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Preliminaries

In this section we present the background from Analysis needed for the further

study of the course.

1. Even and odd functions, periodic functions

Definition 1. Let a function f be defined on a symmetric set £ C R, that is,
such a set that for any x € E we have that —x € E. This function is said to
be even if for any z € E the equality f(—xz) = f(x) holds. If f(—z) = —f(x)
for any x € E, then the function f is said to be odd.

2n

For example, for n € N the functions z°", cosnx are even, and the func-

2n=1"ginna are odd on R.

tions x
The following properties are directly derived from the definitions.
(a) The graph of an even function is symmetric with respect to the y-axis,
and the graph of an odd function is symmetric with respect to the origin.
(b) The product of two even functions is an even function.
(c¢) The product of two odd functions is an even function.

(d) The product of an even function and an odd function is an odd func-

tion.

(e) If f is an odd function, then for any A > 0
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(f) If f is an even function, then for any h > 0

h h
/f(a:)da:zQ/f(a:)da:.
—h 0

Definition 2. Let a function f be defined on [0,b). Extend f to (—b,0),
setting f(z) = f(—z) (x € (=b,0)). Then we obtain a function f; which
is called the even extension of the function f. If we set f(z) = —f(—x)

(x € (=b,0)), then we obtain a function f; which is called odd extension of
the function f.

Fig. 1. The graphs of an initial function and its even and odd extensions.

Remark 1. If an odd function f is defined at the point x = 0, then it
follows from the definition that f(0) = 0. Thus, an odd extension of a function

f defined on [0,b) is an odd function if and only if f(0) = 0.

Definition 3. A function f defined on R is said to be periodic with a
period T > 0 if f(x +7T) = f(x) for all z € R.

The graph of a periodic function can be obtained by successive translations
of its part corresponding to the interval [0,7") (or any half-open interval of
the length T') on nT" (n € N) to the right and to the left. This means that the
number nT also is a period. It is also clear that f(z — nT) = f(z) (n € N).

Typical examples of 2m-periodic functions are trigonometric functions sin z,
cos z. Another examples are 1-periodic function { x } defined as the fractional

part of x, or Dirichlet’s function

D(x) 0, if z is irrational,
Tr) =
1, if x is rational,
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for which every positive rational number is a period.

A periodic function may not be defined on the whole axis; for example,
m-periodic function tgz isn’t defined at the points & + km (k € Z), and 7-
periodic function ctgx isn’t defined at the points kn (k € Z).

Proposition 2. Assume that f is a periodic function with a period T" > 0
and that f is integrable over [0,7]. Then f is integrable over any interval
I = [a, B] C R. Moreover, for any a € R

a+T

| tayde— /T f(z) dx. 1)

a

PROOF. Let k£ € Z. Then
k:+1 k:+1

/f /fx—kT —O/Tf

(by the change of variable u = x — k7). This implies that f is integrable in
any interval of the form [—nT",nT] and therefore f is integrable in any interval
[, B] € R. Further, for any a € R

a+T a+T a
/f(a:)d:c: /f(a:)da:—/f(x)dx

T a+T
/f dx+/f da:—/f
0

We also have (by the change of variable u = x — T') that

a+T a+T
/f da:—/fa:— d:c—/f

This equality implies (1).

Definition 4. Let a function fy be defined on [a,b] and fo(a) = fo(b). Set
L = (b—a)/2. The periodic extension of the function f, with the period 2L
is the function f defined on R by the following equality

flx+2kL) = fo(x) (z € |a,b], ke€Z).
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Yy Yy

0 T

Fig. 2. The graphs of an initial function and its periodic extension.

2. Piecewise continuous and piecewise smooth

functions

The class of all functions continuous on a set E is denoted by C = C(E).

Let a function f be defined on an open bounded interval (a,b).

Definition 5. The function f is said to be piecewise continuous on (a,b)
if it has at most a finite number of points of discontinuity and, in addition,
at each point of discontinuity xg € (a,b) the one-sided limits

f(xo+) = lim f(z), f(zo—)= lim f(z)

T —zo+ T—x0—
exist and are finite.

A function f defined on [a, b] is said to be piecewise continuous on [a, b], if
it is piecewise continuous on (a, b) and one-sided limits f(a+) and f(b—) exist
and are finite. We shall call a function f defined on R piecewise continuous
on R if it is piecewise continuous on any bounded interval. The class of all
such functions we denote by PC.

If f(xo+) # f(zo—), then we say that f has a jump equal to f (zo+) —
f(zo—).

If a function f € PC, then it is integrable on any bounded interval.

Definition 6. A function f is called piecewise smooth on a bounded in-
terval (a,b) if:

(i) f is piecewise continuous on (a,b);

(ii) the derivative f’ exists and is continuous everywhere on (a,b), with a

possible exception of a finite number of points;
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(iii) f" has finite one-sided limits at every point x € (a,b).

We say that f is piecewise smooth on a closed interval [a, ] if it is piecewise
continuous on [a,b] and there exist finite f'(a+) and f’(b—). We shall call f
piecewise smooth on R if it is piecewise smooth on any bounded interval. The

class of all such functions we denote by PS.

We observe that a piecewise smooth function may have discontinuities.
Further, if f € PS, then, giving to the derivative f’ arbitrary values at the
points where it does not exist, we obtain that f/ € PC.

3. Numerical series and series of functions

Let {a,} -, be a sequence of real numbers. The symbol

(e )
Zanza1+a2+---—|—an—|—... (2)

n=1

is called series of numbers. 'The numbers a,, are called the terms, and the
n

numbers S,, = > ax (n =1,2,...) are called the partial sums of the series (2).

k=1
If there exists S = lim S,, then the series (2) is said to be convergent,
n—oo
and the number S is called the sum of this series. We write S = > a,,. If

n=1
the limit of the sequence of the partial sums of the series (2) does not exist,

then this series is said to be divergent.

The following theorem gives a necessary condition of convergence.
Theorem 3. If the series (2) converges, then its terms a,, tend to zero.

We say that the series (2) is absolutely convergent if the series

> lan (3)

converges. If the series (2) converges, but the series (3) diverges, then we say

that the series (2) converges conditionally.

Theorem 4. If a series absolutely converges, then it converges.
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Assume that there is defined a sequence of functions {f,} -, on a set
E C R. We say that this sequence converges on the set E if for any z € E
the sequence of numbers {f,(x)} -, converges. In this case the function
flx) = nh_{go fn(x) is called the limit function. We say that the sequence
{fn}.—, converges to the function f uniformly on the set E if for any positive
number ¢ there exists a number N depending only on € such that for any

n > N and any x € FE there holds the inequality |f,(z) — f(z)| < e.

Let {uy,} -, be a sequence of functions defined on a set E C R. We say
oo

that the series of functions > w, converges on the set E if the sequence
n=1

n
of partial sums S, (z) = > wug(x) converges on E. In this case the func-
k=1

tion f(x) = lim S, (x) is called the sum of the series > wu,(z). We write

n—oo

n=1
(0.] (0.]
> un(xz) = f(x). We say that the series > w, converges uniformly on the
n=1 n=1

set F if the sequence of its partial sums converges uniformly on F.

The basic properties of series of functions are contained in the following

statements.

o0

Theorem 5. If a series ) u, of functions u, continuous on an interval
n=1

[a, b] converges uniformly on this interval to a function f, then f is continuous

on [a,b).
o0
Theorem 6. If a series > w, of functions u,, integrable on an interval

n=1
[a, b] converges uniformly on this interval to a function f, then f is integrable

on [a,b] and
/b fla)do = Z /b ) da.

Theorem 7. Assume that u,, are continuously differentiable functions on

0
an interval [a,b]. If the series ) wu, converges at some point of [a,b], and
n=1

0.] oo
the series ) u] converges uniformly on this interval, then the series > u,
n=1 n=1
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converges uniformly on [a, b] to a continuously differentiable function f and

f/(x) - Zu%(:l?), z € [a,b].

