Mathematical Subject Classification: 11N25, 11S40 UDC 511

A. V. Lelechenko

I. I. Mechnikov Odessa National University

PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Лелеченко А. В. Парність кількості простих чисел на заданному інтервалі та алгоритми сублінійного підсумовування. Пропонується алгоритм визначення парності кількості простих чисел на $[a,b]\subset [x,2x]$, де $b-a\leq x^{1/2+c}$ та $c\in (0,1/2]$, за $O(x^{\max(c,7/15)+\varepsilon})$ операцій. Алгоритм базується на сублінійних методах підсумовування, розробка котрих становить основну частину статті. Доведено теорему щодо сублінійного підсумовування широкого классу мультиплікативних функцій.

Ключові слова: алгоритмічна теорія чисел, функція розподілу простих чисел, підсумовування мультиплікативних функцій, сублінійне підсумовування.

Лелеченко А. В. Четность количества простых чисел на заданном интервале и алгоритмы сублинейного суммирования. Предлагается алгоритм определения четности числа простых на отрезке $[a,b] \subset [x,2x]$, где $b-a \le x^{1/2+c}$ и $c \in (0,1/2]$, за $O(x^{\max(c,7/15)+\varepsilon})$ шагов. Алгоритм основан на сублинейных методах суммирования, разработка которых составляет основную часть статьи. Доказана теорема о сублинейном суммировании широкого класса мультипликативных функций.

Ключевые слова: вычислительная теория чисел, функция распределения простых чисел, суммирование мультипликативных функций, сублинейное суммирование.

Lelechenko A. V. Parity of the number of primes in a given interval and algorithms of the sublinear summation. An algorithm to determine the parity of the number of primes in an interval $[a,b] \subset [x,2x]$, where $b-a \le x^{1/2+c}$ and $c \in (0,1/2]$, in $O(x^{\max(c,7/15)+\varepsilon})$ steps is proposed. The algorithm is based on methods of the sublinear summation, which the primary part of the paper is devoted to. A theorem on the sublinear summation of a wide class of multiplicative functions is proven.

Key words: computational number theory, prime-counting function, summation of multiplicative functions, sublinear summation.

INTRODUCTION. How many operations are required to find any prime p > x (not necessary the closest) for given x?

A direct approach is to apply AKS primality test [1], which was improved by Lenstra and Pomerance [5] to run in time $O(\log^{6+\varepsilon} x)$, on consecutive integers starting with x. Such method leads to an algorithm with average complexity $O(\log^{7+\varepsilon} x)$, because in average we should run AKS $\log x$ times before a next prime encounters.

But in the worst case available estimates of the complexity are much bigger; they depend on upper bounds of the gaps between primes. The best currently known result on the gaps between primes is by Baker, Harman and Pintz: for large enough x there exists at least one prime in the interval

$$[x, x + x^{0.525 + \varepsilon}].$$

Thus we obtain that the worst case of an algorithm may need up to

$$O(x^{0.525+\varepsilon}) \gg x^{1/2}$$

operations.

One can propose another algorithm, which is distinct from the pointwise testing. Suppose that there is a test, which allows to determine whether a given interval $[a,b] \subset [x,2x]$ contains at least one prime in A(x) operations. Then (starting with interval [x,2x]) we are able to find a prime p>x in $A(x)\log x$ operations using a dichotomy.

A test to determine whether a given interval contains at least one prime can be built atop Lagarias—Odlyzko formula for $\pi(x)$ [6], which provides an algorithm with $O(x^{1/2+\varepsilon}) \gg x^{1/2}$ complexity. See [8] for more detailed discussion.

In [8] Tao, Croot and Helfgott offer a hypothesis that there exists an algorithm to compute $\pi(x)$ in $O(x^{1/2-c+\varepsilon})$ operations, where c>0 is some absolute constant. This implies that a prime p>x can be found in $O(x^{1/2-c+\varepsilon}) \ll x^{1/2}$ steps. Authors prove the following weaker theorem [8, Th. 1.2].

