Principle of Correspond-
ing State (PCS) are the basis for understanding of the universal regularities
at the phase coexistence, which are valid for a very broad class of fluids and
for a broad region of fluid states, including the vicinity of the critical point
[6].

Two remarkable empirical relations for fluids are known for more than a
century. One of them is the law of rectilinear density diameter (LRD) [7],
which states that if nl, ng are the densities of corresponding phases along the
binodal, and T is the temperature, then:

nd/nc =
nl + ng

2nc

= 1 + A ( 1− T/Tc ) , (1)

where A is a constant. The other linear relation is the Zeno line (ZL) linearity
[8], which states that the unit compressibility curve Z ≡ P/(nT ) = 1 is
described by a linear equation:

T

TZ

+
n

nZ

= 1 , (2)

where the parameters TZ and nZ are determined from the expressions for the
virial coefficients [8]:

B2(TZ) = 0 , nZ =
TZ

B3 (TZ )

dB2

dT

∣

∣

∣

∣

T=TZ

. (3)

For the van der Waals equation of state ZL is fulfilled trivially and is known
as the Batschinski law [9].

Recently, the classical PCS has gained a new development by analyzing
universality in the behavior of the density binodal rectilinear diameter and
the Zeno-line linearity [8, 10], which are observed in quite versed fluid sys-
tems, which span standard molecular liquids, various model fluids with the
pair interaction potentials of Mie-class, and liquid metals [11–13]. These find-
ings were casted in a simple geometrical picture of the global isomorphism
(GI) between the fluid and the Ising model, where the asymmetric fluid bin-
odal is symmetrized to resemble the symmetric binodal of the Ising model
[14, 15]. Subsequently, the concept of the global isomorphism between the
states of the Lennard-Jones (LJ) fluid and the Ising model was elaborated
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[16]. The developed global isomorphism incorporates PCS in a natural way.
Indeed, molecular liquids, which show linearity of the rectilinear diameter as
well as Zeno-line linearity, belong to a single class, which has the property
that the fluid part of the phase diagram is topologically isomorphic to the
phase diagram of the Ising model [17].

The aim of this paper is to extend the results of recent work [18] by
considering the consequences of the global isomorphism for the critical am-
plitudes of the surface tension and the correlation length of the LJ fluid as
well as the interfacial width. These relations can be verified in computer
simulations. We use available data to verify some of them.

The paper is organized as follows. In Section 2 we outline the main ideas
of the global isomorphism between the molecular fluid with the LJ type of
interaction and the lattice gas. In Section 3 the critical amplitude of the
surface tension for the LJ fluid is derived and compared with results from
literature. In Section 4 we discuss the effective interfacial width and its
relation to the correlation length. Concluding remarks and discussion of the
future ideas are presented in Section 5.

2. Global isomorphism and the Zeno-line

Consider the lattice gas model, which is described by the Hamiltonian
Hlatt (see e.g. [19]):

Hlatt = −ε
∑

〈i,j〉

ni nj − µ
∑

i

ni (4)

where ε is the energy of the nearest cite-cite attraction, µ is the chemical
potential, and the repulsive part is modeled by the restriction for the occu-
pation number of a cite ni = 0, 1. The lattice gas model is isomorphic to
the Ising model [19] with the interaction constant J related to the energy of
the nearest cite-cite attraction as [20] ε = 4 J . We will use the names ”Ising
model” and ”lattice gas model” interchangeable, emphasizing the difference,
where necessary.

Let x = 〈ni〉 be the density of the lattice gas and t̃ = t/tc be the temper-
ature of the lattice gas normalized by its critical temperature value tc. Then
the global isomorphism between the Ising model (or, equivalently, the lattice
gas model) and the LJ fluid with the density n and the temperature T is

3
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represented by the following projective transformation [14, 21]:

n(x, t̃) = n∗
x

1 + z t̃
, T (t̃) = T∗

z t̃

1 + z t̃
(5)

and the corresponding inverse transformation

x =
n

n∗

T∗
T∗ − T

, t̃ =
1

z

T

T∗ − T
(6)

where the parameter z is given by

z =
Tc

T∗ − Tc

(7)

and the parameters n∗, T∗ are the ones, which determine the linear zeno-
element

n

n∗
+

T

T∗
= 1 (8)

The temperature T∗ is related to the Boyle point in van der Waals (vdW)
approximation:

BvdW
2 (T∗) = 0 , T∗ = T

(vdW )
Z =

a

b
(9)

where a = −2π
+∞
∫

r∗

Φattr(r) r
2 dr and b = 2π

3
d3, where d is the particle diam-

eter. Furthermore, the density n∗ represents the high density state [8, 22]:

n∗ =
T∗

B3 (T∗ )

dB2

dT

∣

∣

∣

∣

T=T∗

, n∗ ≈ 1/b (10)

For the LJ fluid we use conventional dimensionless units for the temperature
T → T/Φ0, density n→ nd3.

