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PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL
AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Jlenedenko A. B. IlapHicTh KiJIBKOCTI IPpOCTUX Ynces Ha 3aJjaHHOMY IHTepBa-
Jii Ta anroputrMu cybJiHiliHOrO nijzicymMmoByBaHHsi. [IPOMOHYETHCSA ANITOPUTM BH3HAYE-
HHSI TAPHOCTI KiTbKOCTI IIpocTrx umcen Ha [a, b] C [z, 2z], ne b—a < 2?7 1a ¢ € (0,1/2], 3a
O(zex(e7/19)+2) onepamiit. AnropnTy GasyeThes Ha CyOIHIHIX METOIAX T ACY MOBYBAHHS,
pO3pO6Ka KOTPpUX CTAHOBUTH OCHOBHY YaCTHUHY cTaTTi. JloBemeHo TeopeMmy MIo/0 CyOTiHIi-
HOTO Ti/ICyMOBYBaHHsI HIMPOKOIO K/IACCY MY/IbTUILTKATUBHUX (DYHKIIA.
Kurouosi cioBa: agropurmivuHa Teopist umncest, GYHKINS PO3MOALITY TPOCTUX GHCE, Ti/I-

CYMOBYBaHHS MYJIbTUILTIKATUBHUX (DYHKINN, CyOIiHIlHE MiICyMOBYBAHHS.

Jleneuenko A. B. YeTHoCTh KoJMYecTBa MPOCTHIX 4YHUcesl Ha 3aJaHHOM WH-
TepBajie U aJIrOpuTMbl cybGamHeliHOro cymmmupoBaHusi. llpegmaraercss aaropuTm
OIpe/Ie/Ie s YeTHOCTH 9HC/Ia OPOCTHIX Ha oTpeske [a,b] C [z,2z], tme b —a < z'/*7° n
c € (0,1/2], 3a O(z™(T/19)+e) jaros. Anropurm ocHoBaH Ha CyGMHEHBIX METOIAX CyM-
MWDOBaHUS, pa3paboTKa KOTOPHIX COCTABISAET OCHOBHYIO WacTh cTaThh. JloKazaHa Teopema
0 cy6IMHEHHOM CyMMUPOBAHAU MUPOKOTO KIACCA MYTbTUILTAKATHBHBIX (DYHKITHIA.
KurodeBble cjioBa: BbIYUCIUTE/IbHAS TEOPUs ducest, MYHKIMS PACIPEIETeHUs ITPOCTBIX

qncesi, CyMMHPOBaHME MYIbTUIIINKATHBHBIX (QYHKIHI, CyOIHMHENHOe CyMMUDOBAHNE.

Lelechenko A. V. Parity of the number of primes in a given interval and
algorithms of the sublinear summation. An algorithm to determine the parity of
the number of primes in an interval [a,b] C [, 2z], where b — a < x/**¢ and ¢ € (0,1/2],
in O(xmax(c’7/15)+8) steps is proposed. The algorithm is based on methods of the sublinear
summation, which the primary part of the paper is devoted to. A theorem on the sublinear
summation of a wide class of multiplicative functions is proven.
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plicative functions, sublinear summation.

INTRODUCTION. How many operations are required to find any prime p > z (not
necessary the closest) for given =7

A direct approach is to apply AKS primality test [1], which was improved by
Lenstra and Pomerance [5] to run in time O(log®"® ), on consecutive integers starting
with z. Such method leads to an algorithm with average complexity O(log7+€ x),
because in average we should run AKS log z times before a next prime encounters.

But in the worst case available estimates of the complexity are much bigger; they
depend on upper bounds of the gaps between primes. The best currently known result
on the gaps between primes is by Baker, Harman and Pintz: for large enough z there
exists at least one prime in the interval

[ZE, T4 ZEO'525+5].

(© A. V. Lelechenko, 2013
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Thus we obtain that the worst case of an algorithm may need up to
0(1‘0'525+6) > 1,1/2

operations.

One can propose another algorithm, which is distinct from the pointwise testing.
Suppose that there is a test, which allows to determine whether a given interval
[a,b] C [x,2z] contains at least one prime in A(z) operations. Then (starting with
interval [x,2x]) we are able to find a prime p > x in A(x)logx operations using a
dichotomy.

