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THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH
TO VIBRATIONAL STRUCTURE IN THE PHOTOELECTRONIC SPECTRA:

MOLECULES OF CH, HF

The combined theoretical approach to vibrational structure in photo-electronic spect-
ra (PES) of molecules is used for quantitative treating of PES of the CH, HF molecules.
The method is based on the density functional theory (DFT) and the Green’s-functions

(GF) approach.

Many papers have been devoted to the treat-
ment of the vibrational spectra by construction of
potential curves for the reference molecule (the
molecule due to be ionized) and the molecular
ion (c. f. [1—19]). The most sophisticated meth-
od is provided by the GF approach. Usually, the
electronic GF is defined for the fixed position of
the nuclei. The cited method, however, requires
as input data, the geometries, frequencies, and
potential functions of the initial and final states.

Since at least a part of these data are unavail-
able, the calculations have been carried out with
the objective of determining the missing data
through comparison with experiment. To avoid
this difficulty and to gain the additional infor-
mation about the ionization process, L. S. Ceder-
baum et al [11] have extended the GF approach
to include the vibration effects and shown that
the GF method allows ab initio calculation of the
intensity distribution of the vibrational lines etc.
For large molecules far more approximate but
more easily applied methods such as DFT [16,
17] or from the wave-function world the simplest
correlated model MBPT are preferred [2, 8, 10].

Earlier, has been developed the combined
GF-DFT approach [12—15] to the vibration
structure in PES of the molecules, which has
been successfully applied to quantitative treat-
ment of the CO and N, molecules. Here we
have applied this method to the determination
of the key parameters of the CH, HF molecules
PES. It is important to note that the calcula-
tion procedure of the GF-DFT method is sig-
nificantly simplified. As the key aspects of the
GF-DFT method has been in details earlier con-
sidered, we are only limited to presentation of
the main formulae.

The quantity which contains the information
about the ionization potentials (IP) and molec-
ular vibration structure due to quick ionization
is the density of occupied states [2, 8]:

N(T) = (1/27h) dee ™ (g Jag (0)a, () o). (1)

where |W,) is the exact ground state wave
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function of the reference molecule and a,(#) is
an electronic destruction operator, both includ-
ed into the Heisenberg picture. For particle at-
tachment, the quantity of interest is the densi-
ty of unoccupied states:

N(D) = (/2§ dre " pola, ()2} (0) ). (2)

Usually, in order to calculate the value (1) states
for photon absorption one should express the
Hamiltonian of the molecule in the second quan-
tization formalism. The Hamiltonian is as follows:

H — T4(3/0x) + Ty (8/0X) + Upe () +
+ Unn(X) + Uy (x, X), (3)

where T and Ty are the kinetic energy op-
erators for electrons and nuclei, and U rep-
resents the interaction; Uy represents the
Coulomb interaction between electrons, etc;
x (X) denotes electronic or nuclear coordi-
nates. As usually, introducing a field operator

WY(R,0,x) Zq) x,R,0)a,(R,0) assuming that

Hartree—Fock (HF) one—particle functions ¢,
(€,(R) are the one-particle HF energies and f
denotes the set of orbitals occupied on the HF
ground state; R, is the equilibrium geometry on
the HF level) and dimensionless normal coor-
dinates @, one could write the standard Ham-
iltonian as follows [10, 11]:

H= HE+HN+H +HY, (4)
HE — 2 T, (RO)az a; + Z ]kl(RO CZ alak —
_Z Z [Viise (Ro) — Vi (Ro) e,

i,j kef

H, —ﬁzm (65,4 3).
HYy =2 1/22(%) b, + b)laia, — n,] +
—Z Z (aQaQ> b+ b')(b, + b)[ala, — ],
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M
H =270 % 3 (Z2) .+ blouatafo, +
s=1 s /0
+ dv,a,a,afal + 20v5aia,a,a! ]+

o [ PV
EPIP? (aQsaan

s, 8'=1

>0(bs + b!)(b, + bi[dvalala, +
+ dv,a,a,afal + 20v;ala,a.af ],

with n,=1 (0), ief (i¢]), 60;=1 (0),
(ijkl) € 0;, where the index set v, means that
at least ¢k and ¢, or ¢, and ¢, are unoccupied,
v, that at most one of the orbitals is unoccu-
pied, and v, that ¢, and ¢, or ¢, and ¢; are un-
occupied. Here for 51mp1101ty all terms lead-
ing to non-harmonicities, are being neglected.
The w, are the HF frequencies; b,, bl are de-
struction and creation operators for vibration-
al quanta as

— (1/N2)(b, 4 bY), (1/N2)(b, — bY).