Theorem 1 (Tao, Croot and Helfgott, 2012). There exists an absolute constant c > 0, such that one can (deterministically) decide whether a given interval [a,b] in [x,2x] of length at most $x^{1/2+c}$ contains an odd number of primes in time $O(x^{1/2-c+o(1)})$.

The aim of our paper is to prove the following result.

Theorem 2. Let $[a,b] \subset [x,2x]$, $b-a \leq x^{1/2+c}$, c is arbitrarily constant such that $0 < c \leq 1/2$. Then a parity of $\#\{p \in [a,b]\}$ can be determined in time

$$O(x^{\max(c,7/15)+\varepsilon}).$$

MAIN RESULTS.

1. The general summation algorithm. Consider the summation

$$\sum_{n \le x} f(x),$$

where f is a multiplicative function, from the complexity's point of view.

Generally speaking, a property of the multiplicativity does not impose significant restrictions on pointwise computational complexity. Multiplicative functions can be both easily-computable (e. g., $f(n) = n^k$ for every k) and hardly-computable: e. g.,

$$f(p^{\alpha}) = \begin{cases} 2, & \text{if there are } p^{\alpha} \text{ consecutive zeroes in digits of } \pi \\ 1, & \text{otherwise.} \end{cases}$$

Luckily the vast majority of multiplicative functions, which have applications in the number theory, are relatively easily-computable.

Definition 1. A multiplicative function f is called easily-computable, if for any prime p, integer $\alpha > 0$ and real $\varepsilon > 0$ the value of $f(p^{\alpha})$ can be computed in time $O(p^{\varepsilon}\alpha^m)$ for some absolute constant m, depending only on f.

Example 1. The (two-dimensional) divisor function $\tau_2(p^{\alpha}) = \alpha + 1$, the (two-dimensional) unitary divisor function $\tau_2^*(p^{\alpha}) = 2$, the totient function $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$, the sum-of-divisors function $\sigma(p^{\alpha}) = (p^{\alpha+1}-1)/(p-1)$, the Möbius function $\mu(p^{\alpha}) = [\alpha < 2](-1)^{\alpha}$ are examples of easily-computable multiplicative functions for any m > 0.

Example 2. Let a(n) be the number of non-isomorphic abelian groups of order n. Then $a(p^{\alpha}) = P(\alpha)$, where P(n) is a number of partitions of n. It is known [4, Note I.19], that P(n) is computable in $O(n^{3/2})$ operations. Thus function a(n) is an easily-computable multiplicative function with m = 3/2.

The number of rings of n elements is known to be multiplicative, but no explicit formula exists currently for $\alpha \geqslant 4$. See OEIS [9] sequences A027623, A037289 and A037290 for further discussions.

Example 3. The Ramanujan tau function τ_R is a rare example of an important number-theoretical multiplicative function, which is not easily-computable. The best known result is due to Charles [2]: a value of $\tau_R(p^{\alpha})$ can be computed by p and α in $O(p^{3/4+\varepsilon}+\alpha)$ operations.

Surely pointwise product and sum of easily-computable functions are also easily-computable ones. The following statement shows that the Dirichlet convolution

$$(f \star g)(n) = \sum_{d|n} f(d)g(n/d)$$

also saves a property of easily-computability.

Lemma 1. If f and g are easily-computable multiplicative functions, then

$$h := f \star q$$

is also easily-computable.

Proof. By definition of easily-computable functions there exists m such that $f(p^{\alpha})$ and $g(p^{\alpha})$ can be both computed in $O(p^{\varepsilon}\alpha^m)$ time.

By definition of the Dirichlet convolution

$$h(p^{\alpha}) = \sum_{a=0}^{\alpha} f(p^a)g(p^{\alpha-a}).$$

This means that computation of $h(p^{\alpha})$ requires

$$\sum_{n=0}^{\alpha} O(p^{\varepsilon} a^m + p^{\varepsilon} (\alpha - a)^m) \ll p^{\varepsilon} \alpha^{m+1}$$

operations.