4. Integral

The class of all Riemann integrable on an interval [a,b] functions will be
denoted by R = R][a, b].

Let f € Rla,b]. The indefinite integral of a function f € Rla,b] is defined
by the equality

F(a:):/f(t)dt (a <x<b).

It is a continuous function on |[a, b].

The following two theorems play the basic role in Analysis.

Theorem 8. If f € Ra,b] and f is continuous at a point z( € [a, b], then
its indefinite integral F' is differentiable at the point xg and F’ (xzg) = f (zo).

This theorem is called the fundamental theorem of the Integral Calculus.
Corollary 9. If f € PC on [a,b], then F' € PS and is continuous on |[a, b).

Theorem 10. Assume that f € PS[a,b] and f is continuous on [a,b].
Assume that the values of f/ at the points where it does not exist are defined
arbitrarily. Then f’ € R and

b
[ £@)dz= 1) - fa)
The last equality is called the fundamental formula of the Integral Calculus.

We shall consider also functions defined on unbounded intervals.

Let a function f be defined on [a,+00) and integrable on each interval
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[a,b] (a < b < +00). If there exists a finite limit

b
lim / f(x) dx,
b—o0
(0.]
then it is denoted by [ f(z)dz and it is called the improper integral (we say
a
also that the improper integral converges).
If the integral [ |f(z)| dz converges, then we say that the integral [ f(z) dx
absolutely converges. In this case the function f is called absolutely integrable

on [a, c0).

Theorem 11. If the integral [ f(z)dx absolutely converges, then it con-

verges.

b
The integral [ f(x)dz is defined in a similar way. If a function f is

defined on (—o00, 00), then we set

71’(%) dr = /a f(x) dﬂ?+7f(w) d,

provided that both integrals at the right-hand side converge. It is easy to see
that this definition does not depend on the choice of a.

5. Approximation of integrable functions

In this section we present some statements concerning approximation of arbi-
trary integrable functions by continuous or step functions.

A function g defined on an interval [a,b] is called a step function if there
exists such partition a = ag < a1 < --- < a,, = b that g is constant in each
interval (a;,a;41), ¢ =0,...,m — 1. Obviously, any step function on [a, b] is

integrable in this interval.

Theorem 12. Let f € Rla,b]. Then for any ¢ > 0 there exists a step
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function g such that
b
[17@)~ g(a)| do <=
a
PRrROOF. For an arbitrary partition
a=x9g<x1<--<xTp=0>,
denote

M;,= sup f(x), m;= inf f(x) (i=0,...,n—1).

i <x<miii T; <x<Tit1

Let € > 0. There exists a partition such that

|
=

n

(M; —m;) Az; < e.

I
o

Set g(x) = m; for z € [z, 2,41) (1 =0,...,n—1), g(b) = my—1. Then g is a

step function and

b n—1 Tit1
/ @) - g@) de =Y / f(@) — g()|da
a 1=0 z;
n—1 Tit1 n—1
1=0 1=0

Theorem 13. Let f € Rla,b]. Then for any € > 0 there exists a continu-

ous function ¢ such that

b

[176@) - g do <

a

PrROOF. Denote M = sup f(z), m = inf f(x) and find a partition
a<z<b a<x<b

a=1xy<x1 <--- <z, =bsuch that

n—1 2

( m;) T <

)
|
]
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Then
1

(Ml — mi)z Ax; < 82.

n

I
o

Let g(z) = f(x) for x = x; and let g be linear in each interval [x;,z; 1]
(t=0,....,n—1). If z € [x;,x;41], then m; < f(z) < M;, m; < g(x) < M;,
and therefore |f(x) — g(z)| < M; — m;. From here,

b n—1 Titt
J15@ = g@F d =Y [ 170 - gt s

n—1
< (Mz — mi)Q Az; < 2, ]

1

I
=)

Remark 14. In Theorem 13 a function g can be chosen so that g(a) =
g(b) = 0. Indeed, denote by f; the function which coincides with f on (a,b)
and is equal to zero at the points a and b. For f; we construct the function ¢
as in the proof of Theorem 13. By the definition, g(a) = g(b) = 0. Since the

functions f — g m f; — g differ not more than in two points, then

b b

/[f(x) —g(x)]*dx = / [f1(x) — g(:z:)]2 dr < 2.

a a

A function g defined on the real line R is said to be a function with a

compact support if it vanishes outside some bounded interval.

Theorem 15. Assume that a function f is defined on R and integrable on
any interval, and f? is integrable on R in the improper sense. Then for any

e > 0 there exists a continuous function with a compact support g such that

/ (@) — g(@)|? de < 2. (4)
PROOF. Take € > 0 and find A > 0 such that

—A [o%e)

2
/f2(513)d£8-|—/f2(33)d£8< %
—00 A



5. IMPROPER INTEGRALS DEPENDENT ON A PARAMETER 15

Further, using Theorem 13 and Remark 14, we construct a function ¢g; on
[—A, A], continuous and such that ¢g;(—A) = g1(A) = 0 and

82

A
[ @ -a@r <5
iy

Define on R the function g equal to g; on [—A, A] and zero outside this interval.
Then ¢ is a continuous function with a compact support on R satisfying

inequality (4).

6. Improper integrals dependent on a parameter

Assume that a function f(z,y) is defined for z > a, y € Y and for any y € Y

the improper integral
[ faws 5

converges. This integral is called the improper integral dependent on a param-
eter. We say that the integral (5) converges uniformly with respect to y on

Y if for any € > 0 there is a number A > a such that

/f(a:,y)da: <e€
3

for any £ > Aand any y € Y.

Theorem 16 (Weierstrass M-test). If there exists a non-negative on

[a, +00) function ® such that
[f(z,9)] <|2(2)] (2 >0, yeY),
and the integral [ ®(x)dx converges, then the integral (5) converges uniformly

a
with respect to y on Y.

The following theorems present properties of integrals dependent on a
parameter which will be used below. We shall assume that a function f is

defined on [a,00) X Y (Y is an interval) and a function ¢ is defined on [a, 00).
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Theorem 17. Assume that the function f is continuous on [a,00) X Y
and the function ¢ is integrable on [a, A] for any A > a. If the integral
o0

[ ey

a

converges uniformly on Y, then it is a continuous function of the variable y
onY.

Theorem 18. Assume that f is continuous and has a continuous partial
derivative f,(x,y) on [a,00) X Y. Let ¢ be integrable on any interval |a, A]

(A > a). Assume that the integral

converges for any y € Y, and the integral

o0

ety
converges uniformly with respect to y on Y. Then the function I(y) is con-
tinuously differentiable on Y and

oo

I'(y) = / o@)f(x,y)dz (yE€Y).

a

Theorem 19. Let f be continuous on [a,c0) X Y, and let ¢ be integrable
on [a, A] for any A > a. Assume that the integral

o0

[ ey

converges uniformly on Y. Then:
(i) if Y = [¢,d], then

d 00 0 d

[ [e@s@was) ay= [ | [ 1wy ds

C a a C
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(ii) if Y = [¢,00), @ is absolutely integrable on [a,c0), and the integral

7f(sv,y) dy

converges uniformly with respect to = on [a, c0), then

/ /w(x)f(fc,y) da dy:/s@(x) /f(x,y) dy | dx
provided that the integral on the right-hand side converges, that is, there
exists

A [o%e)
lim [ ¢(z) /f(:v,y) dy | dz.
A—o0

We observe that in standard courses of Analysis Theorems 17, 18, and 19 (i)
are proved in the case ¢(r) = 1. The same proofs are valid in the gen-
eral case, too. As for Theorem 19 (ii), it is derived from 19 (i). Generally,
Theorem 19 (ii), is not true without the assumption that the function ¢ is
absolutely integrable.

We shall need also the following theorem on interchange of the order of

integrations.

