
ISSN 2304-1579.Visnyk Odesk.Nats.Univers.Mat. i Mekh.–2013 .–V. 18,Is.1(17).–P.104–114

Mathematical Subject Classification: 11N25, 11S40
UDC 511

A. V. Lelechenko

I. I. Mechnikov Odessa National University

PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL

AND ALGORITHMS OF THE SUBLINEAR SUMMATION

[a, b] ⊂ [x, 2x] b−a ≤ x1/2+c c ∈ (0, 1/2]

O(xmax(c,7/15)+ε)

[a, b] ⊂ [x, 2x] b − a ≤ x1/2+c

c ∈ (0, 1/2] O(xmax(c,7/15)+ε)

Lelechenko A. V. Parity of the number of primes in a given interval and

algorithms of the sublinear summation. An algorithm to determine the parity of

the number of primes in an interval [a, b] ⊂ [x, 2x], where b − a ≤ x1/2+c and c ∈ (0, 1/2],

in O(xmax(c,7/15)+ε) steps is proposed. The algorithm is based on methods of the sublinear

summation, which the primary part of the paper is devoted to. A theorem on the sublinear

summation of a wide class of multiplicative functions is proven.

Key words: computational number theory, prime-counting function, summation of multi-

plicative functions, sublinear summation.

How many operations are required to find any prime p > x (not
necessary the closest) for given x?

A direct approach is to apply AKS primality test [1], which was improved by
Lenstra and Pomerance [5] to run in time O(log6+ε x), on consecutive integers starting
with x. Such method leads to an algorithm with average complexity O(log7+ε x),
because in average we should run AKS log x times before a next prime encounters.

But in the worst case available estimates of the complexity are much bigger; they
depend on upper bounds of the gaps between primes. The best currently known result
on the gaps between primes is by Baker, Harman and Pintz: for large enough x there
exists at least one prime in the interval

[x, x+ x0.525+ε].

c© A. V. Lelechenko, 2013

Parity of the number of primes and sublinear summations 105

Thus we obtain that the worst case of an algorithm may need up to

O(x0.525+ε)≫ x1/2

operations.
One can propose another algorithm, which is distinct from the pointwise testing.

Suppose that there is a test, which allows to determine whether a given interval
[a, b] ⊂ [x, 2x] contains at least one prime in A(x) operations. Then (starting with
interval [x, 2x]) we are able to find a prime p > x in A(x) log x operations using a
dichotomy.

A test to determine whether a given interval contains at least one prime can be
built atop Lagarias—Odlyzko formula for π(x) [6], which provides an algorithm with
O(x1/2+ε)≫ x1/2 complexity. See [8] for more detailed discussion.

In [8] Tao, Croot and Helfgott offer a hypothesis that there exists an algorithm
to compute π(x) in O(x1/2−c+ε) operations, where c > 0 is some absolute constant.
This implies that a prime p > x can be found in O(x1/2−c+ε)≪ x1/2 steps. Authors
prove the following weaker theorem [8, Th. 1.2].

Theorem 1 (Tao, Croot and Helfgott, 2012). There exists an absolute con-
stant c > 0, such that one can (deterministically) decide whether a given interval
[a, b] in [x, 2x] of length at most x1/2+c contains an odd number of primes in time
O(x1/2−c+o(1)).

The aim of our paper is to prove the following result.

Theorem 2. Let [a, b] ⊂ [x, 2x], b − a ≤ x1/2+c, c is arbitrarily constant such
that 0 < c ≤ 1/2. Then a parity of #{p ∈ [a, b]} can be determined in time

O(xmax(c,7/15)+ε).

1. The general summation algorithm. Consider the summation
∑

n≤x

f(x),

where f is a multiplicative function, from the complexity’s point of view.

Generally speaking, a property of the multiplicativity does not impose significant
restrictions on pointwise computational complexity. Multiplicative functions can be
both easily-computable (e. g., f(n) = nk for every k) and hardly-computable: e. g.,

f(pα) =

{

2, if there are pα consecutive zeroes in digits of π
1, otherwise.