Firstly, consider a trivial summation algorithm: calculate values of function pointwise and sum them up. For an easily-computable multiplicative function the majority of time will be spend on the factoring numbers from 1 to x one-by-one. But no

$$\begin{aligned} sum(f\!f,x) &= \\ \Sigma &= 0 \\ A \leftarrow \{k\}_{k=1}^x \\ B \leftarrow \{1\}_{k=1}^x \end{aligned}$$
 for prime $p \leq \sqrt{x}$
$$F \leftarrow \{f\!f\!(p,\alpha)\}_{\alpha=1}^{\log x/\log p}$$
 for $k \leftarrow p, 2p, \dots, \lfloor x/p \rfloor p$
$$\alpha \leftarrow \max\{a \mid p^a \mid k\}$$

$$A[k] \leftarrow A[k]/p^\alpha$$

$$B[k] \leftarrow B[k] \cdot F[\alpha]$$
 for $n \leftarrow 1, \dots, x$ if $A[n] \neq 1 \Rightarrow B[n] \leftarrow B[n] \cdot f\!f\!(n,1)$ for $n \leftarrow 1, \dots, x$
$$\Sigma \leftarrow \Sigma + B[n]$$
 return Σ

Listing 1: Pseudocode of Algorithm M. Here $ff(p, \alpha)$ stands for the routine that effectively computes $f(p^{\alpha})$.

polynomial-time factoring algorithm is currently known; the best algorithms (e. g., GNFS [10]) have complexities about

$$\exp\left((c+\varepsilon)(\log n)^{\frac{1}{3}}(\log\log n)^{\frac{2}{3}}\right),$$

which is very expensive.

We propose a faster general method like the sieve of Eratosthenes. We shall refer to it as to $Algorithm\ M.$

Algorithm M. Consider an array A of length x, filled with integers from 1 to x, and an array B of the same length, filled with 1. Values of f(n) will be computed in the corresponding cells of B.

For each prime $p \leq \sqrt{x}$ cache values of $f(p), f(p^2), \ldots, f(p^{\lfloor \log x/\log p \rfloor})$ and take integers

$$k = p, 2p, 3p, \dots, \lfloor x/p \rfloor p$$

one-by-one; for each of them determine α such that $p^{\alpha} \parallel k$ and replace A[k] by $A[k]/p^{\alpha}$ and B[k] by $B[k] \cdot f(p^{\alpha})$.

After such steps cells of A contain 1 or primes $p > \sqrt{x}$. So for each n such that $A[n] \neq 1$ multiply B[n] by f(A[n]).

Now array B contains computed values of $f(1), \ldots, f(n)$. Sum up its cells to end the algorithm.

Algorithm M can be encoded in pseudocode as it is shown in Listing 1.

Note that (similarly to the sieve of Eratosthenes) instead of the continuous array of length x one can manipulate with the set of arrays of length $\Omega(\sqrt{x})$. Inner cycles can be run independently of the order; they can be paralleled easily. Also one can

compute several easily-computable functions simultaneously with a slight modification of Algorithm M.

Lemma 2. If f is an easily-computable multiplicative function then Algorithm M runs in time $O(x^{1+\varepsilon})$.

Proof. The description of Algorithm M shows that its running time is asymptotically lesser than

$$\sum_{p \le \sqrt{x}} p^{\varepsilon} \sum_{\alpha \le \log x / \log p} \alpha^m + \sum_{p \le \sqrt{x}} \frac{x}{p} + \sum_{\sqrt{x}$$

2. The fast summation.

Definition 2. We say that function f sums up with the deceleration a, if function $F(x) = \sum_{n \leq x} f(x)$ can be computed in $O(x^{a+\varepsilon})$ time.

Denote the deceleration of f as $\operatorname{dec} f$. Notation $\operatorname{dec} f = a$ means exactly that there exists a method to sum up function f with the deceleration a (not necessarily there is no faster method).

Example 4. Lemma 2 shows that any easily-computable multiplicative function sums up with the deceleration 1.

Example 5. Function $f(n) = n^k$, $k \in \mathbb{Z}_+$, sums up in time O(1), because there is an explicit formula for F(x) using Bernoulli numbers. Thus its deceleration is equal to 0. Note that Dirichlet series of f is $\zeta(s-k)$, including case $\zeta(s)$ when k=0.

