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We investigate the possibility of the construction of the conventional Friedmann cosmology for our
observable Universe if the underlying theory is the multidimensional Kaluza–Klein model. We show
that the effective Friedmann model obtained by dynamic compactification of the multidimensional
model is faced with too strong variations in the fundamental constants. On the other hand, models with
stable compactification of the internal space are free from this problem and also result in conventional
four-dimensonal cosmological behaviour for our Universe. We prove a no-go theorem, which shows
that stable compactification of the internal spaces is possible only if the equations of state in the
external and internal spaces are properly adjusted to each other. With a proper choice of parameters
(fine tuning), the effective cosmological constant in this model provides the late-time acceleration of
the Universe.

Keywords: Multidimensional cosmological models; Dynamic compactification; Stable compactifi-
cation; Fundamental constant variation

1. Introduction

The multidimensionality of our Universe is one of the most intriguing assumptions in modern
physics. It is a natural ingredient of theories which unify different fundamental interactions
with gravity, such as the string or M-theory. However, introduction of extra dimensions
results in the complex dynamic behaviour of the multidimensional Universe. This devia-
tion from evolution of the Friedmann–Robertson–Walker (FRW) Universe may have dramatic
consequences and contradict observable data. The main purpose of this paper is to investigate
the possibility of the conventional description of effective four-dimensional (4D) cosmological
models obtained from the Kaluza–Klein (KK) models.

We investigate the KK models where space–time is endowed with a multicomponent perfect
fluid [1–4]. Within the standard KK models without branes and according to the present level
of the experimental data, the internal spaces are unobservable if their scales are of the order of
or less than the Fermi length LF ≈ 10−17 cm ≈ 1 TeV−1. Such small scales can be achieved in
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two ways. Firstly, the internal dimensions behave dynamically such that their size decreases
below LF. Here, the internal spaces undergoes dynamic evolution all the time. This behaviour
is called dynamic compactification. Secondly, the internal spaces can be stabilized near some
fixed value, e.g. LF. This behaviour is called stable compactification.

For the first class of models (with dynamic compactification), Mohammedi [5] proposed
an approach for the reduction of multidimensional models with perfect fluid to effective
4D models which have the form of the conventional cosmology. In the present paper, we
develop this model and show that it provides a very interesting gravitational ‘constant’ tuning
effect. In spite of the dynamic behaviour of an effective 4D gravitational ‘constant’ and the
non-conventional dynamics of an effective 4D energy density, their product behaves exactly as
in the FRW scenario. More precisely this product enters into the Friedmann equations. Thus,
the external space has evolved dynamically in accordance with the standard FRW cosmology.
However, the fundamental constants in this model undergo too large variations.

Next, we consider models with stable compactification. It is worth noting that two particular
classes of solutions with stable compactification of the internal spaces (for models with perfect
fluid) have already been found and were given in our previous paper [6]. In the present paper
we prove a no-go theorem according to which the models with perfect fluid do not admit stable
compactification in the case of an arbitrary combination of equations of state in the external
and internal spaces. There are only two exceptional classes where stable compactification
takes place and these classes exactly coincide with those found in [6]. Hence, these classes
entirely exhaust all possibilities for stable compactification. We construct a particular model
which belongs to these classes and has a Friedmann-like behaviour for the external space
(our Universe) during the radiation- and matter-dominated stages and late-time acceleration.
However, the parameters of model should be fine tuned to obtain the observable dark energy.

2. General set-up

To start with, let us consider a cosmological model with factorizable geometry

g = −e2γ (τ) dτ ⊗ dτ + L2
Pl e2β0(τ ) g(0)(x) +

n∑
i=1

L2
Pl e2βi(τ ) g(i)(y), (1)

which is defined on the direct product manifold M0 × ∏n
i Mi . The external (our) space–time

M0 = R × M0 has dimensions D0 = 1 + d0 = 4. In order to obtain the effective 4D
cosmology in the form of the Friedmann equations, we assume that the factors Mi are
di-dimensional Einstein spaces. The quantities a ≡ LPl eβ0

and bi ≡ LPle
βi

(i = 1, . . . , n)

describe scale factors of the external and internal spaces respectively. D′ = ∑n
i=1 di is the

total number of the internal dimensions.
The action functional for the considered multidimensional models is

S = 1

2κ2
D

∫
M

dDx(|g|)1/2(R[g] − 2�D) + Sm, (2)

where Sm is the action functional for bulk matter. By analogy with conventional cosmology,
the bulk matter is taken in the form of a m-component perfect fluid with the energy–momentum
tensor