Luckily the vast majority of multiplicative functions, which have applications in
the number theory, are relatively easily-computable.

Definition 1. A multiplicative function f is called easily-computable, if for any
prime p, integer α > 0 and real ε > 0 the value of f(pα) can be computed in time
O(pεαm) for some absolute constant m, depending only on f .

106 A. V. Lelechenko

Example 1. The (two-dimensional) divisor function τ2(p
α) = α + 1, the (two-

dimensional) unitary divisor function τ∗2 (p
α) = 2, the totient function ϕ(pα) = pα−

−pα−1, the sum-of-divisors function σ(pα) = (pα+1
− 1)/(p− 1), the Möbius function

µ(pα) = [α < 2](−1)α are examples of easily-computable multiplicative functions for
any m > 0.

Example 2. Let a(n) be the number of non-isomorphic abelian groups of order
n. Then a(pα) = P (α), where P (n) is a number of partitions of n. It is known [4,
Note I.19], that P (n) is computable in O(n3/2) operations. Thus function a(n) is an
easily-computable multiplicative function with m = 3/2.

The number of rings of n elements is known to be multiplicative, but no explicit
formula exists currently for α > 4. See OEIS [9] sequences A027623, A037289 and
A037290 for further discussions.

Example 3. The Ramanujan tau function τR is a rare example of an important
number-theoretical multiplicative function, which is not easily-computable. The best
known result is due to Charles [2]: a value of τR(p

α) can be computed by p and α in
O(p3/4+ε + α) operations.

Surely pointwise product and sum of easily-computable functions are also easily-
computable ones. The following statement shows that the Dirichlet convolution

(f ⋆ g)(n) =
∑

d|n

f(d)g(n/d)

also saves a property of easily-computability.

Lemma 1. If f and g are easily-computable multiplicative functions, then

h := f ⋆ g

is also easily-computable.

Proof. By definition of easily-computable functions there exists m such that
f(pα) and g(pα) can be both computed in O(pεαm) time.

By definition of the Dirichlet convolution

h(pα) =
α∑

a=0

f(pa)g(pα−a).

This means that computation of h(pα) requires

α∑

a=0

O(pεam + pε(α− a)m)≪ pεαm+1

operations.

Firstly, consider a trivial summation algorithm: calculate values of function point-
wise and sum them up. For an easily-computable multiplicative function the major-
ity of time will be spend on the factoring numbers from 1 to x one-by-one. But no

Parity of the number of primes and sublinear summations 107

sum(ff, x) =
Σ = 0
A← {k}xk=1

B ← {1}xk=1

for prime p ≤ √x
F ← {ff(p, α)}log x/ log pα=1

for k ← p, 2p, . . . , ⌊x/p⌋p
α← max{a | pa|k}
A[k]← A[k]/pα

B[k]← B[k] · F [α]
for n← 1, . . . , x

if A[n] 6= 1⇒ B[n]← B[n] · ff(n, 1)
for n← 1, . . . , x

Σ← Σ+B[n]
return Σ

Listing 1: Pseudocode of Algorithm M. Here ff(p, α) stands for the routine
that effectively computes f(pα).

polynomial-time factoring algorithm is currently known; the best algorithms (e. g.,
GNFS [10]) have complexities about

exp
(

(c+ ε)(log n)
1

3 (log log n)
2

3

)

,

which is very expensive.

We propose a faster general method like the sieve of Eratosthenes. We shall refer
to it as to Algorithm M.

Algorithm M. Consider an array A of length x, filled with integers from 1 to x,
and an array B of the same length, filled with 1. Values of f(n) will be computed in
the corresponding cells of B.