Theorem 20. Let F(x,y) be defined on R x R. Assume that

(i) for any fixed value of one of the variables x,y, the function F(z,y) is
absolutely integrable on R with respect to the other variable;

(ii) the integrals

0

| Fawy, 7|F<w,y>\dy,

— o0

(as functions of the variable z) are integrable with respect to z in each

bounded interval, and integrals

oo

/ F(x,y)dz, 7 |F(x,y)| dzx

— 0o
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(as functions of the variable y) are integrable with respect to y on each
bounded integral.

If one of the integrals

/dx/lF(x,y)\dy, /dy/lF(x,y)\dx

converges, then the other also converges and the equality

/dx/F(fc,y)dyz / dy/F(fc,y)dl‘

holds.

Usually this theorem is not included to a standard course of Mathematical

Analysis, but it can be proved in the framework of this course.

7. The Cauchy — Schwarz inequality

Theorem 21 (Cauchy’s inequality). Let ay,...,a, and by,...,b, be real

n n /2 , . 1/2

Yo/ (Xt) (3) ©
k=1 k=1 k=1

Proor. We can assume that a, b, > 0. We have

0< Z(ak —bk)z = ZCL% —ZZakbk—l—Zbi.
k=1 k=1 k=1 k=1

numbers. Then

Thus,

n n

ZZakbkz S
k

ap+Y by =A+B
k=1 1 k=1

(of course, we assume that A, B > 0). Replace ay by arV\ and by, by bk/\/X,
where a number A\ > 0 will be chosen later. Then the left-hand side remains
the same, and we get

” B
2 by < AN+ —.
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Choose A from the equality AA = %; then \ = \/g. We obtain

QZakbk S 2V AB,
k=1

which is (6).

o0 oo
Corollary 22. If the series > a2 and Y b2 converge, then the series
n=1 n=1

oo
>~ anb, absolutely converges.
n=1

Theorem 23 (Schwarz inequality). Let f,g € R[a,b]. Then

/2, 1/2

/b f(x)g(z)dx| < /b f?(x) dx / g*(z) dx

a

For the proof, it suffices to use the same arguments as in the proof of
Cauchy’s inequality, replacing sums by integrals.

In the latter inequality a or b may be infinite.

8. Summability of sequences and series

Let {z,} be a sequence of numbers. Consider the arithmetic means

x1_|_..._|_l>n
n .

En =

We say that the sequence {x, } is summable to a number £ by the method of
the arithmetic means (or (C,1)-summable) if
lim &, =¢&.
n— oo
Theorem 24 (Cauchy). If {x,} converges to a number &, then {x,} is

(C,1)-summable to &.
ProoF. Set a,, = x,, — &. Then a,, — 0. We have

x.'.._'_xn a+...+an
En = ~ =&+ - .

n n
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We shall prove that 38, = (a1 + -+ ay,)/n — 0. Let ¢ > 0. There exists N
such that |ax| < /2 (k> N). Let n > N. Then

n N N
1 1 € e 1

Now, let N be such that
1 €
k=1
Then for all n > N’ we have |8,| <e. So, 8, = 0, and hence &, = §.

Thus, convergence implies (C, 1)-summability to the same limit. The con-

verse 1S not true.

Example 25. Let z,, = (—1)". Then {x,} diverges. At the same time,
1 +x9+ -+ 2o, =0, 1 +2x24+ - +2Top_1=—1 (k:1,2,)

Therefore (z1 + -+ +x,)/n — 0.
Given a series

Z Unp,, (7)

we consider the sequence of its partial sums
Sh :Zuk (n=0,1,...).

We say that series (7) is summable by the method of arithmetic means to the
sum S if the sequence {5,} is (C,1)-summable to S, that is, if

:SO+"'+Sn

— S.
n—+1

O-n
If the series (7) converges to S, then it is (C,1)-summable to S. The
converse is false.
Example 26. Consider the series

> (=1

n=0
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We have Sop 11 =0, Sop, = 1. Thus,

So+"'+52k+1_k+1_1 So—l-"'+52]<;_]€+1_>
2k + 2 C2k+2 2 2k + 1 2k +1

1
5
Therefore, the series is (C, 1)-summable to %, while it diverges.

Remark 27. A series with positive terms converges if and only if it is
(C,1)-summable. This follows from the statement: if x,, — 0o, then

x1+...+wn
n

— OQ.



1. Fourier series

1.1. The trigonometric system
The sequence of functions
1,cosz,sinx,...,cosnx,sinnz, ...

is called the trigonometric system. These functions have period 2.

The scalar product of functions f,g € R is defined as
[ s@gta)ds.

Functions f,g € R are said to be orthogonal if their scalar product is equal
to zero. A system of functions is said to be orthogonal if for each function
f of this system the integral of f? over [—m, 7] is positive, and any two dif-
ferent functions are orthogonal. For example, the trigonometric system is

orthogonal. It is a consequence of the following equalities (m,n € N):

™ v v ™
/1dx:27r, /cosnxda:: /sinnxdw = /sinmwcosnxdx:(),
—Tr —Tr —Tr —Tr

™ o

. . 07 m # n?
cosmx cosnx dxr = sinmx sinnx dx =

T, Mm=mn
—Tr —Tr

A trigonometric series is called a series of the form
a oo
70 —|—Z:1(an cos nx + b, sinnx) , (1.1)

where a,,, b, are real numbers (coefficients).

22
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Proposition 1.1. Assume that the series (1.1) converges uniformly on

[—m, 7| and let f be its sum. Then f is a continuous 27-periodic function,

and _
am:%/f(a:)cosmxda: (m=0,1,...), (1.2)
bm:%/f(x)sinm:z:dx (m=1,2,...). (1.3)

PROOF. The function f is continuous as the sum of a uniformly convergent

series of continuous functions. Multiply the equality

M]3

f(x) = % + (a, cosnx + by, sinnx)

1

n

by cosmaz. Since the function cos mz is bounded, on the right-hand side we
obtain a uniformly convergent series. Integrating it term-by-term from —=
to m and using the orthogonality of the trigonometric system, we have for
m=1,2,...

™

/ f(x)cosmx dr = / <a20 + Z (a, cosnx + by, sinnx)) cosmx dx
—r n=1

—Tr

00 ™ ™
= g an/cosnxcosma:dm—l—bn/sinna:cosm:z:dm = Ty,
n=1 g g

that is, (1.2) holds. Similarly we prove (1.2) for m = 0 and (1.3) for m =
1,2,.... [
Definition 1.2. Let f € R[—m, 7] be a 2m-periodic function. Then the

numbers

an:%/f(a:)cosn:z:dx (n=0,1,...), (1.4)

bn:%/f(a:)sinn:cdx (n=1,2,...) (1.5)
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are called Fourier coefficients of the function f. The series (1.1), where a,,

and b,, are Fourier coefficients of the function f, is called the Fourier series
of f.
We shall write

o0
f(x) ~ % + nz::l (an cosnz + by, sinnz) .

Here the symbol ~ denotes correspondence, it means only that to the function
f it is assigned its Fourier series. Now Proposition 1.1 can be formulated as
follows: if a trigonometric series converges uniformly on |—m, 7|, then it is

the Fourier series of its sum.

Example 1.3. Find the Fourier series for 2w-periodic extension of the

function
1, 0<z<m, 1
f(z) = flkm) =5 (k€ Z).
0, —m <z <0, 2
Yy
- lle—> <>
(o] 1q (@) (o] (@)
2
—7r< 0 7? >27r 3w r

Fig. 3. The graph of 2m-periodic extension of the function y = f(x).

For this, evaluate the Fourier coefficients

- 1 f
aoz—/f(x)dx:—/dazzl,

s s

—T 0

1/ 1/ 1 g
an:—/f(x)cosnxdx:—/cosn:cd:c: —sinnz| =0 (n=1,2,...),

T T ™ 0
—Tr 0

1 [ 17 1 - "

bn:—/f(a:)sinnxdsc:—/sinnxdac: oL TOenT
T T T n 0
—T 0
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1 2 pn=92-1
_ 1_|_ —]_ n—1 = ™’ ’ n = 1,2,... .
Wn( (=1) ) { 0, n=2%k ( )

Thus, the given function has the following Fourier series

— , 1 2 1 .
f(a:)rv§+;bnsmnx:§+;;2k_1sm(2k’—l)x. B

Observe that if f(x) = g(x) except a finite number of points of the interval
[—m, 7], then the Fourier series of these functions coincide.