Note, that for the Ising model the law of rectilinear diameter (1) is fulfilled
trivially because of the spin-flop symmetry. In that case the Zeno-line is the
line x = 1 where x = N/N is the molar fraction of N occupied sites on a
lattice with total N sites.

The interaction potential of the LJ fluid is

ΦLJ(r) = 4Φ0

(

(

d

r

)12

−

(

d

r

)6
)

(11)
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Since its attractive part has asymptotic behavior ∼ −r−6, it is possible to
show that

z =
D

6
(12)

where D is the spatial dimension and 6 is the power the attractive part of
the potential [21]. The relation between the parameter Φ0 and the lattice gas
interaction parameter ε in Eq. (4) is independent of the spatial dimension
[19, 20]: Φ0 = ε. Furthermore, T∗ = 2 in two dimensions (2D) and T∗ = 4 in
three dimensions (3D) [21]. A simple estimate based on Eq. (5) leads to the
following values of the critical temperatures of the LJ fluid:

T (2D)
c = 1/2 , T (3D)

c = 4/3 (13)

These values are in good agreement with the results of computer simulations
[23, 24].

It is important to emphasize that linear behavior of the binodal diameter
and of the Zeno-line have much broader validity than the standard formula-
tion of the PCS based on a simple scaling law of the interaction potentials
[25]. In particular, the behavior of the surface tension also reveals univer-
sal features [26] and can be understood in the context of the global iso-
morphism formulation of the PCS. Thus, the Zeno-line regularity has been
used in the studying the surface tension of molecular liquids [18]. This ap-
proach is based on the relation between thermodynamic potentials of the
lattice gas and the LJ fluid stated in [27]. In particular, Eq. (5) follows from
the equality between the grand thermodynamic potential of the LJ fluid,
Ψ ≡ P (µ(h), T (t))V − γLJ A, and the one of the isomorphic lattice model,
G(h, t) ≡ N g(h, t)− γlatt Σ:

Ψ = G (14)

where P is the pressure and µ is the chemical potential of the LJ fluid, V
is the fluid volume, while h is the field variable conjugated to x, N is the
number of sites in the lattice of the lattice gas.

The strength of the global isomorphism approach can also be demon-
strated by considering the liquid-vapor equilibrium for the 2D LJ fluid [15]
on the basis of the Onsager’s exact solution. Before doing that, we should
note that computer simulations do not always agree well with the existing
theoretical approaches [23, 28–30].The use of projective transformation (5)
to map the binodal of the Ising model to the liquid-vapor coexistence curve
gives more adequate estimate for the critical point and correctly reproduces
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the behavior of the binodal near the critical point [15]. This is a consequence
of a small value of the order parameter critical index (β = 1/8) and the global
character of its power law behavior. Also Eq. (14) along with Eq. (5) leads to
a simple relation between the critical compressibility factors, Zc = Pc/(nc Tc)
of the lattice gas (Ising model) and the LJ fluid [31]:

Zc, LJ =
(1 + z)2

z

tc
T∗

Zc, latt (15)

where tc and Tc are the critical temperatures of the lattice gas and the LJ
fluid respectively. In the 3D case z = 1/2, Zc, latt = 0.221 for cubic lattice
[32] and Eq. (15) leads to:

Zc, LJ ≈ 1.27Zc, latt ≈ 0.281 (16)

This value agree very well with the known values of Zc for the noble fluids Ar,
Kr, Xe, or the fluids like CO2, which are usually considered as the canonical
examples of the LJ fluid.

These results encourage us to apply the global isomorphism relations to
the surface tension. Earlier [18] it was shown how to use the results for the
surface tension of the Ising model in order to get the surface tension of the
molecular fluids in a wide temperature region.