T M
N =

m∑
c=1

T (c)MN = diag

⎛
⎜⎝−ρ(c), P

(c)
0 , . . . , P

(c)
0︸ ︷︷ ︸

d0 times

, . . . , P (c)
n , . . . , P (c)

n︸ ︷︷ ︸
dn times

⎞
⎟⎠. (3)
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Together with the equations of state P
(c)
i = (α

(c)
i − 1)ρ(c), the conservation equations have

the simple integrals

ρ(c)(τ ) = A(c)a−d0α
(c)
0 ×

n∏
i=1

b
−diα

(c)
i

i , (4)

where A(c) are constants of integration.
With respect to the internal spaces, there are two possible scenarios: either they are

stably compactified at the present time values b(0)i ≡ LPl eβi
0 = constant, or there is no such

stabilization and bi remain dynamic functions. In the case of stable compactification, small in
homogeneous particle-like excitations β̄i(x) over the constant background βi

0 describe massive
scalar particles (gravexcitons) that develop in the external space–time [7, 8].

3. Dynamic compactification

In this section, we investigate the possibility of conventional cosmology in the case of
multidimensional models with dynamic behaviour of the internal spaces. More precisely,
we consider the case of dimensional stabilization when the scale factors of the internal spaces
bi decrease with time. For simplicity, we consider the case of one internal space: n = 1,
b1 ≡ b.A perfect fluid is also taken in the one-component form: c = 1 ⇒ ρ(1) ≡ ρ, P (1)

0 ≡ P0,
P

(1)
1 ≡ P1. In [5], one interesting observation was made: if we suppose that the scale factor of

the internal space evolves according to the relation b = B/aq, where B ≡ constant and the
parameter q satisfies the condition d1q(d1q − q − 6) = 0, then, for the case of the Ricci-flat
internal space (k1 = 0), the Einstein equations are reduced to the familiar 4D form

κ2
0 ρ(4) = 3H 2 + 3k0

a2
− �D, (5)

κ2
0 P(4) = −2

ä

a
− H 2 − k0

a2
+ �D, (6)

where ρ(4) ≡ ρVd1 and P(4) ≡ [P0 − (d1q/3)(ρ + P1)]Vd1 are the observable 4D energy
density and pressure respectively. The volume of the internal space is Vd1 ∝ bd1 ∝ a−d1q .

Equations (5) and (6) formally reproduce the famous FRW equations (in the presence of the
cosmological constant). However, there are two main differences between this effective model
and the standard FRW universe. Firstly, the effective 4D gravitational ‘constant’κ2

0 = κ2
D/Vd1

is not a constant but a dynamic function. Secondly, the equation of conservation of energy
differs from the conventional equation in the FRW Universe in that it has a non-zero right-hand
side as given by

d

dt
(a3ρ(4)) + P(4)

d

dt
(a3) = (a3ρ(4))

1

Vd1

d

dt
(Vd1) = −(a3ρ(4))d1q

ȧ

a
, (7)

and it has the following solution:

ρ(4) = ρ0

(a0

a

)3α+d1q

. (8)

Here, we assume the equation of state P(4) = (α − 1)ρ(4). This behaviour of the energy density
differs from the standard behaviour by the additional degree d1q. However, it is very important
to note that the combination κ2

0 ρ(4) ∝ a−3α has the conventional form. It follows from the fact
that the dynamic behaviour of κ2

0 ∝ ad1q exactly compensates the additional degree a−d1q in
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the expression for ρ(4). As a result, the dynamic evolution of the Universe in our model exactly
coincides with the evolution of the standard FRW Universe. Thus, we recover the standard
behaviour of the Universe in our multidimensional model because of the specific dynamics of
the effective 4D gravitational constant κ2

0 ≡ 8πG4 ⇒ G4 ∝ V −1
d1

∝ ad1q . However, according
to the observations (see, for example, [9–11] and references therein), the rate of variations in
the effective gravitation constant in this model,

Ġ4

G4
∝ H ∝ 1

t
≈ 10−10 year−1, (9)

should be smaller by at least a further order of magnitude. Moreover, the dynamic behaviour
of the internal space results in a variation in the effective 4D fine-structure ‘constant’. In our
case it results in a similar estimate (9), which is many orders of magnitude greater than follows
from observations. Thus, in the considered model we were faced with too strong variations in
the fundamental constants.

