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QUANTUM CALCULATION OF AUGER SPECTRA FOR Na, Si
ATOMS AND SOLIDS

On the basis of calculation in characteristics of Auger decay in the atomic systems
and solids within S-matrix Gell-Mann and Low formalism there are presented data on the
cross-sections of ionization of internal shells for a number of atoms (Na,Si) and energies
of Auger electron transitions in solids (Na, Si).

INTRODUCTION

Auger electron spectroscopy is the effective
method to study the chemical composition of
solid surfaces and near-surface layers [1-8].
When considering the method principles, the
main attention is given as a rule to the models
to draw chemical information from Auger spec-
tra and to the surface composition determina-
tion methods by Auger spectrum decoding. It is
just the two-step model that is used most widely
when calculating Auger decay characteristics.
Since the vacancy lifetime in an inner atomic
shell is rather long (about 10�17 to 10�14s), the
atom ionization and Auger emission are consid-
ered to be two independent processes. In the
more correct dynamic theory of Auger effect [1�
3] the processes are not believed to be independ-
ent from one another. The fact is taken into
account that the relaxation processes due to
Coulomb interaction between electrons and re-
sulting in the electron distribution in the vacan-
cy field have no time to be over prior to the
transition. In fact, the consistent Auger decay
theory has to take into account correctly the
number of correlation effects, including energy
dependence of vacancy mass operator, continu-
um pressure, spreading of the initial state over
a set of configurations etc. [1�6]. Note that the
effects are not described adequately to date, in
particular within Auger decay theory [2]. In this
paper a novel calculation method of Auger decay
characteristics for complex atomic systems bas-
ing on S-matrix formalism by Gell-Mann and
Low [8�12] is applied to calculation of those
characteristics for atoms, quasi-molecules and
solids. The novel element consists in using of
the optimal basis for electron state functions
derived from the condition that calibration-non-
invariant contribution of the second order polar-
ization diagrams to the imaginary part of multi-
electron system energy is minimized already at
the first non-disappearing approximation of the
perturbation theory (PT) [9�11]. The method
has been applied to calculate the ionization
cross-sections of inner shells in various atoms
and Auger electron energy in solids (Na, Si).

METHOD FOR CALCULATING THE
LINE INTENSITIES AND WIDTHS
IN THE AUGER SPECTRA

Within the frame of QED PT approach [8�
11] to Auger effect description, Auger transition
probability and, accordingly, Auger line intensi-
ty are defined by the square of an electron inter-
action matrix element having the form:
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The terms QulQλ  and BrQλ  correspond to subdi-
vision of potential into Coulomb part cos|ω|r12/r12

and Breat one, cos|ω|r12ααααα1ααααα2/r12. The real part of
electron interaction matrix element is deter-
mined using expansion in terms of Bessel func-
tions:
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where J is the 1st order Bessel function, (λ) =

= 2λ + 1. Coulomb part QulQλ  is expressed in
terms of radial integrals Rλ, angular coefficients
Sλ [9]:
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As a result, Auger decay probability is ex-
pressed in terms of ReQλ(1243) matrix elements
[9]:
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where f is the large component of radial part of
single electron state Dirac function and function
Z is [8]:
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The angular coefficient is defined by standard
way [7]. The other items in (3) include small
components of Dirac functions; the sign "~"
means that in (3) the large radial component fi

is to be changed by the small gi one and the

moment li is to be changed by 1i il l= −%  for
Dirac number æ1 > 0 and li + 1 for æi < 0. Breat
interaction is known to change considerably
Auger decay dynamics in some cases (c. f. [6]).
Breat part of Q is defined as the sum:
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where the contribution of our interest is deter-
mined as:
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The Auger width is obtained from the adia-
batic Gell-Mann and Low formula for the energy
shift [9]. The contribution of Àd =  dia-
gram to Auger level width with vacancy nαlαjα
mα is:
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while contribution of Àex =  one is:
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The formulas (7), (8) define the full Auger