3. Relation between critical amplitudes for surface tension of the

lattice gas and the LJ liquid

Starting from the relation (14) between thermodynamic potentials of the
LJ fluid and the lattice gas, and taking into account that the linearities
(1),(2) in the bulk phase and in the surface decouple, according to (14), we
establish the correspondence between the surface tensions of the LJ fluid and
the lattice model:

γLJ(T ) = γlatt(t(T )) (17)

provided that geometrical sizes of the corresponding systems are the same.
In the following analysis we will use the dimensionless units for the surface

tension: σlatt = γlattl
D−1/J , where J is the interaction constant of the Ising

model (and not the lattice gas model) and l is the lattice spacing. The
surface tension of the LJ fluid is measured in corresponding units: σLJ =
γLJd

D−1/Φ0, where Φ0 and d are the parameters of the LJ potential (11).

6
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In the context of the global isomorphism, Eq. (17) allows one to extract
the information about the surface tension of the LJ fluid on the basis of the
information for the corresponding lattice model. In particular, for the surface
tension of the 2D LJ fluid on the basis of the Onsager’s solution [33] we have:

σ
(2D)
LJ (T ) =

1

4

(

2 + t(T ) ln

(

tanh
1

t(T )

))

, (18)

with

t(T )/tc = 3
T

2− T

Another immediate consequence of (17) concerns the critical amplitude
s(0) of the surface tension:

σ = s(0) |τ |(D−1) ν + . . . , τ = 1− T/Tc (19)

The relation between the critical amplitudes for the surface tension of the
corresponding systems is as follows:

s
(0)
LJ =

1

4
s
(0)
Is (1 + z)(D−1) ν (20)

The factor 1/4 in Eqs. (18) and (20) appears due to the definition of the
interaction constant of the Ising model.

We check the validity of our approach by applying Eq. (18) to the results
of molecular simulations [30] using T∗ and z as the fitting parameters. The
result of our fitting is shown in Fig. 1. We see, that the simulation data
agree quite well with the predictions of the global isomorphism approach.
In addition, the value of the critical amplitude in 2D case, s

(0)
LJ ≈ 1.318

which follows from the simulations [30], is also in good agreement with the

theoretical value, s
(0)
LJ = 4/3. We can conclude, that application of the global

isomorphism to the surface tension of the 2D LJ fluid gives much better
results than the other theoretical approaches used to analyze the results of
the simulations [30], since they fail to reproduce both the binodal and the
surface tension data.

The relation (20) is the direct consequence of the global isomorphism ap-
proach and can be useful in comparison between the results for the lattice
and the fluid systems. The results for the critical amplitude of the surface

7
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Figure 1: Dashed curve: the result of fitting Eq. (18) to the data of [30](points) with
T∗ = 2.08, 1/z = 3.053, Tc = 0.514. Solid curve: Eq. (18) with the parameter values
predicted by global isomorphism approach z = 1/3, T∗ = 2, Tc = 0.5.

tension are summarized in Table 1. The typical values of the amplitude ob-
tained from the literature are presented for the comparison. Note, that these
values are scattered in a broad interval 2.1 ≤ s

(0)
LJ ≤ 2.94. This uncertainty is

due to inaccuracy in fixing the position of the critical point, which is caused
by truncation of the LJ potential. This is especially crucial for the surface
properties of a spatially inhomogeneous fluid rather than for bulk thermo-
dynamic properties of a homogeneous state [34–36]. At the same time, it
seems that regardless of the truncation radius, the linearity of the rectilinear
diameter and of the Zeno-line are observed in computer simulations for a
broad set of potentials, including Mie-potentials [13].

Table 1: Critical amplitudes of the surface tension for the LJ fluid accord-
ing to Eq. (20).

Ising LJ-fluid, Eq. (20) LJ-fluid (simulations)
D=2 D=3 D=2 D=3 D=2 D=3

2.31c

s(0) 4a 6.77b 4/3 2.82 ≈ 1.32g 2.22d

2.60± 0.04e

2.94± 0.05f

a Onsager’s solution d Ref. [38] g Ref. [30]
b Ref. [39],[40] e Ref. [41]
c Ref. [37] f Ref. [42]

8
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Analogous relations can be derived for the critical amplitudes of any other
thermodynamic quantity according to Eq. (5). For example, for the the
binodal density amplitude B(0), which is defined as nl − ng = 2nc B

(0)|τ |β,
we obtain:

B
(0)
LJ = (1 + z)β B

(0)
latt (21)

Corresponding estimates for the LJ fluid amplitude B(0) in a 2D and a 3D
cases are presented in Table 2.