For each prime p ≤ √x cache values of f(p), f(p2), . . . , f(p⌊log x/ log p⌋) and take
integers

k = p, 2p, 3p, . . . , ⌊x/p⌋p
one-by-one; for each of them determine α such that pα ‖ k and replace A[k] by A[k]/pα

and B[k] by B[k] · f(pα).
After such steps cells of A contain 1 or primes p >

√
x. So for each n such

that A[n] 6= 1 multiply B[n] by f(A[n]).
Now array B contains computed values of f(1), . . . , f(n). Sum up its cells to end

the algorithm.

Algorithm M can be encoded in pseudocode as it is shown in Listing 1.
Note that (similarly to the sieve of Eratosthenes) instead of the continuous array

of length x one can manipulate with the set of arrays of length Ω(
√
x). Inner cycles

can be run independently of the order; they can be paralleled easily. Also one can

108 A. V. Lelechenko

compute several easily-computable functions simultaneously with a slight modification
of Algorithm M.

Lemma 2. If f is an easily-computable multiplicative function then Algorithm M
runs in time O(x1+ε).

Proof. The description of Algorithm M shows that its running time is asymp-
totically lesser than

∑

p≤
√
x

pε
∑

α≤log x/ log p

αm +
∑

p≤
√
x

x

p
+

∑
√
x<p≤x

pε ≪ x1+ε.

2. The fast summation.

Definition 2. We say that function f sums up with the deceleration a, if func-
tion F (x) =

∑
n≤x f(x) can be computed in O(xa+ε) time.

Denote the deceleration of f as dec f . Notation dec f = a means exactly that
there exists a method to sum up function f with the deceleration a (not necessarily
there is no faster method).

Example 4. Lemma 2 shows that any easily-computable multiplicative function
sums up with the deceleration 1.

Example 5. Function f(n) = nk, k ∈ Z+, sums up in time O(1), because there
is an explicit formula for F (x) using Bernoulli numbers. Thus its deceleration is equal
to 0. Note that Dirichlet series of f is ζ(s− k), including case ζ(s) when k = 0.

One can check that the same can be said about f(n) = χ(n)nk, where χ is an
arbitrary multiplicative character modulo m. We just split F (x) into m sums of
powers of the elements of arithmetic progressions. In this case Dirichlet series equals
to L(s− k, χ).

Example 6. The characteristic function of k-th powers, k ∈ N, sums up in O(1)
trivially, so its deceleration equals to 0. Dirichlet series of such function is ζ(ks).

Consider now f such that f(nk) = χ(n) and f(n) = 0 otherwise, where χ is a
multiplicative character. Then

∞∑

n=1

f(n)

ns
= L(ks, χ).

Such function f also sums up in O(1), because F (x) =
∑

n≤x1/k χ(n) (see Example
5).

Generally, if function f has Dirichlet series F(s) and function g has Dirichlet
series F(ks) then dec g = (dec f)/k.

Example 7. Consider Mertens function M(x) :=
∑

n≤x µ(n). In [3] an algorithm

of computation of M(x) is proposed with time complexity O(x2/3 log1/3 log x) and

memory consumption O(x1/3 log2/3 log x). We obtain decµ = 2/3.
Note that Dirichlet series of µ equals to 1/ζ(s).
One can see that a function µk such that µk(n

k) = µ(n) and µk(n) = 0 otherwise
sums up with the deceleration 2/(3k). Its Dirichlet series is 1/ζ(ks).

Parity of the number of primes and sublinear summations 109

Example 8. In [8] an algorithm of computation of T2(x) :=
∑

n≤x τ2(n) in

O(x1/3+ε) time is described. Another algorithm with the same complexity may be
found in [7], accompanied with detailed account and pseudocode implementation.
Thus dec τ2 = 1/3.

Theorem 3. Let f and g be two easily-computable multiplicative functions, which

sums up with decelerations a := dec f and b := dec g such that a + b < 2. Then

h := f ⋆ g sums up with the deceleration

dech =
1− ab

2− a− b
.