4. Stable compactification

Let us suppose now that βi
0, i = 1, . . . , n, defines the position of the stale compactification

and β̄i(x) = βi(x) − βi
0 are fluctuations over this stably compactified background. It is well

known (for details, see [6, 7]) that in a dimensional reduced effective action these fluctuations
behave as scalar fields penetrating into our 4D space–time. Their behaviour is defined by the
effective potential

Ueff =
(

n∏
i=1

edi β̄
i

)−2/(D0−2) (
−1

2

n∑
i=1

R̃i e−2β̄i + �D + κ2
D

m∑
c=1

ρ(c)

)
, (10)

where R̃i := RiL
−2
Pl e−2βi

0 and ρ(c) is defined by equation (4). Thus, the problem of stabilization
of the extra dimensions is reduced now to a search for the minima of the effective potential
Ueff with respect to the fluctuations β̄i :

∂Ueff

∂β̄k

∣∣∣∣
β̄=0

= 0 =⇒ R̃k = − dk

D0 − 2

(
n∑

i=1

R̃i − 2�D

)
+ κ2

0

m∑
c=1

ρ
(c)

(4)

(
ξ

(c)
k + 2dk

D0 − 2

)
,

(11)
where ρ

(c)

(4) = Ã(c)ã−d0α
(c)
0 , ã is the scale factor of the external space in the Einstein frame

and ξ
(c)
i = di[α(c)

i − α
(c)
0 d0/(d0 − 1)]. The left-hand side of this equation is a constant but the

right-hand side is a dynamic function because of the dynamic behaviour of the effective 4D
energy density ρ

(c)

(4) . Thus, we arrived at the following theorem.

No-go theorem: Multidimensional cosmological KK models with the perfect fluid as a
matter source do not admit stable compactification of the internal spaces with the exception
of the following two special cases:

(i)

α
(c)
0 = 0, ∀ α

(c)
i , i = 1, . . . , n, c = 1, . . . , m. (12)
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(ii)

ξ
(c)
i = − 2di

d0 − 1
=⇒

⎧⎪⎨
⎪⎩

α
(c)
0 = 2

d0
+ d0 − 1

d0
α(c),

α
(c)
i = α(c), i = 1, . . . , n, c = 1, . . . , mz.

(13)

Case (i) corresponds to a vacuum in the external space ρ
(c)

(4) = Ã(c) = constant and arbitrary
equations of state in the internal spaces. Some bulk matter can mimic such behaviour, e.g. the
vacuum fluctuations of quantum fields (the Casimir effect), monopole form fields [7, 12] and
the gas of branes [13].

In case (ii), the energy density in the external space is not a constant but a dynamic
function with the following behaviour (d0 = 3): ρ

(c)

(4)(ã) = Ã(c)ã−2(1+α(c)). For example, in
three-dimensional external space, such a perfect fluid has the form of a gas of cosmic strings
for α(c) = 0, dust for α(c) = 1/2 and radiation for α(c) = 1.

To build a more or less viable model with stabilized internal spaces, we combine together
cases (i) and (ii). To be more precise, additionally to the perfect fluid of type (ii), we endow
our model with a monopole form field [7, 12]:

Ueff = (ed1β̄
1
)−2/(D0−2)(−1/2R̃1 e−2β̄1 + �D + f̃ 2 e−2d1β̄

1
)︸ ︷︷ ︸

Uint(β̄1)

+ κ2
0

m∑
c=1

ρ
(c)

(4)(ã)

︸ ︷︷ ︸
Uext(ã)

, (14)

where f̃ 2 = constant is proportional to the strength of the form field. This separation provides
a stable compactification of the internal factor space due to the minimum of the first term Uint =
Uint(β̄

1) as well as the dynamic behaviour of the external factor space due to Uext = Uext(ã)

which is exactly the Friedmannian behaviour. The minimum of Uint provides us with an
effective 4D cosmological constant: �eff := Uint|β̄1=0.

It can be easily shown that a positive minimum occurs if all parameters are positive and have
the same order of magnitude: �eff ∼ R̃1 ∼ �D ∼ f̃ 2 > 0. On the other hand, in KK models
the size of the extra dimensions at the present time should be b(0)1 × 10−17 cm ≈ 1 TeV−1.
In this case, R̃1 ∝ b−2

(0)1 ≈ 1034 cm−2. Thus, for the effective cosmological constant we obtain
a value which is many orders of magnitude greater than the observable value for the dark
energy at the present time. The exact expression for �eff = Uint|β̄1=0 = −1/2R̃1 + �D + f̃ 2

shows that the necessary small value of the effective cosmological constant can be achieved
only if the parameters R̃1, �D and f̃ 2 are extremely fine tuned with each other. We see
two possibilities for avoiding this problem. Firstly, the inclusion of different forms fields or
fluxes may result in a large number of minima (landscape) [14–17] with a sufficiently high
probability of finding oneself in a dark-energy minimum. Secondly, we can avoid the restriction
R̃1 ∝ b−2

(0)1 ≈ 1034 cm−2 if the internal space is Ricci flat: R̃1 = 0. For example, M1 can be an
orbifold with branes in fixed points [18]. These two possibilities will be developed further in
our forthcoming paper.
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