(5)

The interpretation of the above Hamiltonian
and the exact solution of the one-body HF prob-
lem are given in refs. [5, 6]. The HF-single-par-
ticle component H, of the Hamiltonian (4) is

as follows:
Hy= Y Ti(R))ala, + Y ho, <b§bs i é) n
i s=1
ni](bs + bst)o +

M
DI YER (2 ) jata,
kb, + b (b, + L),

+3 X5 (5055 ) laia—
(6)

s,s'=1 i

Correspondingly, in the frame of one-parti-
cle picture, the density of occupied states is
given by

0/0Q, =

- Lﬁ S teihil(ei%)l <0|eiiﬁilﬁ0[ |0>7

Hy—= ﬁb%+2&b+m+

=1

Mi‘g

_|_

s,

i_+L<dTi) _
gs_—ﬁ dQs 0’ Yss_

Introducing new operators

Z 7\,Slb —|—7ﬁlb2

Vss(b + b)), + b5), (8)

L1 e
4\0Q.00.

) o

(10)

with real coefficients Af, A, defined in such a
way that H, in new operators is

M M
=3 hcie, 4+ Y gie,+ e+ ko (11)
s=1 s=1

Eq. (7) is as follows:

No(e) =Y [(7|U|0)P 8(e — e, = Ae, = n - hid),
ny...ny (12)
where O function in (12) naturally contains
the information about adiabatic ionization po-
tential and the spacing of the vibration peaks;
while |(2|U|0)] is the well-known Franck—
Condon factor.
In a diagrammatic method to get function

N, (e) one should calculate the GF G, (e) first
[3, 10, 11]:

G (D = —ih~ & dte™™™ (o |" {a, (£)ai (0)} o)
(13)

and the function N,(e) could be found from
the relation

niN,(e) = almG,,(e — ain), a = —signe,. (14)

Choosing the unperturbed Hamiltonian H, to
be Hy=)Y\eala,+ Hy one finds the GF. In the
known approximation GF is as follows:

GOB(t) = =98, iexp|—in—!(e, == Ae)t| X

X2|<ﬁk’Uk|0>|2 exp(==in, - ). (15)

The corresponding Dyson-like equation (X = O)
looks as follows:

G, (€) = GOE(e —I—ZG €) PGy (€), (16)
2 2 kzz/ klt] I//eleUntU U +
;]61:!1 RO E+E E E
i i I/le Uann/Un
+ kl/ kl} i i :
szeF nnzn, E+E E E
I¢F
where U, = |(A,|U,|0)] and

E=¢c,FAc, =10, (17)

The direct method for calculation of N,(€)
as the imaginary part of the GF includes a
definition of the vertical IP (VIP) of the refer-
ence molecule and then of N,(€). The zeros of
the functions

Dy(e) =€ —[e"+ Z(E)]

where (€% + X), denotes the k-th eigen-value of
the diagonal matrix of the one-particle energies
added to matrix of the self-energy part, are the
negative VIP for a given geometry. One could
write according to [10, 11]:

(V.1P), = —(&+ Fy),
Fk= Zkk(—(VIp) ) m

(18)

Zp(€r)
(19)
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Expanding the ionic energy EY—! about the
equilibrium geometry of the reference molecule
in a power series of the normal coordinates of
this molecule leads to a set of linear equations
in the unknown normal coordinate shifts 0Qy,
and new coupling constants are then:

g = =(1/V2)[0(€, + F.)/9Q,.
v == (1 )l0*(E+ F)/0Q/0Q,), (20)

The coupling constants g, and y, are calcu-
lated by the well-known perturbation expansion
of the self-energy part using the Hamiltonian
Hpy of Eq. (3). In second order one obtains:

(2) 2 kw ka )Vkeu
ete,—€—¢

S€F

—V,. )V,
kw ksji 1V ksij
+ 2 e+e —€—¢

(21)

and the coupling constant g, could be writ-
ten as

1 0e, 14q,(0/09)Y [—(V.LP),]

8~ T35 1-0/o0% o—vibyl 22
Z (Vksij_vksji)2 %_E_E
_ [7(V~I'p')k+€:7617€j]2 an an an
h= o5, Voo —Vii’ '
an [*(V-I-P-)k+€s*€i*€j]2
(23)