Proof. Let

F (x) :=
∑

n≤x

f(n), G(x) :=
∑

n≤x

g(n), H(x) :=
∑

n≤x

h(n).

By definition of the Dirichlet convolution

H(x) =
∑

n≤x

∑

d1d2=n

f(d1)g(d2) =
∑

d1d2≤x

f(d1)g(d2).

Rearrange items:
∑

d1d2≤x

=
∑

d1≤xc

d2≤x/d1

+
∑

d1≤x/d2

d2≤x1−c

−

∑

d1≤xc

d2≤x1−c

,

where an absolute constant c ∈ (0, 1) will be defined below in (2). Now

H(x) =
∑

d≤xc

f(d)G
(x

d

)

+
∑

d≤x1−c

g(d)F
(x

d

)

− F (xc)G(x1−c). (1)

As far as we can calculate f(1), . . . , f(xc) with Algorithm M in O(xc+ε) steps, we can
compute the first sum at the right side of (1) in time

O(xc+ε) +
∑

d≤xc

O
(x

d

)b+ε

≪ xb+ε
∑

d≤xc

d−b−ε
≪

≪ xb+εxc(1−b−ε)
≪ xc+b(1−c)+ε.

Similarly the second sum can be computed in O(x1−c+ac+ε) operations. The last item
of (1) can be computed in time O(xac+ε + xb(1−c)+ε).

It remains to select c such that c+ b(1− c) = 1− c+ ac. Thus

c =
1− b

2− a− b
, (2)

which implies the deceleration (1− ab)/(2− a− b).

Example 9. Function σk(n) maps n into the sum of k-th powers of its divisors.
Thus σk(n) =

∑

d|n d
k, which is the Dirichlet convolution of f(n) = nk and 1(n) = 1.

So Example 5 and Theorem 3 shows that decσk = 1/2.

110 A. V. Lelechenko

Example 10. Consider r(n) = #{(k, l) | k2 + l2 = n}. It is well-known that
r(n)/4 is a multiplicative function, and 1

4
R(x) :=

∑

n≤x r(n)/4 is the number of

integer points in the first quadrant of the circle of radius
√
x. Then R(x) can be

naturally computed in O(x1/2) steps, so dec r = 1/2.
Dirichlet series of r(n)/4 equals to ζ(s)L(s, χ4), where χ4 is the single non-

principal character modulo 4. This representation shows that r(·)/4 = χ4 ⋆ 1. Thus
Example 5 together with Theorem 3 gives us another way to estimate the deceleration
of r.

Example 11. By Möbius inversion formula for the totient function we have

ϕ(n) =
∑

d|n

dµ(n/d).

This representation implies that decϕ = 3/4 (see Example 7 for decµ). Jordan’s
totient functions have the same deceleration, because

Jk(n) =
∑

d|n

dkµ(n/d).

Theorem 4. Let f be an easily-computable multiplicative function. Consider

fk := f ⋆ · · · ⋆ f
︸ ︷︷ ︸

k factors

.

Then

dec fk = 1− 1− dec f

k
.

Proof. Follows from iterative applications of Lemma 1 and Theorem 3 and from
the identities

1− a2

2− 2a
= 1− 1− a

2
,

1− a(k + a− 1)/k

2− 1 + (1− a)/k − a
= 1− 1− a

k + 1
.

Example 12. For the multidimensional divisor function τk representations

τ2k = τ2 ⋆ . . . ⋆ τ2
︸ ︷︷ ︸

k factors

,

τ2k+1 = τ2 ⋆ . . . ⋆ τ2
︸ ︷︷ ︸

k factors

⋆1

imply that by Example 8 and Theorem 4 function τ2k sums up with the deceleration
1− 2/(3k), and τ2k+1 with the deceleration 1− 2/(3k + 2).