A function of the form

3

flx) = % + Y (agcoskx +sinkx),
k=1

where n € N, a; and by are real numbers and |a,| + |b,| > 0, is called a
trigonometric polynomial of degree n. It is clear that for each such function

its Fourier series is itself.

Example 1.4. Since the function f(z) = 4 — 3sin 2z + cos 5z is a trigono-
metric polynomial, its Fourier series coincide with this function, that is,
all the Fourier coefficients of the given function are equal to zero, except
ap =38, by = -3, a5 = 1.

2

Example 1.5. The function f(x) = sin“ z can be represented as a trigono-

metric polynomial f(z) = sin?z = % = % — %cos 2x. This polynomial

is also the Fourier series of the given function.

Example 1.6. Similarly, the function f(z) = sin® z can be represented

3

as a trigonometric polynomial. Indeed, sin®z = sin? zsinz = 1=2Z gin ¢ =

2
Tsinz — cos2zsinz = $sinz — $(sin3z —sinz) = 3sinz — § sin3z. This

polynomial is the Fourier series of the given function.

Example 1.7. We show that the function (cosx)™ is a trigonometric

cosine-polynomial of the degree n, that is,

(n) n
(coszx)" = %T + Z alin) cos kz, (1.6)

k=1
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where a%n) = 0. For this, we apply the induction. For n = 1 the statement is

true. Assume that it is true for some n. Then, using the equality
1
cos kx cosx = §(cos(k + 1)x + cos(k — 1)x),

we easily obtain that the representation of the form (1.6) holds for n + 1, too.

Proposition 1.8. Let f € R[—m, 7| be a 2m-periodic function. Then:

(i) if f is even, then

ap =
f(x) ~ ) +nz::1an cos n, (1.7)
where
2
ap = —/f(a:) cosnx dzx;
T
0
(ii) if f is odd, then
f(x) ~ Z b, sin nx, (1.8)
n=1
where
2 :
by, = —/f(x) sin nx dx.
T

0
Proor. (i) If the function f is even, then f(z)cosx also is even and

therefore
1 r 2 r
ap, = — /f(x) cosnrdr = — /f(a:) cosnrdr (n=0,1,...).
T T
- 0
Since the function f(x)sinz is odd,

1 ™
bn:—/f(a:)sinn:cdx:() (n=1,2,...).
T

Similarly we get (ii).

The series (1.7) u (1.8) are called cosine- and sine-series, respectively.
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Let
ago >
f(x) ~ 5} + 321 (@, cosnx + b, sinnx) .

Then
ago >
f(=x) ~ ) + nz::l (a, cosnz — by, sinnz) .

It follows that

f(x) +2f(—x) N % +nz::1an o8 T

and
/(@) —2f(—:13) ~ nz::l b, sinnx.

These functions can be called even and odd parts of the function f.
Example 1.9. The function f(x) = |z| (7 < x < ) is even and therefore

its Fourier series is a cosine-series.

Yy
T

3

27

Fig. 4. The graph of the periodic extension of the function f(x) = |z| (7 <z < ).

Evaluate the Fourier coefficients:
T

92 [ 2 9 72
aoz—/f(x)dx:—/xdx:—l:ﬂ,
T T w2

0 0

T

and for n = 1,2,..., using the integral [sinnzdxr =

0

2 pn=2k-1,
0, n =2k,

evaluated before, we have
v

du = dx ]

T
2 2| u==x
ap, = — [ xcosnrdr = — L

™ T | dv =cosnz v = sinny

0

0
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f {—4 n=2k—1,

2 —1
:—-—/sinna:da;:
T

n
0

Thus,

T4 = 1
2| ~ ohe ;;mms@k -z (Jz|<7). g

Example 1.10. The function f(z) = signsinz is odd.

Yy
— ]l e———> <>
-7 0 T o 3T T
<> 1 <> -—

Fig. 5. The graph of the function y = signsin x.

The Fourier series of f is a sine-series. Evaluate the Fourier coefficients:
™

2 [ 2
:—/f(x)sinnxdx:—/sinnxd:v
T T
0

0

A n=2k—-1,
=< ™ (n=1,2,...).
0, n=2k

Hence,
o0
1

4
signsinz ~ — Z 5 1 sin(2k — 1)z.

Example 1.11. The function f(z) =z (—7 < = < m) is odd and therefore

its Fourier series is a sine-series.

o//

Fig. 6. The graph of the periodic extension of the function f(x

=z (—m<x<m).
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We have:
2 [ 2 [ u= du =d '
bn:—/a}sinna:d:z::— el ! )
7TO T | dv =sinnxrdx v:—%cosn:c
2 N Gl e
= ——xcosnx| =2———.
™ 0 n
Thus,
o0 (_1)n+1 .
~ 2 - .
x Z ——sinnz (Jz| < 7). O
n=1
Let

flo) ~ = + Z (ay, cosnx + by, sinnx) .

Then, obviously,
f(=x) ~ % + Z (@ cosnx — by, sinnz) .
n=1

It is also easy to see that for a, 8 € R

aaq

af(z)+ 6~ <7 —|—B> —|—ozz (an cosnx + by, sinnzx) .

n=1
Further, let g(z) = f(m — x) and

/

o0
a :
94 g (al, cosnz + b, sinnz).

9(@) ~ 5

Then, performing the change of variable x = m — ¢t and using the periodicity,

we get
™

a;:l/g(x)cosnxdx— /f Jcosn(m —t)dt
T

t)cosntdt = (—1)"ay,,

and, analogously, b/, = (—1)"+1bn. Thus,

f(m—x) ~ +Z " (ap cosnx — b, sinnx) .
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Example 1.12. We have constructed above the Fourier series
n+1

CENQZ sinnz  (|z| < ).

If z € [-m, x|, then 7 — z € [0,27], and thus we have for the 27-periodic
extension of the function f(r) = 5% (0 < x < 27):

m™—X
2

NZ—smnx (0 < x < 2m).
n

A
\27; \f_ﬂ %\fw %\fw

Fig. 7. The graph of the 2w —periodic extension of the function y = *5*
[]

1.2. The complex form of the Fourier series

Recall the well-known Fuler formula
e'¥ = cosp + isin g,

where 7 is the imaginary unit. It follows immediately from this formula that

e 4 e . el — el
COS = Sin e
7 5 Y 2
Let
agp >
f(x) ~ 5 + Z(an cos nx + b, sinnx) . (1.9)
n=1

Rewrite the nth partial sum of this series as

+

(ay, cos kx + by, sin kx)
=1

%o
2
k
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1 <& : , , ,
_ % + 5 Z (akezkx + ake—zkx . ibkezkx + Z-bke—zkx)
k=1
n . .
_ag ag — 10k e . Ok 10K i
e (B o)
k=1
Set
—1b b
co = % o = % o= ﬂ;’f (k=1,2,...,n).  (1.10)
We obtain that
Sn(fli) =cCo + Z (Ckeikx + C_ke_ikx) = Z Ckeikx.
k=1 k=—n

Taking into account (1.10) and formulas for the Fourier coefficients, we have

that for any integer k& > 0
= o [ f@)coskrde — = [ fa)sinkedr = [ fa)e
Ch = 5 z)coskz dr — o z)sinkrdr = - x)e x.
Similarly, for any negative integer k
1 —ikx
c, =— [ flx)e dzx.
21

Thus, the series (1.9), assigned to the function f, can be rewritten in the form

oo

™
) 1 )
f(x) ~ Z cpe™”,  where ¢, = o / f(x)e """ du. (1.11)
n=-—o0 g
We observe that c¢_,, = ¢,,, where the over-line means the complex conjugation,
that is, a + b7 = a — bi.  In particular, ei? = e~ ¥, ‘ew‘Q = el¥ . eiv =
e¥ . e7 =cos? p +sin®p =1, e’ £ 0.
The Fourier series in the complex form can be defined for any complex-
valued 27-periodic function f = u-+iv integrable on [—m, 7], that is, such that

u,v € R|—m, 7.