It is suitable to use the pole strength of the
corresponding GF in the form of [12]:

pk_{ — 3 Wl —(V.LP) } 130,30,
(24)

~ gllo. + g.(0, — D],

Below we give the DFT definition of the
pole strength corresponding to VIP and confirm
the earlier data [10, 11]: as p,~0,8—0,95. The
coupling constant is:

g 1 0 14
Yu= Vi (E) + Z\/§g10 TQ;(E)

Further, we consider the quasi-particle Fermi-
liquid version of the DFT, following to Rels. [12,
13, 19]. The master equation could be derived
using an expansion for self-energy part X into
set on degrees of x, e-¢p, p*p? (here g and ppare
the Fermi energy and pulse correspondingly):

[P2/2 ZZ /” +20 )+ p( OZ/@U )pI®@; (x)=
= (1— 0 /0e)e, @, (x).

(26)

(27)

The functions @, in (27) are orthogonal with
a weight p; ' =a~' =[1 — 0%/0¢]. Now one can
introduce the wave functions of the quasi-parti-
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cles ¢, = a~'?®,, which are, as usually, orthog-
onal with weight 1. The equations (27) could
be obtained on the basis of variational princi-
ple, if we start from a Lagrangian of a system
L, (DF). It should be defined as a functional of
qua51 particle densities:

=Yl
=3 1, |70, (n)f

= 2 n, [ @5 @, — DD, |.
y

The densities v, and v, are similar to the
HF electron density and kinetic energy density
correspondingly; the density v, has no analogs
in the HF or DFT theory and appear as a re-
sult of the account for the energy dependence
of the mass operator X. A Lagrangian L, could
be written as a sum of a iree Lagranglan and
Lagrangian of interaction: L, = L? 4 L™, where
a free Lagrangian L) has a ' standard form:

1 (i0/0t —e,)D,,  (28)

= S dr; n,®@;

The interaction Lagrangian is defined in the
form, which is characteristic for a standard
(Kohn—Sham [16]) DFT (as a sum of the Cou-
lomb and exchange-correlation terms), howev-
er, it takes into account for the energy depen-
dence of a mass operator X:

Lmt Ly __Z SBth (11, 12) V(1) v, (rp)drydrs,
zk 0 (29)
where [, are some constants (please, look be-
low), F is an effective potential of the exchange-

correlation interaction. The Coulomb interaction
part Ly looks as follows [19]:

L= —5 {11= T onlvom)l — X o(n)] X
xvo(r)/ |5 — (30)

r? |dr1dr27

where X,= 0%/0e. In the local density approx-
imation, the potential F could be expressed
through the exchange-correlation pseudo-poten-
tial V. as follows [20]:

F(r), ry) =0V . /6v,- 0

Further, one can get the following expressions
for ¥, = —8L/dv,, for example:

= (1= SV + Z5 + 3 BoodVic/OV2VE +
+ Boo® Vc/0VgVy + Boi0 Ve /Ov,v, +
+ B0 Vie/OVE - VoV, + Ba0?Vie/ OV - VoV, +
+ Bo20Vie/ 0V - v, (31)
3y = PBoad Ve/ 0o - Vo + Brad Vie/Ov - v, +
+ B0 Vie/ OV - v, (32)

— ).



Here Vj is the Coulomb term, X§* is the ex-
change term. Using the known canonical rela-
tionship, one can derive the quasi-particle Ham-
iltonian [10, 14], corresponding to L,.

In refs. [12, 13, 15] it has been given the
comment regarding the constants f,. Indeed,
in some degree they have the same essence as
the similar constants in the well-known Landau
Fermi-liquid theory and the Migdal finite Fer-
mi-system theory. The value of ,, depends on
the definition of V. If for V.. one of the DFT
exchange-correlation potentials form is used,
then, without losing a generality of the state-
ment, Bp,= 1. The constant B, can be in prin-
ciple calculated by the analytical way, but it
is very useful to remember its connection with
a spectroscopic factor F, of the system [19]:

Fsp= 1—

0
= Zul=(V.LP)L. (33)

One could see that this definition is corre-
sponding to the pole strength of the correspond-
ing Green’s function [2, 11]. As potential V,
we use the Gunnarsson—Lundqvist exchange-
correlation functional [17]:

Vie(r) = —(1/7)[3n2 - p(r)]/3 —0,0333 X

x In[l 4 18,376 - 0/3(r)]. (34)

Using the above written formula, one can
simply define the values (24), (33).