In other words

dec τk =

{

1− 4/(3k), k is even,

1− 4/(3k + 1), k is odd.
(3)

Considering
τ−k = µ ⋆ · · · ⋆ µ

︸ ︷︷ ︸

k factors

,

we obtain by Example 7 and Theorem 4 that dec τ−k = 1− 1/(3k).

Parity of the number of primes and sublinear summations 111

Theorems 3 and 4 cannot provide the deceleration lower than 1/2 even in the best
case. To overcome this barrier we should develop better instruments.

Theorem 5. Let f and g be two easily-computable multiplicative functions, which

sums up with decelerations a := dec f and b := dec g such that a+ b < 2. Let

h(n) :=
∑

d
k1
1 d

k2
2 =n

f(d1)g(d2). (4)

Then h sums up with the deceleration

dech =
1− ab

(1− a)k2 + (1− b)k1
.

Proof. Following the outline of the proof of Theorem 3 we obtain identity

H(x) =
∑

d≤xc/k1

f(d)G

(

k2

√

x/dk1

)

+
∑

d≤x(1−c)/k2

g(d)F

(

k1

√

x/dk2

)

−

− F (xc/k1)G(x(1−c)/k2).

Thus we need y(x) operations to calculate H(x), where

y(x)≪
∑

d≤xc/k1

(x

dk1

)b/k2

+
∑

d≤x(1−c)/k2

(x

dk2

)a/k1

+

+ xac/k1 + xb(1−c)/k2 ≪

≪ xb/k2+(1−bk1/k2)·c/k1 + xa/k1+(1−ak2/k1)·(1−c)/k2+

+ xac/k1 + xb(1−c)/k2 .

Substitution

c =
(1− b)k1

(1− a)k2 + (1− b)k1

completes the proof.
In terms of Dirichlet series identity (4) means that

H(s) = F(k1s)G(k2s)

where

F(s) =
∞
∑

n=1

f(n)

ns
, G(s) =

∞
∑

n=1

g(n)

ns
, H(s) =

∞
∑

n=1

h(n)

ns
.

One can prove (similarly to Lemma 1) that convolutions of form (4) save a prop-
erty of the easily-computability.

Example 13. Function τ∗2 sums up with the deceleration 7/15, because

τ∗2 (n) =
∑

d2|n

µ(d)τ2(n/d
2).

112 A. V. Lelechenko

Example 14. As soon as

τ22 (n) =
∑

d2|n

µ(d)τ4(n/d
2),

we obtain dec τ22 = 5/9.

The discussion in Examples 5, 6, 7 leads to the following general statement.

Theorem 6. Let f be a multiplicative function such that

∞∑

n=1

f(n)

ns
=

M1∏

m=1

ζ(kms)±1
M2∏

m=1

zm(lms− nm), (5)

where each of zm is either ζ or L(·, χ), M1, M2, km, lm, nm ∈ N. Then f sums up in

sublinear time: its deceleration is strictly less than 1.

Theorem 6 clearly shows that the concept of fast summation can be easily gener-
alized over various quadratic fields. Following theorem is an example of such kind of
results.

Theorem 7. Consider the ring of Gaussian integers Z[i]. Let

tk : Z[i]→ Z

be a k-dimensional divisor function on this ring. Let

Tk(x) :=
∑

N(α)≤x

tk(α),

where N(a+ ib) = a2 + b2. Then Tk(x) can be computed in sublinear time.

Proof. It is well-known that

1

4

∑

α∈Z[i]

tk(α)

Ns(α)
= ζk(s)Lk(s, χ4) =

∞∑

n=1

f(n)

ns
,

where
f(n) :=

∑

N(α)=n

tk(α).

But by Theorem 4
decχ4 ⋆ · · · ⋆ χ4

︸ ︷︷ ︸

k factors

= 1− 1/k.

By (3) we obtain that for even k

dec f =
1− (1− 1/k)

(
1− 4/(3k)

)

1/k + 4/(3k)
= 1−

4

7k

and for odd k

dec f =
1− (1− 1/k)

(
1− 4/(3k + 1)

)

1/k + 4/(3k + 1)
= 1−

4

7k + 1
.