One can check that the same can be said about $f(n) = \chi(n)n^k$, where χ is an arbitrary multiplicative character modulo m. We just split F(x) into m sums of powers of the elements of arithmetic progressions. In this case Dirichlet series equals to $L(s-k,\chi)$.

Example 6. The characteristic function of k-th powers, $k \in \mathbb{N}$, sums up in O(1) trivially, so its deceleration equals to 0. Dirichlet series of such function is $\zeta(ks)$.

Consider now f such that $f(n^k) = \chi(n)$ and f(n) = 0 otherwise, where χ is a multiplicative character. Then

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = L(ks, \chi).$$

Such function f also sums up in O(1), because $F(x) = \sum_{n \leq x^{1/k}} \chi(n)$ (see Example 5).

Generally, if function f has Dirichlet series $\mathcal{F}(s)$ and function g has Dirichlet series $\mathcal{F}(ks)$ then $\deg g = (\deg f)/k$.

Example 7. Consider Mertens function $M(x) := \sum_{n \le x} \mu(n)$. In [3] an algorithm of computation of M(x) is proposed with time complexity $O(x^{2/3} \log^{1/3} \log x)$ and memory consumption $O(x^{1/3} \log^{2/3} \log x)$. We obtain $\det \mu = 2/3$.

Note that Dirichlet series of μ equals to $1/\zeta(s)$.

One can see that a function μ_k such that $\mu_k(n^k) = \mu(n)$ and $\mu_k(n) = 0$ otherwise sums up with the deceleration 2/(3k). Its Dirichlet series is $1/\zeta(ks)$.

Example 8. In [8] an algorithm of computation of $T_2(x) := \sum_{n \leq x} \tau_2(n)$ in $O(x^{1/3+\varepsilon})$ time is described. Another algorithm with the same complexity may be found in [7], accompanied with detailed account and pseudocode implementation. Thus dec $\tau_2 = 1/3$.

Theorem 3. Let f and g be two easily-computable multiplicative functions, which sums up with decelerations $a := \operatorname{dec} f$ and $b := \operatorname{dec} g$ such that a + b < 2. Then $h := f \star g$ sums up with the deceleration

$$\det h = \frac{1 - ab}{2 - a - b}.$$

Proof. Let

$$F(x):=\sum_{n\leq x}f(n),\quad G(x):=\sum_{n\leq x}g(n),\quad H(x):=\sum_{n\leq x}h(n).$$

By definition of the Dirichlet convolution

$$H(x) = \sum_{n \le x} \sum_{d_1 d_2 = n} f(d_1)g(d_2) = \sum_{d_1 d_2 \le x} f(d_1)g(d_2).$$

Rearrange items:

$$\sum_{\substack{d_1d_2 \le x}} = \sum_{\substack{d_1 \le x^c \\ d_2 \le x/d_1}} + \sum_{\substack{d_1 \le x/d_2 \\ d_2 < x^{1-c}}} - \sum_{\substack{d_1 \le x^c \\ d_2 < x^{1-c}}},$$

where an absolute constant $c \in (0,1)$ will be defined below in (2). Now

$$H(x) = \sum_{d \le x^c} f(d)G\left(\frac{x}{d}\right) + \sum_{d \le x^{1-c}} g(d)F\left(\frac{x}{d}\right) - F(x^c)G(x^{1-c}). \tag{1}$$

As far as we can calculate $f(1), \ldots, f(x^c)$ with Algorithm M in $O(x^{c+\varepsilon})$ steps, we can compute the first sum at the right side of (1) in time

$$O(x^{c+\varepsilon}) + \sum_{d \le x^c} O\left(\frac{x}{d}\right)^{b+\varepsilon} \ll x^{b+\varepsilon} \sum_{d \le x^c} d^{-b-\varepsilon} \ll \\ \ll x^{b+\varepsilon} x^{c(1-b-\varepsilon)} \ll x^{c+b(1-c)+\varepsilon}.$$

Similarly the second sum can be computed in $O(x^{1-c+ac+\varepsilon})$ operations. The last item of (1) can be computed in time $O(x^{ac+\varepsilon} + x^{b(1-c)+\varepsilon})$.