Definition 1.13. The system of functions {ei"’w}, where n runs over the

set Z of all integers, and ¢ € [—m, 7|, is called the exponential system.
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For complex-valued functions f, g defined on [—m, 7] the scalar product is

given by the equality

Proposition 1.14. The exponential system is orthogonal; more exactly,
v

/ INT . —1MIT 07 m 7& n,
e"%e dr =
2w, m =n.

-7
PROOF. Let m,n € Z. Then, using the orthogonality of the trigonometric
system, we obtain

™ ™
/ e"TeT "M dr = /(cos nx + isinnz)(cosmx — isinmz) dr

—Tr —Tr

0, m#n,

2w, m=n.

= /(cos(n — m):c + isin(n — m)x) dr = { Ll

—Tr

Let

T.(x) = % + Z (ay, cos kx + by, sin kx)
k=1

be a trigonometric polynomial, and let |a, |+ |b,| > 0. In the complex form

n

T,(x) = Z cpe™®.

k=—n
We have
n 2n
T, (x)e" = E cpe!(tRT — E ¢ e where ¢, = cpn.
k=—n m=0

Thus, T, (z) = e~ """ Py, (¢'*), where
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is an algebraic polynomial of the degree 2n. Since e~*"* #£ () for all z, we have
the following statement. Ewvery trigonometric polynomial T, of degree n has

at most 2n roots in (—m, 7| .

Example 1.15. Find the complex Fourier series of the function f(z) ==z
(—m <z <m).

Evaluate the Fourier coefficients:

s

1
00:%/:1:@3:0;

— T

if an integer n # 0, then

1 r ing 1 U=z du = dx "
cn = — [ xe de = — ‘ ‘
2m 21 dv = e~ dp = _%e—zn;p
1 el 1 -1, | (—1)"
— - —inT Jo. — _ ~ —imn imny) _ ; .
omin " 3in / © T = o (e e =i
Thus,

x e~ Z e (|| < ).
neZ\{0}

Before we have constructed the Fourier series of this function in the real form:

~ 2 - <)
x nE:1 ——sinnz (Jz| < 7).

1.3. Functions of an arbitrary period

Let a function f be defined on the real line R. Assume that f has a period
T =2L (L >0). Set

w0=1(Z) Gem.

If 2 ranges in [—, 7], then z = £

period 27. If f € R[—L, L], then ¢ € R[—m, 7. Let

ranges in [—L, L]. The function ¢ has the

o(z) ~ % + Z (a, cosnz + b, sinnz) , (1.12)
n=1
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where -
1
an:—/go(z)cosnzdz (n=0,1,...),
s
1 r )
bn:—/gp(z)smnzdz (n=1,2,...).
T

Now we change the variable z = wz/L. Then ¢(z) = f(x). Instead of cosnz,

sin nz we have functions

| 78 LT nm . nm (1 13)
cosS —x,8ln —I,...,C0S —x,Sln —x, ... .
Y Lx, Lx, ) L 'CE? L x?

of the period 2L. Functions (1.13) form the trigonometric system with the
period 2L. They are orthogonal on [—L, L]. Further,

/f(a:)cos %a}daz (n=0,1,...), (1.14)

/f(x)sinn%:vdx (n=1,2,...). (1.15)

Numbers a,,, b,, defined by equalities (1.14) and (1.15) are called the Fourier

coefficients of the function f. The series

f(x) ~ % —|—n§1 <an cos %x + by, sin %x)

is called the Fourier series of 2L-periodic function f. It can be formally

obtained from the series (1.12) by the substitution z = 7z /L.

Example 1.16. The function f(z) = |sinz| is even and m-periodic, here

L=73.

Fig. 8. The graph of the function y = | sin z|.
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Its sine-Fourier coefficients b,, = 0. We evaluate

2 Y

Y

smu

/sm:cd:c— —(—cosx)
0
0

sin(2n + 1)x dx

o\ ol

3 3
4 2 2
—/sina:cosQn:z:dm: ——/sin(2n—1)xdm—|——
T T
0 0

an =
T
2 1 59 3
7T2n_lcos(n ) T wm 1cos(n—|— )a:o
2 —1 1 4 1
—_ = — — :12....
7T<2n—1+2n—|—1) camz—1 M= Lh2e)
Thus,

|sinz] 2 4 1 )
sing| ~ — — — Ccos 2nz.
SR — 4n? — 1 a

Example 1.17. Find the Fourier series of the 2-periodic extension of the

function
fa)=la] (-l<a<1).

Here L = 1. We have already constructed the Fourier series of the function

p(z) = [2| (=m <z <m):

T4 1
~ === — 2k —1 < ).
2] ~ 5 WZ(Zk_l)zcos( )z (2] <)

ol ~ 5 =

1 4 & 1
5 7'(' ;WCOS<2]C—1)7TZL’ (‘ZIZ“ <]_) ]
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Example 1.18. The periodic extension of the function
z, 0<z<1,
flx)=¢2 1, 1<zx<?2,
33—z, 2<ux<3,
defined on the interval [0, 3], is an even 3-periodic function. We find its Fourier

series, taking into account that L = % We have b,, = 0,

4
:de+§/dx

Njw

1

)

@)

|
SR\
—

=

&

QU

S

I
W =~
o

9 f: 1 2(3k — 1)7x N 1 2(3k + 1)z
——F COS COS
212 £ \ (3k — 1) 3 (3k 4 1)2 3

(since the Fourier series obtained converges absolutely, we may put its terms
in pairs). [
Example 1.19. Let

T —x,

and let g be the even extension of f on [—m, w]. We construct the Fourier series

of the function g on [—m, 7. Observe that g is 7-periodic and g(z) = h(2z),

where h is a 2m-periodic extension of the function |z| (—7 < z < 7). We have

already found the Fourier series of this function,

T 4 & 1
~ = — — — 2k — 1)x.
h(x) 5 gl 2k =17 cos(2k )z

Thus,

1 T2 = 1
g(z) 2h( x) 1 321 k1) cos2(2k — 1)z.
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1.4. Orthogonal systems

Definition 1.20. A sequence ® = {¢,, }, -, of real-valued functions integrable

on an interval [a,b] is called an orthogonal system on [a,b] if
b b
/gpm(x)cpn(x)dxzo (m #n), /goi(x) >0 (n=0,1,...).

b
If [¢2(z)de=1(n=0,1,...), then ® is called an orthonormal system on
[a, b].

For any f € R]a,b|, the number

b
£l = [ £2(0)da
a
is called the quadratic norm (or L?>-norm) of f on [a,b].
The trigonometric system
1,cosz,sinx,...,cosnx,sinnz, ...
is orthogonal on [—7,7]. The norms of these functions on [—7, 7] are
|1]|2 = V27, || cosnx||s = | sinnz|s = /.

The corresponding orthonormal system is

1 cosx sinzx cosnx sinnx
\/%, \/777’\/7?"“7 N , N e

There are many different orthogonal systems used in mathematics. For

(1.16)

example, the Rademacher system
rn(x) = signsin2"rx (n=0,1,...)

is an orthonormal system on [0, 1]. The systems {sinnxz}2° , {cosnx}32, are

orthogonal systems on [0, 7].
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Let ® = {¢,}.—, be an orthogonal system on [a,b]. The Fourier coeffi-
cients of a function f € R|a,b] are defined by the equalities

b
1
Cp = 5 x)onp(x)de (n=0,1,...). 1.17
”%%/f( Jon(2)dz ( ) (1.17)
We write -
f@) ~ > cnpn(w). (1.18)
n=0

The series at the right-hand side of (1.18) is called the Fourier series of f.