In refs. [15, 20], the above presented com-
bined approach has been applied to analysis of
the photoelectron spectrum for the sufficient-
ly complicated from the theoretical point of
view N, and CO molecules, where the known
Koopmans’ theorem even lails in reproducing
the sequence of the V.I1.P.s in the PE spec-
trum (c. f. [5—7]). It is stressing, however that
it has been possible to get the full sufficient-
ly correct description of the diatomics PES al-
ready in the effective one-quasiparticle approxi-
mation [11, 13]. Another essential aspect is the
sufficiently simple calculating procedure, pro-
vided by using the DFT. Moreover, the cum-
bersome calculation is not necessary here, if
the detailed Hartree—Fock (Hartree—Fock—
Rothaan) data (separate HF-potential curves of
molecule and ion) for the studied diatomic mol-
ecule are available.

Further, it is easily to estimate the pole
strengths p, and the values g,. When the change
of frequency due to ionization is small, the densi-
ty of states could be well approximated using
only one parameter g:

0

S .
N, (€) =n§0e SLo(E—€, - Ac, 4 n- héd),
S = g%(hw)2. (35)

In case the frequencies change considerably,
the intensity distribution of the most intensive
lines can analogously be well approximated by

an effective parameter S. In table 1 the experi-
mental (S) and theoretical (S*) values of the
S parameter are presented for the molecules of
CH and HF: S°is the value without account-
ing correlation and reorganization corrections;
S® — the values of the parameter with account-
ing of the correlation and reorganization, in to-
tal synergistic, corrections within our combined
GF—DFT method.

Table 1

The experimental (S®?) and theoretical (S'*r) values
of the S parameter presented for different molecules
(CH, HF): S8° is the value without accounting corre-
lation and reorganization corrections; S(*) — the com-

bined GF-DFT method (b).

Stheor Sexp
NC\S]I:' Theory
1 2 1 2
CH SO 0.22(1m) 0.105(30) — —
S 0.2711 0.1134
HF SO 0.126(1m) 1.90(30) 0.35 2.13
S(b) 0.1920 2.0534

One could guess that there a physically rea-
sonable agreement between the theoretical and
experimental results for all bands. This example
also confirms that quite effective theory become
an effective tool in interpreting the vibrational
structure of the molecular PES, especially tak-
ing into account an essential simplification (im-
plementation of the DFT scheme) of the stan-
dard GF approach.

In conclusion let us indicate on the pros-
pects of the presented method application to the
problems of the cooperative laser-electron-vibra-
tional gamma-nuclear effects in the di-atomics
and multi-atomic molecules [21].
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THE GREEN'S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO VIBRATIONAL STRUCTURE
IN THE PHOTOELECTRONIC SPECTRA: MOLECULES CH AND HF

Abstract

The improved theoretical approach to vibration structure of photo-electronic spectra (PES) of molecules is used for
quantitative treatment of the CH, HF molecules PES. The method is based on the density functional theory (DFT) and
the Green’s-functions (GF) approach including synergistic corrections.
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®OTOIJIEKTPOHHOI'O CIEKTPA: MOJIEKYJIbl CH, HF

Pesiome
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YK 539.186

0. B. Taywikos, O. I1. ®eduyx, I1. O. Kondpamenko, f. I. Jenix, 10. M. Jlonamkin, A. A. Csunapenxo
METOJ, ®YHKILLi# I'PiHA i ®YHKILIOHAJIY T'YCTUHU ¥ BU3HAUYEHHI BiBPALLIMHOiI CTPYKTYPU

®OTOEJIEKTPOHHOI'O CIIEKTPY: MOJIEKYJIU CH, HF

Pesiome

[TokpaleHu#l TeopeTHUYHUH MeTOA omucy BiOpauifiHOI CTPYKTYpH (hOTOEJeKTPOHHUX CIIEKTPiB MOJIEKYJ, SKUH 0a3yeTbCsi
Ha Mertoli (yHKUiH ['piHa Ta Teopil PpyHKUiOHANY T'YCTHHH, BKJ/AIOYAIOYM CHHEPreTHYHi MOMPaBKH, 3aCTOCOBAHO A0 KiJlbKiCHOrO

omucy QoToesekTpoHHux crektpiB mosexkya CH, HF.

KarouoBi caoBa: gortoesekTpoHHUH criekTp, MeTon (yHKUiil [piHa, Teopis ¢yHKuUioHamy ryctunu, mosnekyan CH ta HF,

CHHEPreTHYHi TONPABKH.