A test to determine whether a given interval contains at least one prime can be
built atop Lagarias—Odlyzko formula for 7(z) [6], which provides an algorithm with
O(x'/?+2) > x/2 complexity. See [8] for more detailed discussion.

In [8] Tao, Croot and Helfgott offer a hypothesis that there exists an algorithm
to compute 7(z) in O(x'/27¢+) operations, where ¢ > 0 is some absolute constant.
This implies that a prime p > 2 can be found in O(z'/?~°*t¢) <« £/2 steps. Authors
prove the following weaker theorem [8, Th. 1.2].

Theorem 1 (Tao, Croot and Helfgott, 2012). There exists an absolute con-
stant ¢ > 0, such that one can (deterministically) decide whether a given interval

[a,D] in [x,2x] of length at most x'/?>*¢ contains an odd number of primes in time
O($1/2_C+0(1)).

The aim of our paper is to prove the following result.

Theorem 2. Let [a,b] C [2,2z], b —a < 2'/2%¢, ¢ is arbitrarily constant such
that 0 < ¢ <1/2. Then a parity of #{p € [a,b]} can be determined in time

O(xmax(c,7/15)+e ) )

MAIN RESULTS.
1. The general summation algorithm. Consider the summation
> f@),
n<x
where f is a multiplicative function, from the complexity’s point of view.

Generally speaking, a property of the multiplicativity does not impose significant
restrictions on pointwise computational complexity. Multiplicative functions can be
both easily-computable (e. g., f(n) = n* for every k) and hardly-computable: e. g.,

Fr*) = 2, if there are p® consecutive zeroes in digits of m
P = 1, otherwise.

Luckily the vast majority of multiplicative functions, which have applications in
the number theory, are relatively easily-computable.

Definition 1. A multiplicative function f is called easily-computable, if for any
prime p, integer a > 0 and real € > 0 the value of f(p®) can be computed in time
O(pa™) for some absolute constant m, depending only on f.
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Example 1. The (two-dimensional) divisor function 72(p®) = a + 1, the (two-
dimensional) unitary divisor function 75 (p®) = 2, the totient function p(p®) = p*—
—p®~1, the sum-of-divisors function o(p®) = (p®** —1)/(p — 1), the Mobius function
pu(p®) = [ < 2](—1)* are examples of easily-computable multiplicative functions for
any m > 0.

Example 2. Let a(n) be the number of non-isomorphic abelian groups of order
n. Then a(p®) = P(«), where P(n) is a number of partitions of n. It is known [4,
Note 1.19], that P(n) is computable in O(n®/?) operations. Thus function a(n) is an
easily-computable multiplicative function with m = 3/2.

The number of rings of n elements is known to be multiplicative, but no explicit
formula exists currently for @ > 4. See OEIS [9] sequences A027623, A037289 and
A037290 for further discussions.

Example 3. The Ramanujan tau function 7x is a rare example of an important
number-theoretical multiplicative function, which is not easily-computable. The best
known result is due to Charles [2]: a value of 7r(p®) can be computed by p and « in
O(p®/*+¢ + ) operations.

Surely pointwise product and sum of easily-computable functions are also easily-
computable ones. The following statement shows that the Dirichlet convolution

(f*g)(n) =D f(d)g(n/d)
d|n
also saves a property of easily-computability.

Lemma 1. If f and g are easily-computable multiplicative functions, then

h:=fxg
1s also easily-computable.

Proof. By definition of easily-computable functions there exists m such that
f(p®) and g(p*) can be both computed in O(p°a™) time.
By definition of the Dirichlet convolution

h(p®) = F(P")g(@**).
a=0

This means that computation of h(p®) requires

@

Z O(peam +p€(a - a)m) < peam+1
a=0

operations.