If {¢n} is an orthonormal system, then

cn:/f(x)gpn(x)d:z: (n=0,1,...).

If f € R[—m, 7], then the Fourier coefficients of f with respect to the

normalized trigonometric system (1.16) are

ag = \/%/f(a:)da:

En:%_/f(x)cosn:z:dx, gn:%_/f(a:)sinn:z:dx (n=1,2,...).

They are different from the usual trigonometric coefficients. However, the
series with these coefficients in the system (1.16) is the usual Fourier series.
Let ® = {¢,} be an orthogonal system. We shall consider finite linear

combinations (polynomials with respect to the system ®):
n
= Zakgok(x) (o € R).

Lemma 1.21. We have the equality

2
|Pallz = Zak k]l - (1.19)
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PROOF. Indeed,

Z@képkz ZO‘J% Zzak’aa@k p; ().

k=0 57=0

Thus, by orthogonality

which is (1.19).
Remark 1.22. Equality (1.19) is a version of the Pythagorean identity
lu+ol5 = [[ull3 + [lofl5  (ulov).

It is easy to show that if f1g, then
b

/[f+9]2d33—/be(a?)da:+/bgz(x)dx.

a

It follows immediately from Lemma 1.21

Corollary 1.23. For any trigonometric polynomial

(ay, cos kx + by, sin kx)

NE

T (z) =

0
5 +

>
I

1

we have that i

/TQ( ) do = <%+Z ak+b2>
o k=1

In the case of an orthonormal system equality (1.19) becomes

b

/Pg(az) dx = Zai. (1.20)

a

The quadratic (euclidean) distance between functions f,g € Rla,b] is
defined by

b

If —glla = / f(z) — g(@)]2 de

a
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(it is the infinite-dimensional counterpart of the euclidean distance).
Let ® = {¢,} -, be an orthogonal system on [a,b]. We consider the

approximation of a function f by the polynomials

= Zak%(x)

in the quadratic distance.
The next theorem contains the so called minimal property of the partial

sums of a Fourier series.

Theorem 1.24 (Gram). Let f € Rla,b]. Between all polynomials P,
of the degree not higher than n the best quadratic approximation || f — P, ||,
is obtained if P, is the nth partial sum

n
Z crpn (T

k=1
of the Fourier series of f.
PrROOF. We may assume that ® is an orthonormal system. Apply-
ing (1.20), we obtain

n

b n
= /fQ(x)dx — QZOéka +Zai
o k=1 k=1

b n n
:/f%:z:)da:—Zci#—Z k—ck ,
k=1

k=1
where ci are the Fourier coefficients. Clearly, the minimum of the right-hand
side is attained for oy = ci. In this case we have
b b
n

/[f(a:)—Sn(x)]z dm:/fz(a;)da;—zcz. B (1.21)

a a k=1
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Equality (1.21) is called the Bessel identity. Since the left-hand side of
this equality is non-negative, it implies the following result.

Theorem 1.25. Given an orthogonal system ® = {¢,,}, for any function
f € Rla,b] it holds that

o b
> e S/fz(az)daz. (1.22)

Inequality (1.22) is called the Bessel inequality.
Remark 1.26. Equality (1.21) can be written as

b

/[f(x) — Sp(@)]* da = /bfz(a:) dx/bsg(x) dz.

a
It is the Pythagorean identity. It means that f — S, L.S,.

For the trigonometric system the Bessel inequality (1.22) has the form
a? = 1 [
70 + nz::l (a2 +02) < — / f?(z) dx.

It follows that the series at the left-hand side converges. Then, by virtue of
the necessary condition of the convergence of a numerical series, its terms

tend to zero. Thus, we obtain the following statement.

Lemma 1.27 (Riemann — Lebesgue). For any function f € R[—m, 7]

its Fourier coefficients a,,, b,, tend to zero as n — oc.

1.5. Integral representation of partial sums

Let f be a function with period 2w, integrable in [—7,7|. We consider its

Fourier series and we denote by S,,(x) its partial sum

Sp(z) = % + Z (ay, cos kx + by sin kx) . (1.23)
k=1



42 1. FOURIER SERIES

The Fourier coefficients a; and b are defined by equalities

1 T
_;/f(t)COSktdt (k:O,l,),

1 v
:—/f(t)sinktdt (k=1,2,...).
T

Putting these expressions in (1.23), we obtain

Su(a) = 5 [ £ty

-|-Z /f ) cos kt dt cos kx + — /f t) sin kt dt sin kx

k=1

s

— T

=§]ﬂw
=§]ﬂw

1 < o
5t ];(COS kt cos kx + sin kt sin kx)] dt

1 n
5 + ]; cos k(t — :z:)] dt.

Denote

+ » cosku. (1.24)

#

The function D,,(u) is 2m-periodic (as a sum of 27-periodic functions).

We have
/f n(t — ) dt.

Substituting the variable ¢t = x + u (z is fixed), we get

_ ! / f(@ + w) Do () du
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Since the integrand is a function of period 27, we have
1 ™
Sp(z) = — / f(x + u)Dy(u) du. (1.25)
T

This is the integral representation of the partial sum (Dirichlet’s formula).
The function D,,(u) is called Dirichlet’s kernel. 1t is an even trigonometric

polynomial of degree n. Integrating (1.24) over [—m, 7|, we obtain that

1 ™
— | D, = 1.
- / (u) du

We will derive a concise form of Dirichlet’s kernel. For this, we multiply both

sides of (1.24) by 2sin § and we obtain

2 sin gDn(u) — sin g 42 ]; sin g cos ku.

Using the equality

2sin acos B = sin(a + §) + sin(a — ),

1 1
QSingCOSku:Sin (k—|—§) u — sin (k— 5) U.

we have

This yields
25in YD, (u) = sin (1 + -
sin o D (u) =sin | n+ 7 | u.
Thus, for 0 < |u| <7
sin (n + %) U
2sin 5
We observe that the points u = 2k7m, where the denominator vanishes, are

Dy, (u) = (1.26)

removable points of discontinuity.

1.6. Pointwise convergence of Fourier series

Lemma 1.28. Let g € R[0,7]. Then

s

1
lim [ g(¢)sin (n + 5) tdt =0.

n—00
0
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PRrROOF. We define two functions

g(t)sins, 0 <t <,

ha(t) = g(t)cos5, 0 <t <m,
B 0, —w <t <0.

0, - 7<t<0

and hg(t) = {

Since hq, hy € R[—m, 7|, then

s

/g(t) sin (n + %) ¢ dt

0

o ™

t t
= /g(t) cos 5 sin nt dt + /g(t) sin 5 cos nt dt
0 0
= / hi(t)sinntdt + / ha(t) cos nt dt.

By the Riemann — Lebesgue Lemma (Lemma 1.27), each of the last two

integrals tends to zero as n — co. [

Theorem 1.29 (Dirichlet). Let f € PS be a 2w-periodic piecewise

smooth function. Then for any x € R the Fourier series of f converges to the

value
Sy = o)t 1)
Proor. We have
— = [ f+oDa

/fw+t cﬁ+/fx+t o () dt

Changing the variable ¢ = —u in the last integral and taking into account
that the Dirichlet kernel D, (t) is even, we obtain

Su(r) = - / @+ 1)+ f(z — 1) Da(t) dt.
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Further, since D,, is even and + f D, (t)dt = 1, we have

= (1@ + 10 @)

We will show that Lg,l)(:c), 12 () = 0 as n — oo.
We set (z is fixed)

f(z +2ts)i;£f(w+) (t € (0. 7)).

g(t) =

The function g is piecewise continuous in (0, 7]. Moreover, since the limit
A= lim f’ t
J, fle+ )

exists and is finite, applying L’Hospital’s rule, we obtain that

/

t
lim g(¢) = lim f(:c——t)
t—0+ t—0+ COS§

= A

Thus, g is piecewise continuous in [0, 7] and therefore g is integrable in [0, 7].
By Lemma 1.28,

s

Lgﬂ(x):/g(t)sm (n+%>tdt—>0 (n = 00).