It remains to select c such that c + b(1 - c) = 1 - c + ac. Thus

$$c = \frac{1-b}{2-a-b},\tag{2}$$

which implies the deceleration (1-ab)/(2-a-b).

Example 9. Function $\sigma_k(n)$ maps n into the sum of k-th powers of its divisors. Thus $\sigma_k(n) = \sum_{d|n} d^k$, which is the Dirichlet convolution of $f(n) = n^k$ and $\mathbf{1}(n) = 1$. So Example 5 and Theorem 3 shows that $\operatorname{dec} \sigma_k = 1/2$.

Example 10. Consider $r(n) = \#\{(k,l) \mid k^2 + l^2 = n\}$. It is well-known that r(n)/4 is a multiplicative function, and $\frac{1}{4}R(x) := \sum_{n \leq x} r(n)/4$ is the number of integer points in the first quadrant of the circle of radius \sqrt{x} . Then R(x) can be naturally computed in $O(x^{1/2})$ steps, so dec r = 1/2.

Dirichlet series of r(n)/4 equals to $\zeta(s)L(s,\chi_4)$, where χ_4 is the single non-principal character modulo 4. This representation shows that $r(\cdot)/4 = \chi_4 \star 1$. Thus Example 5 together with Theorem 3 gives us another way to estimate the deceleration of r.

Example 11. By Möbius inversion formula for the totient function we have

$$\varphi(n) = \sum_{d|n} d\mu(n/d).$$

This representation implies that $\deg \varphi = 3/4$ (see Example 7 for $\deg \mu$). Jordan's totient functions have the same deceleration, because

$$J_k(n) = \sum_{d|n} d^k \mu(n/d).$$

Theorem 4. Let f be an easily-computable multiplicative function. Consider

$$f_k := \underbrace{f \star \cdots \star f}_{k \ factors}.$$

Then

$$\det f_k = 1 - \frac{1 - \det f}{k}.$$

Proof. Follows from iterative applications of Lemma 1 and Theorem 3 and from the identities

$$\frac{1-a^2}{2-2a} = 1 - \frac{1-a}{2},$$
$$\frac{1-a(k+a-1)/k}{2-1+(1-a)/k-a} = 1 - \frac{1-a}{k+1}.$$

Example 12. For the multidimensional divisor function τ_k representations

$$\tau_{2k} = \underbrace{\tau_2 \star \ldots \star \tau_2}_{k \text{ factors}},$$

$$\tau_{2k+1} = \underbrace{\tau_2 \star \ldots \star \tau_2}_{k \text{ factors}} \star 1$$

imply that by Example 8 and Theorem 4 function τ_{2k} sums up with the deceleration 1 - 2/(3k), and τ_{2k+1} with the deceleration 1 - 2/(3k+2).

In other words

$$\det \tau_k = \begin{cases} 1 - 4/(3k), & k \text{ is even,} \\ 1 - 4/(3k+1), & k \text{ is odd.} \end{cases}$$
 (3)

Considering

$$\tau_{-k} = \underbrace{\mu \star \cdots \star \mu}_{k \text{ factors}},$$

we obtain by Example 7 and Theorem 4 that $\operatorname{dec} \tau_{-k} = 1 - 1/(3k)$.

Theorems 3 and 4 cannot provide the deceleration lower than 1/2 even in the best case. To overcome this barrier we should develop better instruments.