Firstly, consider a trivial summation algorithm: calculate values of function point-
wise and sum them up. For an easily-computable multiplicative function the major-
ity of time will be spend on the factoring numbers from 1 to x one-by-one. But no
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sum(ff,z) =
=0
ALkl
B« {1},
for prime p < \/z
F o {ff(p, )}/
for k < p,2p,...,|x/p|p
a <+ max{a | p*|k}
AJE) A /p~
Blk] < Blk] - Fla]
forn<«1,...,x
if A[n] #1 = Bln| «+ B|n]- ff(n,1)
forn+1,...,x
Y+ ¥+ B[n]
return X

Listing 1: Pseudocode of Algorithm M. Here ff(p, «) stands for the routine
that effectively computes f(p®).

polynomial-time factoring algorithm is currently known; the best algorithms (e. g.,
GNFS [10]) have complexities about

exp ((c +£)(logn)3 (loglog n) %) ,

which is very expensive.

We propose a faster general method like the sieve of Eratosthenes. We shall refer
to it as to Algorithm M.

Algorithm M. Consider an array A of length x, filled with integers from 1 to =,
and an array B of the same length, filled with 1. Values of f(n) will be computed in
the corresponding cells of B.

For each prime p < /z cache values of f(p), f(p?),..., f(pl°&=/1°8P]) and take
integers

k=p,2p,3p,..., I_‘r/pJp

one-by-one; for each of them determine a such that p® || k and replace A[k] by A[k]/p®
and BIk] by BIK| - [(5").

After such steps cells of A contain 1 or primes p > /zx. So for each n such
that A[n] # 1 multiply B[n] by f(A[n]).

Now array B contains computed values of f(1),..., f(n). Sum up its cells to end
the algorithm.

Algorithm M can be encoded in pseudocode as it is shown in Listing 1.

Note that (similarly to the sieve of Eratosthenes) instead of the continuous array
of length x one can manipulate with the set of arrays of length Q(y/z). Inner cycles
can be run independently of the order; they can be paralleled easily. Also one can
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compute several easily-computable functions simultaneously with a slight modification
of Algorithm M.

Lemma 2. If f is an easily-computable multiplicative function then Algorithm M
runs in time O(z'7¢).

Proof. The description of Algorithm M shows that its running time is asymp-
totically lesser than

LD M D R YL S

p<yx a<logz/logp p<Vz Va<p<z

2. The fast summation.

Definition 2. We say that function f sums up with the deceleration a, if func-
tion F(x) =", -, f(x) can be computed in O(x**¢) time.

Denote the deceleration of f as dec f. Notation dec f = a means exactly that
there exists a method to sum up function f with the deceleration a (not necessarily
there is no faster method).

Example 4. Lemma 2 shows that any easily-computable multiplicative function
sums up with the deceleration 1.

Example 5. Function f(n) = n*, k € Z,, sums up in time O(1), because there
is an explicit formula for F'(z) using Bernoulli numbers. Thus its deceleration is equal
to 0. Note that Dirichlet series of f is ((s — k), including case ((s) when k = 0.

One can check that the same can be said about f(n) = x(n)n*, where x is an
arbitrary multiplicative character modulo m. We just split F(x) into m sums of
powers of the elements of arithmetic progressions. In this case Dirichlet series equals
to L(s — k, x).

Example 6. The characteristic function of k-th powers, k € N, sums up in O(1)
trivially, so its deceleration equals to 0. Dirichlet series of such function is {(ks).

Consider now f such that f(n*) = x(n) and f(n) = 0 otherwise, where y is a
multiplicative character. Then

= L(ks, x).

oofn
2

Such function f also sums up in O(1), because F(z) = >, - ,1/x x(n) (see Example
5). B

Generally, if function f has Dirichlet series F(s) and function g has Dirichlet
series F(ks) then dec g = (dec f)/k.

Example 7. Consider Mertens function M (z) := >, . p(n). In [3] an algorithm
of computation of M(x) is proposed with time complexity O(z%/3 log'/? log x) and
memory consumption O(z/3 log?/ log x). We obtain dec u = 2/3.

Note that Dirichlet series of p equals to 1/¢(s).

One can see that a function py, such that ug(n*) = p(n) and uy(n) = 0 otherwise
sums up with the deceleration 2/(3k). Its Dirichlet series is 1/¢(ks).