0
Similarly, I () = 0 (n — o0). Thus,
Sn(x) = S(x) (n—00).
Corollary 1.30. Assume that f is a 27-periodic piecewise continuous

function. If f is differentiable at a point xy, then the Fourier series of f

converges to f (xg) at the point xg.
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Indeed, in the proof of Theorem 1.29 we used only the fact that g(¢) has

a finite limit as ¢ — 0+ (and, similarly,

fxo—1t) — f (wo—)

1
251n§

has a finite limit as ¢ — 0+).

Example 1.31. The function f(z) = |sinz| is piecewise smooth and
continuous. Therefore it satisfies the conditions of the Dirichlet Theorem
(Theorem 1.29). By this theorem, its Fourier series converges to the function
at every point. We have constructed this series before (cf. Example 1.16).

Thus, we have the equality

2N

|sinx| =

41 1
—;;4712_1(:0527& (x € R).

Taking z = 0, we obtain

- 1
5_7;4n2—1'|j

Example 1.32. The function f(x) = signsinz is piecewise smooth and
therefore it satisfies the conditions of the Dirichlet Theorem (Theorem 1.29).
It follows from this theorem that its Fourier series converges to the function
at every point. This Fourier series was constructed before (Example 1.10),
and thus we have the following equality

oo

4 1
signsinz = - kz_:l or 1 sin(2k — 1)z (z € R).
In particular, for z = 5 we have
7'(' > (=1)kt
4 ]; 2k —1 U

Example 1.33. Let f(x) = 2? (z € [-m,7]). Then

3 n2

2 > —1)"
x2~7r—+4z( ) CcCosS nx.
n
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The 27-periodic extension of this function has finite one-sided derivatives at
the point x = m. Therefore f € PS and f is continuous on R. By Dirichlet’s
Theorem (Theorem 1.29), the Fourier series of f converges to f(x) at every

point x € R. Thus, we obtain

ﬂ' o
:? EZ:

In particular, for x = m we have

7T o0
23 z::

This implies the following useful equality

cosnx (|z] < 7).

2 <1
= — +4 —.
COS N 3 + nz::l 2

>

Putting x = 0, we obtain one equality more

2

=) [

Example 1.34. We have constructed above the Fourier series for the 27-
periodic extension of the function f(z) = |z| (—7 < & < 7) (Example 1.9).
As in the preceding example, it is easy to see that this series converges to

f(x) at every point x € R. Thus, we have the equality

T 4 &
= — — — 2k — 1 < ).
2l = 3 szl %_1 5 cos(2k — 1)z (|z| < )

Taking x = 0, we obtain that

Z 2k—1

kzl

We have already observed that two 27-periodic functions f,g € R[—m, 7],
which differ at a finite number of points of the interval [—m, 7], have the same
Fourier coefficients. The following theorem enable us to obtain the converse

statement for piecewise smooth functions.
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Theorem 1.35. Assume that all corresponding Fourier coefficients of 27-
periodic functions f,g € PS coincide. Then f(z) = g(x) everywhere on
[—7, 7], with a possible exception of a finite number of points in this interval.

PROOF. Indeed, on the interval [—m, 7] there exists at most finite number
of points in which at least one of the functions f or g doesn’t have a derivative.
By Corollary 1.30, at every point xg € [—m, 7], at which both the functions
f and g are differentiable, their Fourier series converge to f (z¢) and g (z¢),

correspondingly. Since the Fourier series of the functions f and g coincide,

then f(x0) = g(20).

1.7. Uniform convergence of Fourier series

1.7.1. Differentiation of Fourier series

In what follows we admit that a function may not be defined at a finite number
of points of [—m, 7).

Let a 27m-periodic function f € PS. Then f’ € PC and thus f' € R|—mn,n].
Let

f(x) ~ 7 + E_ ap, cosnx + by, sinnx) (1.27)
/ o0
o ;o
~ E E a, cosnx + b, sinnz). (1.28)

We consider the following question. Can the series (1.28) be obtained by
term-by-term differentiation of the series (1.27)¢ In other words, is it true
that ay = 0, a), = nb,, b, = —na, ?

Generally, the answer is negative. Indeed, before we have constructed the

Fourier series of the function sign sin x:

1 1
signsinz ~ — Z oF sin(2k; — 1)x.

Differentiating term by term, we obtain the series

4 o0
— g cos(2k — 1)z
s

k=1
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This series is not the Fourier series of f’(x) = 0; actually, it is not a Fourier
series of any function, since its coefficients do not tend to zero.
Such example is possible only because the function has points of disconti-

nuity. Indeed, the following theorem holds.

Theorem 1.36. Assume that 27-periodic function f € PS is continuous
on R. If

f(x) ~ % + Z (an cosnx + by, sin nz)

n=1

is the Fourier series of f, then the Fourier series of f’ is given by
oo
f(z) ~ Z (—nay, sinnx + nb,, cosnz).
n=1

PROOF. Since f € C, then f(—m) = f(7). Therefore, by virtue of the

Fundamental Theorem of Calculus (Theorem 10),
, 1 f , 1
ag = — [ fi(z)de = —[f(m) = f(=m)] = 0.
T s
Further, integrating by parts, we have

1 ™
a, = —/f’(x) cos nx dx
m

1 ™
= — f(x)cosn:z:[F#—n/f(x)sinn:z:dm = nb,.
m

Similarly,
1
b, = — / f'(x) sinnx dz
77

s

1
= f(x)sinn:z:[w—n/f(x)cosn:z:dx = —NGp. []

Remark 1.37. As it was shown by the example considered before Theo-

rem 1.36, the condition of continuity in this theorem cannot be omitted.
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1.7.2. Uniform convergence

Theorem 1.38. Let f be a 27m-periodic continuous and piecewise smooth
function. Then the Fourier series of f converges uniformly and absolutely to
the function f on the real line R.

PROOF. Let

fla) ~ = + Z (an cosnz + by, sinnz) .

First we shall show that

(|lan| + |[bn]) < oco. (1.29)

WK

S
I
=

By the Theorem on differentiation of Fourier series (Theorem 1.36),

o0
f(z) ~ (nb, cosnx — na, sinnz) .
n=1
Thus,
1
n = _ﬁb;v bn = ﬁa;w

where a/ , bl are the Fourier coefficients of the derivative f’. By the Cauchy

inequality (Theorem 21), this implies that for any natural N

N N b N 1 1/2 N 1/2
2
Sl =3B (1) (S
n=1 =1 n=1 n=1
Further, since f’ € R[—m, x|, then, by Bessel’s inequality (1.22),

N 1/2 ™
(Z(b@"‘) <|: @)

1/2

Also, the series
1
>3
n=1
converges. Denoting its sum by Cj, we obtain that for any N

- 1/2

S Janl <Gy / (f'@) de | .

— 7T
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where C; = /Cy/m. Letting N tend to infinity, we get

0o
D anl < CrlIf]ly-
n=1

Similarly,

oo

D bl < Culf s -

n=1

Thus, we obtained (1.29). Further,
|a,, cosnx + b, sinnz| < |a,| + |by,|

for any = € R. Applying this inequality, (1.29), and the Weierstrass M —test
of the uniform convergence, we obtain that the Fourier series of f converges
uniformly and absolutely on R. By Dirichlet’s Theorem (Theorem 1.29), for

any x this series converges to f(z).

Remark 1.39. If f is piecewise smooth, but has jumps, then the Fourier
series of f doesn’t converge uniformly (otherwise f would be continuous).

However, the following theorem holds.

Theorem 1.40. Let 2m-periodic function f € PS. Then the Fourier series
of f converges to f uniformly on any closed interval which does not contain

any point of discontinuity of f.

However, if f has jumps, its Fourier series cannot converge absolutely in
some interval. This fact is well known in the Theory of trigonometric series.
1.7.3. Term-by-term integration of Fourier series

Remind that a piecewise continuous function may not be continuous.