level width. The partial items of the 
kβγ

∑∑ sum

answer to contributions of α�1 → (βγ)�1K chan-
nels resulting in formation of two new vacancies
βγ and one free electron k: ωk = ωα + ωβ � ωα.
The final expression for width in the representa-
tion of jj-coupling scheme of single-electron mo-
ments has the form:
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Here the summation is made over all possi-
ble decay channels. The basis of electron state
functions was defined by the solution of Dirac
equation (integrated numerically using Runge-
Cutt method). The calculation of radial integrals
ReRλ(1243) is reduced to the solution of a sys-
tem of differential equations [8]:
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In addition, ó3(∞) = ReRλ(1243), ó1(∞) =
= Xλ(13). The system of differential equations in-
cludes also equations for functions f/r|æ| � 1,

g/r|æ| � 1, ( )1Zλ , ( )2
Zλ . The formulas for Auger decay

probability include the radial integrals Rα(αkγβ),
where one of the functions describes electron in
continuum state. When calculating this integral,
the correct normalization of function Ψk is a
problem. The correctly normalized function
should have the following asymptotic at r → 0
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When integrating the master system, the
function is calculated simultaneously:
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It can be shown that at r → ∞, N(r) → Nk,
where Nk � normalization of functions fk, gk of
continuous spectrum satisfying the condition
(11).  The energy of electron formed due to tran-
sition jkl is defined by the difference between
energies of an atom with a hole at j level and
double-ionized atom at kl levels in the final
state:
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To single out the above-mentioned correla-
tion effects, the equation (12) can be presented
as:
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where the item ∆ takes into account the dynam-
ic correlation effects (relaxation due to hole
screening with electrons etc.) To take these ef-
fects into account, the set of procedures elabo-
rated in the atomic  theory [2, 3] is used. For
solid phase, the more precise form of equation
(13) is [1]:
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where ∆Es � correction for the binding energy
change in the solid; Rrel, � the same for out-of-
atom relaxation; eΦ takes into account the work
of exit. In real Auger spectra, a specific line
shape characteristic for the given transition and
for each element arises due to the line blurring
caused by Auger electron interaction with elec-
trons of inner shells, outer bands, overlapping
individual multiplet lines, multi-particle effects
etc. In solids, Auger spectra are broadened in
the low-energy region due to non-elastic scatter-
ing of Auger electrons emitted by an atom when
those move within the crystal [1].

CALCULATION RESULTS
AND CONCLUSIONS

Now let us describe some calculated data for
Auger transitions, ionization cross-sections of
inner atomic shells and Auger electron energy
in solids. As mentioned above, the exit probabil-
ity of Auger electrons from an atom via different
channels associated with ionization from core
level is defined by the matrix element (1). In
addition, the proportionality coefficient in the
equation coincides with electron impact ioniza-

tion cross-section σj of level j. Of course, two
aspects are to be considered when determining
the exit probability of Auger electrons from an
atom, namely, the radiative transition under
neutralization of a hole at level j and the possi-
bility of the considerable change in the initial
hole distribution at the core levels at Auger
decay via the radiative channel jkl associated as
a rule with the considerable distinctions in non-
radiative transition probabilities. For definite-
ness sake, let the ionization of L levels in multi-
electron atom  be considered. The probability of
Auger electron emission from the atom via
channel L3Kl (taken as an example) is defined
by ionization cross-section of the level L3 as well
as by a certain effective cross-section depending
on ionization cross-sections of the levels L1, L2.
Auger line intensity is defined by three atomic
constants: Àjkl = σjfjajkl, where àjkl � non-radia-
tive transition probability; fi � Korster-Kronig
coefficient; σj � ionization cross-section defined
by matrix element (1) calculated for wave func-
tions of bound state and continuum one. The
ionization cross-sections (cm2) calculated for in-
ner shells of some atoms basing on the method
proposed in this paper as well as the experiment
data available [1] are presented in Table 1.

Tab l e  1
Inner shell ionization cross-sections for some atoms

Note that, unlike the widely used calculation
method of cross-sections within the frame of
Born approximation (c. f. [2, 3]) our approach is
more correct theoretically, thus resulting in
rather good agreement between theory and ex-

periment. Table 2 presents data on Auger elec-
tron energy for some solids calculated using the
method of this work (formulas 7�13) and the
semi-empirical method under Larkins' equivalent
core approximation [2] as well as experimental
data.

Tab l e  2
Experimental data for Auger electron energy for solids and calculated values (À, semi-empirical method [2];

B. this work)

The calculation accuracy of the using method
[2] is within about 2 eV on average. Our ap-
proach provides more accurate results that is
due to a considerable extent to more correct
accounting for complex electron interaction.
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