Parity of the number of primes and sublinear summations 109

Example 8. In [8] an algorithm of computation of Th(x) = >, .. 72(n) in
O(m1/3+5) time is described. Another algorithm with the same complexity may be
found in [7], accompanied with detailed account and pseudocode implementation.

Thus decmy = 1/3.

Theorem 3. Let f and g be two easily-computable multiplicative functions, which
sums up with decelerations a := dec f and b := decg such that a + b < 2. Then
h = f % g sums up with the deceleration

1—ab
dech = Cp—
Proof. Let
F(z):=Y f(n), Gx):=Y gn), H(x):=> hn).

By definition of the Dirichlet convolution

H@) =" Y fld)g(d) = > f(di)g(da).

n<z dida=n dido<zx
Rearrange items:

PR DD DD DI

didy<z dy<z¢ di<z/d> di<z®

da<wx/dy do<z'™¢ do<zl™c

where an absolute constant ¢ € (0,1) will be defined below in (2). Now

x x , e
H@) = Y (@G (3)+ Y g@F (5) - Fa)GE ™). (1)
d<z° d<zl-e
As far as we can calculate f(1),..., f(z¢) with Algorithm M in O(x¢"¢) steps, we can

compute the first sum at the right side of (1) in time

O($c+e) + Z 0 (g)b+s < xb-{—g Z d—b—a <

d<zc d<zc
< xb+€xc(lfb7€) < xc+b(17c)+5.

Similarly the second sum can be computed in O(x!=¢+t2°*¢) operations. The last item
of (1) can be computed in time O(zo¢te 4 zb(1=e)+e),
It remains to select ¢ such that ¢+ b(1 —¢) = 1 — ¢+ ac. Thus
1-b

- - 7 2
CTo T a (2)

which implies the deceleration (1 —ab)/(2 —a —b).

Example 9. Function oj(n) maps n into the sum of k-th powers of its divisors.
Thus ox(n) = > g, d*, which is the Dirichlet convolution of f(n) = n* and 1(n) = 1.
So Example 5 and Theorem 3 shows that decoy, = 1/2.
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Example 10. Consider r(n) = #{(k,l) | k* +1?> = n}. It is well-known that
r(n)/4 is a multiplicative function, and {R(z) := Y, ., r(n)/4 is the number of
integer points in the first quadrant of the circle of radius Vx. Then R(x) can be
naturally computed in O(z'/?) steps, so decr = 1/2.

Dirichlet series of r(n)/4 equals to ((s)L(s,x4), where x4 is the single non-
principal character modulo 4. This representation shows that r(-)/4 = x4 * 1. Thus
Example 5 together with Theorem 3 gives us another way to estimate the deceleration
of r.

Example 11. By Mébius inversion formula for the totient function we have

p(n) = du(n/d).
dln

This representation implies that decp = 3/4 (see Example 7 for decp). Jordan’s
totient functions have the same deceleration, because

Te(n) =" d*u(n/d).
d|n

Theorem 4. Let f be an easily-computable multiplicative function. Consider

fk = f*--~*f.
S

k factors
Then 1—d
dec fr, =1— —Tecf.

Proof. Follows from iterative applications of Lemma 1 and Theorem 3 and from
the identities

1—a? _ 1—a
2—2a 27
l—alk+a—-1)/k 1—a
2—1+(1-a)/k—a E+1
Example 12. For the multidimensional divisor function 7 representations
T2k = T2%...%To,
—_—
k factors
Tok+1 — T2*...*7'2*1
~—_———
k factors

imply that by Example 8 and Theorem 4 function 795 sums up with the deceleration
1—2/(3k), and 79,41 with the deceleration 1 —2/(3k + 2).

In other words
1—4 :
dec T, = /(3k), k %S even, 5
1—-4/(3k+1), Fkisodd.
Considering
T_j)p = k%[,
—

k factors

we obtain by Example 7 and Theorem 4 that decT_j =1 —1/(3k).
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Theorems 3 and 4 cannot provide the deceleration lower than 1/2 even in the best
case. To overcome this barrier we should develop better instruments.