Table 2: Critical amplitude of the density B(0)

Ising LJ-fluid, Eq. (21)
D=2 D=3 D=2 D=3

B(0) 1.1a 1.69b 1.14 1.93

a Onsager’s solution
b Ref. [43]

4. Effective width of interface

The notion of the width ∆ of the interface along with the surface ten-
sion is an important integral characteristic of the phase coexistence and the
corresponding inhomogeneous state. Close to the critical point it diverges as
fast as the correlation length ξ of the system. Yet the very definition of the
interfacial width varies in different studies, since there is an arbitrariness in
choosing the quantitative measure of where the surface begins [44]. In [18]
it was shown how it is possible to define this quantity in an intrinsic manner
directly from the Ornstein-Zernike relation, and the following expression for
the surface tension of the lattice gas was suggested:

σlatt = σ0
t

ξ1−ηeff

( 1− 2 xgas ) ln
1− xgas

xgas

(22)

This expression is based on the Bragg-Williams approximation for the Wood-
bury’s eigenvector of the bulk representation for the surface tension of the
lattice gas [45]. In terms of the magnetization 0 ≤ M(t) ≤ 1 of the Ising
model:

σlatt = σ0
t

ξ1−ηeff

M(t) ln
1 +M(t)

1−M(t)
(23)

9
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In this paper we consider the characteristic length ξeff as the effective thick-
ness of the interface in the units of the lattice spacing. Below we will show
that this thickness is proportional to correlation length ξ, using the Triezen-
berg – Zwanzig formula for the surface tension. Note, that introducing the
length scale factor ξeff in Eq. (22) is important for the surface tension to have
the correct critical asymptotic behavior, as the original Woodbury result fails
to reproduce the correct critical behavior. The density dependent part of the
expression (22) is due to the Bragg-Williams mean-field approximation [45].
The amplitude factor σ0 can be fixed by the the low temperature asymptote
in dimensionless form:

σlatt(t)→ 2 , ξeff → 1 , t→ 0 (24)

Here we imply that when the temperature decreases the interfacial width
tends to its minimal value, which is the lattice spacing. For the lattice
model with the nearest neighbor interactions this results in σ0 = 1/4, since
xgas → e−8 J/t as t→ 0.

By applying the inverse transformation (6) and the relation (17) to the
expression (22) for the surface tension of the lattice gas, we obtain the fol-
lowing expression for the surface tension of the LJ fluid:

σLJ =
σ0

4 ξ1−ηeff

tc
z

T/T∗

(1− T/T∗)
2

nl − ng

n∗
ln

nl

ng

(25)

Additionally, the expression can be justified using Triezenberg – Zwanzig
formula for the surface tension [46]:

σ = T

∫∫

d n(z1) d n(z2)K2(z1, z2) . (26)

as it was shown in [18]. Here

K2(z1, z2) =
1

4

∫

dD−1ρ ρ2 C2 ( z1, z2; ρ ) , (27)

while ρ = (x, y) is the vector along planar interface and C2 is the direct
correlation function for corresponding inhomogeneous state [47]. Using this
expression it is easy to show [18] that Eq. (25) has the following asymptotic
behavior (see e.g. [48])

σ ∝
(nl − ng)

2

ξ1−ηeff

∝ |τ |2β+ν(1−η) = |τ |(D−1) ν , (28)

10
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if we assume that ξeff ∝ ξ. To demonstrate that the characteristic length
ξeff introduced in (22) is proportional to the correlation length ξlatt of the
lattice model we use the data for the effective interfacial width ∆ of LJ fluid
interface, obtained in molecular simulations [49]. We follow the authors in
the assumption that the spatial density profile has the form of the hyperbolic
tangent:

n(z) = nd −
nl − ng

2
tanh

(

2 z

∆

)

(29)

To relate the value of the interfacial width ∆ with the correlation length of
the Ising model we use a simple scaling transformation[18]:

∆(T ) = ξIs(t(T ))/a∆ (30)

and adjust the parameter a to find the best fit to the simulation data [49].
We also use the relation (5) between the temperature parameters of the
Ising model and the LJ fluid for D = 3 with z = 1/2. The result is shown
in Fig. 2 with the best fit value a∆ = 0.173. The figure also shows the
relative deviations of the data from the fit. These deviations grow when
the temperature approaches the region, where fluctuations are significant
and the correlation length increases essentially. In this region truncating the
interaction potential leads to large errors.

0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1/D

T/Tc

0.5 0.6 0.7 0.8 0.9 1.0

- 0.30

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

0.00

0.05

Deviations

T/Tc

Figure 2: (left) Inverse interfacial width as a function of the temperature. The curve
represents the best fit of Eq. (30) with a ≈ 0.173 to the literature data. The points
represent the data obtained in the molecular simulations [49]. (right) Deviation of the
data from the fit.