Parity of the number of primes and sublinear summations 113

3. Proof of the Theorem 2. The proof follows the outline of the proof of [8,
Th. 1.2], but uses improved bound for the complexity of the computation of

T ∗
2 (x) :=

∑

n≤x

τ∗2 (n).

Proof. Trivially we have

∑

a≤n≤b

τ∗2 (n) = T ∗
2 (b)− T ∗

2 (a− 1).

As soon as τ∗2 (n) = 2ω(n), where ω(n) =
∑

p|n 1, all summands in the left side are

divisible by 4, beside those, which corresponds to n = pj . Moving to the congruence
modulo 4, we obtain

2

O(log x)
∑

j=1

#
{

p ∈
[

a1/j , b1/j
]}

≡ T ∗
2 (b)− T ∗

2 (a− 1) (mod 4).

As far as a > x and b − a ≤ O(x1/2+c), then for j > 1 interval
[

a1/j , b1/j
]

con-
tains O(xc) elements; thus all such summands can be computed in O(xc+ε) steps
using AKS primality test [1]. The right side of the congruence is computable in
O(x7/15+ε) operations due to Example 13.

The discussion above shows that the desired quantity

#
{

p ∈ [a, b]
}

≡
T ∗
2 (b)− T ∗

2 (a− 1)

2
−

−

O(log x)
∑

j=2

#
{

p ∈
[

a1/j , b1/j
]}

(mod 2)

can be computed in O(xmax(c,7/15)+ε) steps.

Further development of algorithms of the sublinear summation
(e. g., summation of µ in arithmetic progressions) will lead to the generalization of
Theorem 6 over broader classes of functions. Also one can investigate summation of
f such that its Dirichlet series is infinite, but sparse product of form (5).

1. Agrawal M. PRIMES is in P [text] / M. Agrawal, N. Kayal, N. Saxena // Annals of
Mathematics. – 2004. – Vol. 160, no. 2. – P. 781–793.

2. Charles D. X. Computing the Ramanujan tau function [text] / D. X. Charles // The
Ramanujan Journal. – 2006. – Vol. 11, no. 2. – P. 221–224.

3. Deléglise M. Computing the summation of the Möbius function [yext] / M. Deléglise,
J. Rivat // Exp. Math. – 1996. – Vol. 5, no. 4. – P. 291–295.

4. Flajolet P. Analytic combinatorics [text] / P. Flajolet, R. Sedgewick. – [S. l.] : Cam-
bridge University Press, 2009. – 824 p.

114 A. V. Lelechenko

5. Lenstra Jr. H. W. Primality testing with Gaussian peri-
ods H. W. Lenstra Jr., C. Pomerance. – 2011. – nov. – URL:
http://www.math.dartmouth.edu/ carlp/aks041411.pdf.

6. Lagarias J. C. Computing π(x): An analytic method [text] / J. C. Lagarias,
A. M. Odlyzko // Journal of Algorithms. – 1987. – Vol. 8, no. 2. – P. 173–191.

7. Sladkey R. A Successive approximation algorithm for computing the divisor summa-
tory function [text] / R. Sladkey. – 2012. – URL: http://arxiv.org/pdf/1206.3369v1.

8. Tao T. Deterministic methods to find primes [text] / T. Tao, E. Croot III, H. Helfgott //
Math. Comp. – 2012. – Vol. 81, no. 278. – P. 1233–1246.

9. The on-line encyclopedia of integer sequences [text] / Ed. by N. J. A. Sloane.
– [S. l. : s. n.]. – URL: http://oeis.org.

10. The development of the number field sieve [text] / Ed. by A. K. Lenstra,
H. W. Lenstra. – [S. l.] : Springer Verlag, 1993. – Vol. 1554 of Lecture Notes in Mathe-
matics.