Theorem 5. Let f and g be two easily-computable multiplicative functions, which
sums up with decelerations a := dec f and b := decg such that a +b < 2. Let

h(n) == Z f(d1)g(d2). (4)
ditdh2=n
Then h sums up with the deceleration

1—ab

dech = .
T A ket (1— bk

Proof. Following the outline of the proof of Theorem 3 we obtain identity

H(z)= Y f(d)G<kW>+ 3 g<d)p<kW>_

d<zc/F1 d<z(1=e)/k2
_ F(xC/kl)G(x(l—C)/kz)_

Thus we need y(x) operations to calculate H(z), where

e ¥ @) G

d<ze/F1 d<z(l=c)/k2
+xac/k1 +$b(1_c)/k2 <
< 0/ k2t (1=bk1/kz2)-c/ky + xa/kl+(1*a’€2/k1)'(1*0)/k2+
+ mac/kl + xb(l—c)/kz'
Substitution
(1— b)ky

Tkt (1-b)k

completes the proof.
In terms of Dirichlet series identity (4) means that

H(S) = ]—"(kls)g(kgs)

where

ns '’ ns

n=1

One can prove (similarly to Lemma 1) that convolutions of form (4) save a prop-
erty of the easily-computability.

Example 13. Function 75 sums up with the deceleration 7/15, because

75 (n) = Y u(d)r2(n/d*).

d?|n
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Example 14. As soon as
75 (n) =Y p(d)7a(n/d?),
d?|n

we obtain dec7s = 5/9.

The discussion in Examples 5, 6, 7 leads to the following general statement.

Theorem 6. Let f be a multiplicative function such that

My

S0 T s T 2ol — ) 5)
n=1 1

n

m= m=1

where each of zn, is either ¢ or L(-,x), My, Ma, km,lm,nm € N. Then [ sums up in
sublinear time: its deceleration is strictly less than 1.

Theorem 6 clearly shows that the concept of fast summation can be easily gener-
alized over various quadratic fields. Following theorem is an example of such kind of
results.

Theorem 7. Consider the ring of Gaussian integers Z[i]. Let
1 Z[’L] — 7

be a k-dimensional divisor function on this ring. Let

Tp(z) = Y t(a),

N(o)<z
where N(a +ib) = a® + b%. Then Ty(z) can be computed in sublinear time.

Proof. It is well-known that

1 tr (@) _ Ck(s)Lk(s’X4) = i i

4 a€Z[i] N (Ol) e

where

f) = > tla).

N(a)=n
But by Theorem 4
decyg*---*xxa=1-1/F.
—_—
k factors

By (3) we obtain that for even k

1= (1—1/k)(1—4/(3k)) 4
decf= 1/k + 4/(3k) =17
and for odd &
decf:1—(1—1/k)(1—4/(3/<;+1)) . 4

1/k +4/(3k +1) CTk+1
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3. Proof of the Theorem 2. The proof follows the outline of the proof of [8,
Th. 1.2], but uses improved bound for the complexity of the computation of

T3 (z) =Y 75(n).

n<x

Proof. Trivially we have

> () =T5(b) - T5(a—1).
a<n<b
As soon as 73 (n) = 2¢(™), where w(n) = >_pln 1, all summands in the left side are
divisible by 4, beside those, which corresponds to n = p?. Moving to the congruence
modulo 4, we obtain

O(log )
2 Y % {p e {al/f',bl/ﬂ}} = T5(b) —Ti(a—1) (mod 4).
j=1

As far as @ > z and b —a < O(x!/*¢), then for j > 1 interval [a'/7,b'/7] con-
tains O(z¢) elements; thus all such summands can be computed in O(z“"¢) steps
using AKS primality test [1]. The right side of the congruence is computable in
O(27/15+¢) operations due to Example 13.

The discussion above shows that the desired quantity

T3 (b) = T3(a—1)

#{pe [a,b]}z 5 —

O(log z)

_ Z #{pe[al/ﬂbl/q} (mod 2)

max(c,7/15)+5) steps.

can be computed in O(x

CoNCLUSION. Further development of algorithms of the sublinear summation
(e. g., summation of p in arithmetic progressions) will lead to the generalization of
Theorem 6 over broader classes of functions. Also one can investigate summation of
f such that its Dirichlet series is infinite, but sparse product of form (5).
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