In addition, to relate ξLJ with ξIs we can use the universality of the

11
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Fisk-Widom ratio for the critical asymptotic of the surface tension [50]:

W− = lim
t→tc−0

σ(t)

t
ξ(t)d−1 (31)

where ξ is the correlation length. Using the exact Onsager result in 2D that
W− = 0.310, together with Eq. (22) and Eq. (31) we can derive the following
estimate:

ξeff (t)/ξ(t)→ 1.515, t→ tc

Indeed, using Eq. (20) we obtain the following relation between the correla-
tion length critical amplitudes ξ(0) = ξ |τ |ν , τ → 0:

ξ
(0)
Is

ξ
(0)
LJ

=

(

s
(0)
LJ

s
(0)
Is

tc/J

Tc/ε

)
1

D−1

=
D + 6

6

(

tc/J

4Tc/ε

)
1

D−1

(32)

In order to extend Eq. (25) to a broad temperature interval one needs
some model expression for ξeff . In the framework of the global isomorphism
the only reasonable choice is to require ξeff to be proportional to the cor-
relation length of the corresponding Ising model ξIs. The results for the
interfacial width shown in Fig. 2 support this choice.

We next use the numerical data for the magnetization of the 3D Ising
model [51] to calculate the surface tension. We choose these data, as the sys-
tem studied there has the critical temperature approximately 1.31, which is
close to the global isomorphism estimate of the critical temperature Tc = 4/3.
Furthermore, the system studied in these simulations [52] has the critical ex-
ponent 2ν = 1.26, which is close to the value 2ν = 1.25 of the system studied
in the other simulations [53] which we used to obtain the correlation length
ξ(t) of 3D Ising model. The result is shown in Fig. 3 along with the molecular
simulation data of Galliero et al. [52]. As in Fig. 2 the difference between
the theory and molecular simulations grows as the temperature gets closer
to the critical point. However, outside the fluctuation region the difference
does not exceed 5%. Note, that the surface tension curve is fitted with the
only one fitting parameter a, which in the present case is equal a ≈ 0.3.
No other fitting parameters were introduced to match the data of molecular
simulations. In particular, the critical amplitude s

(0)
LJ ≈ 2.82 is obtained from

the Ising model. In fact this scaling factor is the only fitting parameter of
the theory which has clear physical meaning and can be fixed using univer-
sal Fisk-Widom ratio. Another extension of the theory is to go beyond the
simplest Bragg-Williams approximation for the Woodbury’s eigenvector.

12
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Figure 3: (left) Surface tension of the LJ fluid as a function of the temperature according
to (25). Points represent the data of molecular simulations [52]. (right) The relative
deviation of the theoretical prediction from the numerical data for various temperatures.

5. Conclusion

In this paper we have applied the global isomorphism approach to relate
the surface tension of the Ising model and the Lennard-Jones fluid. We
used the approach proposed in [18] where it was shown that the effective
interfacial width is proportional to the correlation length of the Ising model
by a scaling factor a. In the present form of the theory its value depends on
the density and is determined by the approximation used for calculation of
the Woodbury’s eigenvector [45]. We used this factor as the free adjusting
parameter. It is the only fitting parameter of the theory which has clear
physical meaning and can be fixed using universal Fisk-Widom ratio.

We have derived the relations between critical amplitudes of the surface
tension of the Ising model (lattice gas) and the LJ fluid. The estimates based
on this relation belong to the range calculated in the numerous computer
simulations for the Lennard-Jones fluid.

Our approach is valid equally well both in 2D and 3D cases. The case
of 2D geometry is especially complicated because existing theoretical ap-
proaches fail to reproduce correctly both the binodal and the surface tension
data. Obtained results clearly demonstrate that the global isomorphism is
a self-consistent and useful approach. It provides information about liquid-
vapor phase coexistence of the Lennard-Jones fluid on the basis of the knowl-
edge about lattice models. It seems natural that the fluid systems with the
Mie-type as well as Yukawa and the square well potentials, where the lin-
earities of the binodal diameter and the Zeno-line are observed, can also be
mapped onto isomorphic lattice model with symmetrical binodal.
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Highlights

• The global isomorphism is used to obtain the expression for the surface
tension of a fluid.

• The relation between critical amplitudes of the surface tension of the
fluid and the Ising model is obtained.

• The interfacial width for liquid-vapor interface is linked to the correla-
tion length of the Ising model.
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