Theorem 5. Let f and g be two easily-computable multiplicative functions, which sums up with decelerations a := dec f and b := dec g such that a + b < 2. Let

$$h(n) := \sum_{d_1^{k_1} d_2^{k_2} = n} f(d_1)g(d_2). \tag{4}$$

Then h sums up with the deceleration

$$\operatorname{dec} h = \frac{1 - ab}{(1 - a)k_2 + (1 - b)k_1}.$$

Proof. Following the outline of the proof of Theorem 3 we obtain identity

$$H(x) = \sum_{d \le x^{c/k_1}} f(d)G\left(\sqrt[k_2]{x/d^{k_1}}\right) + \sum_{d \le x^{(1-c)/k_2}} g(d)F\left(\sqrt[k_1]{x/d^{k_2}}\right) - F(x^{c/k_1})G(x^{(1-c)/k_2}).$$

Thus we need y(x) operations to calculate H(x), where

$$y(x) \ll \sum_{d \leq x^{c/k_1}} \left(\frac{x}{d^{k_1}}\right)^{b/k_2} + \sum_{d \leq x^{(1-c)/k_2}} \left(\frac{x}{d^{k_2}}\right)^{a/k_1} +$$

$$+ x^{ac/k_1} + x^{b(1-c)/k_2} \ll$$

$$\ll x^{b/k_2 + (1-bk_1/k_2) \cdot c/k_1} + x^{a/k_1 + (1-ak_2/k_1) \cdot (1-c)/k_2} +$$

$$+ x^{ac/k_1} + x^{b(1-c)/k_2}.$$

Substitution

$$c = \frac{(1-b)k_1}{(1-a)k_2 + (1-b)k_1}$$

completes the proof.

In terms of Dirichlet series identity (4) means that

$$\mathcal{H}(s) = \mathcal{F}(k_1 s) \mathcal{G}(k_2 s)$$

where

$$\mathcal{F}(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, \quad \mathcal{G}(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}, \quad \mathcal{H}(s) = \sum_{n=1}^{\infty} \frac{h(n)}{n^s}.$$

One can prove (similarly to Lemma 1) that convolutions of form (4) save a property of the easily-computability.

Example 13. Function τ_2^* sums up with the deceleration 7/15, because

$$\tau_2^*(n) = \sum_{d^2|n} \mu(d)\tau_2(n/d^2).$$

Example 14. As soon as

$$\tau_2^2(n) = \sum_{d^2 \mid n} \mu(d) \tau_4(n/d^2),$$

we obtain $\det \tau_2^2 = 5/9$.

The discussion in Examples 5, 6, 7 leads to the following general statement.

Theorem 6. Let f be a multiplicative function such that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{m=1}^{M_1} \zeta(k_m s)^{\pm 1} \prod_{m=1}^{M_2} z_m (l_m s - n_m), \tag{5}$$

where each of z_m is either ζ or $L(\cdot, \chi)$, M_1 , M_2 , k_m , l_m , $n_m \in \mathbb{N}$. Then f sums up in sublinear time: its deceleration is strictly less than 1.

Theorem 6 clearly shows that the concept of fast summation can be easily generalized over various quadratic fields. Following theorem is an example of such kind of results.

Theorem 7. Consider the ring of Gaussian integers $\mathbb{Z}[i]$. Let

$$\mathfrak{t}_k \colon \mathbb{Z}[i] \to \mathbb{Z}$$

be a k-dimensional divisor function on this ring. Let

$$\mathfrak{T}_k(x) := \sum_{N(\alpha) \le x} \mathfrak{t}_k(\alpha),$$

where $N(a+ib) = a^2 + b^2$. Then $\mathfrak{T}_k(x)$ can be computed in sublinear time.

Proof. It is well-known that

$$\frac{1}{4} \sum_{\alpha \in \mathbb{Z}[i]} \frac{\mathfrak{t}_k(\alpha)}{N^s(\alpha)} = \zeta^k(s) L^k(s, \chi_4) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s},$$

where

$$f(n) := \sum_{N(\alpha)=n} \mathfrak{t}_k(\alpha).$$

But by Theorem 4

$$\det \underbrace{\chi_4 \star \cdots \star \chi_4}_{k \text{ factors}} = 1 - 1/k.$$

By (3) we obtain that for even k

$$\operatorname{dec} f = \frac{1 - (1 - 1/k)(1 - 4/(3k))}{1/k + 4/(3k)} = 1 - \frac{4}{7k}$$

and for odd k

$$\operatorname{dec} f = \frac{1 - (1 - 1/k)(1 - 4/(3k + 1))}{1/k + 4/(3k + 1)} = 1 - \frac{4}{7k + 1}.$$

3. Proof of the Theorem 2. The proof follows the outline of the proof of [8, Th. 1.2], but uses improved bound for the complexity of the computation of

$$T_2^*(x) := \sum_{n \le x} \tau_2^*(n).$$

Proof. Trivially we have

$$\sum_{a \le n \le b} \tau_2^*(n) = T_2^*(b) - T_2^*(a-1).$$

As soon as $\tau_2^*(n) = 2^{\omega(n)}$, where $\omega(n) = \sum_{p|n} 1$, all summands in the left side are divisible by 4, beside those, which corresponds to $n = p^j$. Moving to the congruence modulo 4, we obtain

$$2\sum_{j=1}^{O(\log x)} \#\left\{p \in \left[a^{1/j}, b^{1/j}\right]\right\} \equiv T_2^*(b) - T_2^*(a-1) \pmod{4}.$$

As far as a > x and $b - a \le O(x^{1/2+c})$, then for j > 1 interval $\left[a^{1/j}, b^{1/j}\right]$ contains $O(x^c)$ elements; thus all such summands can be computed in $O(x^{c+\varepsilon})$ steps using AKS primality test [1]. The right side of the congruence is computable in $O(x^{7/15+\varepsilon})$ operations due to Example 13.

The discussion above shows that the desired quantity

$$\# \big\{ p \in [a,b] \big\} \equiv \frac{T_2^*(b) - T_2^*(a-1)}{2} - \sum_{j=2}^{O(\log x)} \# \left\{ p \in \left[a^{1/j}, b^{1/j} \right] \right\} \pmod{2}$$

can be computed in $O(x^{\max(c,7/15)+\varepsilon})$ steps.

CONCLUSION. Further development of algorithms of the sublinear summation (e. g., summation of μ in arithmetic progressions) will lead to the generalization of Theorem 6 over broader classes of functions. Also one can investigate summation of f such that its Dirichlet series is infinite, but sparse product of form (5).

- Agrawal M. PRIMES is in P [text] / M. Agrawal, N. Kayal, N. Saxena // Annals of Mathematics. – 2004. – Vol. 160, no. 2. – P. 781–793.
- 2. **Charles D. X.** Computing the Ramanujan tau function [text] / D. X. Charles // The Ramanujan Journal. 2006. Vol. 11, no. 2. P. 221–224.
- Deléglise M. Computing the summation of the Möbius function [yext] / M. Deléglise,
 J. Rivat // Exp. Math. 1996. Vol. 5, no. 4. P. 291–295.
- Flajolet P. Analytic combinatorics [text] / P. Flajolet, R. Sedgewick. [S. l.]: Cambridge University Press, 2009. 824 p.

- W. Jr. H. Primality 5. Lenstra testing with Gaussian peri-W. Lenstra H. Jr., C. Pomerance. – 2011. nov. URL: http://www.math.dartmouth.edu/carlp/aks041411.pdf.
- Lagarias J. C. Computing π(x): An analytic method [text] / J. C. Lagarias,
 A. M. Odlyzko // Journal of Algorithms. 1987. Vol. 8, no. 2. P. 173–191.
- Sladkey R. A Successive approximation algorithm for computing the divisor summatory function [text] / R. Sladkey. 2012. URL: http://arxiv.org/pdf/1206.3369v1.
- 8. **Tao T.** Deterministic methods to find primes [text] / T. Tao, E. Croot III, H. Helfgott // Math. Comp. 2012. Vol. 81, no. 278. P. 1233–1246.
- 9. **The on-line** encyclopedia of integer sequences [text] / Ed. by N. J. A. Sloane. [S. l. : s. n.]. URL: http://oeis.org.
- The development of the number field sieve [text] / Ed. by A. K. Lenstra, H. W. Lenstra. – [S. l.]: Springer Verlag, 1993. – Vol. 1554 of Lecture Notes in Mathematics.