Theorem 1.41. Let f be a 27- periodic piecewise continuous function on
R and let

fla) ~ = + Z (@, cosnz + by, sinnz) .

Then for any z € [—, 7]

by,
/f ——:1:+C+Z(;smna:—;cosnx>,
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where C'is a constant and the series at the right hand side converges uniformly
on R.
PROOF. Set p(z) = f(x) — 4. Then

Further, set

d(x) = /go(t) dt (x € [—m, 7).
0
Then @ is continuous and piecewise smooth on [—m, 7]. Besides,

—Tr
and therefore ® can be extended to R as a 2w-periodic continuous piecewise

smooth function. Let

A o0
O(x) ~ 70 + Z (A, cosnx + B, sinnz).
n=1

By the theorem on term-by-term differentiation of Fourier series (Theorem 1.36),
' (1) ~ Z (—nA, sinnz + nB, cosnz) .

n=1
But ®'(z) = ¢p(x) everywhere in [—m, 7| except a finite number of points.

Moreover,
oo

p(x) ~ Z (a, cosnz + by, sinnz) .

n=1

Thus, A, = =% B, = % We have also that ®(0) = 0 and the Fourier

n? n

series of ® converges uniformly on R to ®. Thus,

A = n bn
O(x) = 70 + nz::l (% sinnx — - cosn:c)

for any z. Taking z = 0, we get
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Corollary 1.42. If 2r-periodic function f is continuous on R and ag = 0,
an = by, =0, then f(z) = 0.

Indeed, [ f(t)dt = 0; differentiating, we get that f(z) = 0 for each z.
0

Corollary 1.42 represents the so called uniqueness property. It can be
also formulated as follows.
If two continuous 2mw-periodic functions have the same Fourier coefficients,

then these functions coincide everywhere.

1.8. Complete orthogonal systems

Let f,, be a sequence of continuous functions defined on an interval [a, b]. We

say that this sequence mean square converges on [a, b] to a function f € R]a, b

o0
if | fn, — fll, = 0 as n — co. We say that a series of functions ) u,(z) mean
n=0
square converges on [a, b] to a function f € R]a, b] if the sequence of its partial
n

sums f,(z) = > ug(x) mean square converges to f on [a, b].
k=0

Definition 1.43. An orthogonal system {¢,} -, is said to be complete

oo
if for any continuous function f its Fourier series > ¢, . () mean square
n=0
converges to f.
Theorem 1.44. An orthonormal system is complete if and only if for any

continuous function f
o b
d = / 2(x) da. (1.30)
n=0 a

PROOF. Let {¢,},—, be an orthonormal system, let ¢, be the Fourier
coefficients of a continuous function f, and let S, be the partial sums of
the Fourier series of f with respect to this system. Rewrite the Bessel iden-

tity (1.21) in the following form

n

If = Sulls = 11£13 =) e

k=0

It follows that the condition || f — S, ||, — 0 is equivalent to (1.30).
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Equality (1.30) is called Parseval’s equality. This is an infinite-dimensional

counterpart of Pythagorean Theorem.

Theorem 1.45. Let ® = {¢,,}, -, be a complete orthogonal system. If a
continuous function f is orthogonal to each ¢, (n =0,1,...), then f(z) =0
for all x € [a, b).

PrROOF. We may assume that ||¢, ||, = 1 for all n. The Fourier coefficients
of f are equal to zero. Thus, by Parseval’s equality (1.30),

/bfz(;c) dx = 0.

Since f is continuous, this implies that f(x) =0 for all z € [a,b].

Remark 1.46. The inverse statement also is true: if there is no nonzero
continuous function orthogonal to all the functions ¢,,, then {y, } is complete.

The proof is out of the scope of this course.

Theorem 1.47 (uniqueness). Let ® = {¢, } be a complete orthogonal
system. If two continuous functions have the same Fourier coefficients with
respect to ®, then these functions are identical on [a, b].

Indeed, the difference of these functions is orthogonal to each ¢,,, and

therefore this difference is identically equal to zero.

1.9. Cesaro summation of Fourier series

Let f € R[—m, 7| be a 2m-periodic function. Let
f(x) ~ % +nz_:1(an cosnx + by, sinnzx) (1.31)

be its Fourier series and let .S, (x) be the partial sums of the series (1.31). By
Dirichlet’s formula (1.25),

Sn(x):% / F(z+ 0D, () di. (1.32)
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where

1 1
Dn(t) = B + cost +--- + cosnt, Do(t) = 3

is the Dirichlet kernel. Remind that (see (1.26))

D) = 22 (n+3)t (1.33)

¢
281n2

We consider the arithmetic means

B So(x) + -+ + Sn(x)
on(7) = n—+1

(they are called Fejér means of the order n of the function f). We shall derive

an integral representation for o, (x). By (1.32), we have that

an(x):%/f(aszt)Fn(t) .

where

Do(t) + -+ Dy (1
n+1 ‘

The function Fj, is a trigonometric polynomial of the degree n. It is called

Fo(t) =

the Fejér kernel of the order n. We shall derive a concise formula for it.
By (1.33), we have

Fo(t) . i< 4 +sin (n+ 2 )t
n(l) = , sin—+---+sin|n+ = :
2(n +1)sin 5 2 2

Denote
= 1
®,(t) =) sin (k + 5) t.
k=0
Multiplying by 2sin % and using the equality

1 t
2sin (k + 5) tsin 5 = o8 kt — cos(k + 1)t,

we obtain

t n
2sin §<I>n(t) = Z [cos kt — cos(k + 1)t]
k=0

t
=1 —cos(n + 1)t = 2sin*(n + 1)5
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Thus,
2

Fo(t) = =— (Siﬂ(n+1)%>

2(n+1) sin £
It is easy to see that F), has the following properties.

(1) F, is even and non-negative.

<
4 Fn(t)gﬁ (0 <6 <t<m) and thus

pn(d) = max F,(t) -0 (n—o0) foranyd > 0.

Theorem 1.48 (Fejér). Let f € R[—m, ] be a 2w-periodic function.
Assume that at a point x the function f has one-sided limits f(z+) u f(xz—).

Then
flz+) + f(z—)
2

PRrROOF. Since F,, is even, we have

on(z) = / fle P (1) di = / @+ 1) + fz — OFa(t) d.

We may assume that

Since

we obtain that

where
pu(t) = f(x+ 1)+ f(z—t) = 2f(2).

We have
oz (t) =0 (t— 0+).
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Let € > 0. There exists a number 6 = d(¢) > 0 such that
pz(t)] <& (0<t<0).

Taking into account that F,, > 0, we have

1
o(z) — F(@)] < /wm\F w+/wm|F

/ £) dt
0

where i, (0) = Jnax F, ().

We observe that

(t)] dt,

>1|m

1 T 1
;/&@ﬁzi
and
/wm\ﬁ< /w< O+ |f(x— b)) dt + 2 f(2)
=§/umeamm:
Thus, _

o) = f(@)] < 5+ Majia(9).

Since i, (9) — 0 (n — 00), there exists N = N(g,z) such that

Mopn(8) < = (n > N).

It follows that
lon(z) — f(z)] <e (n>N).

Corollary 1.49. Let f be a 2m-periodic piecewise continuous function.
Then at every point x € R the Fourier series of f is summable by the method
of arithmetic means to the sum

flat) + f(z—)
: .




o8 1. FOURIER SERIES

Corollary 1.50. Let f € R[—m, 7| be a 2m-periodic function. Assume
that at a point x the function f has one-sides limits f(xz=£). If the Fourier
series of f converges at a point x, then its sum is equal to

flat) + f-)
5 :

In particular, if the Fourier series converges at a point of continuity of f, then

its sum is f(x).

Theorem 1.51 (Fejér). Let f be a 2m-periodic continuous function on
R. Then the arithmetic means o, (x) of the Fourier series of f converge to f

uniformly on R.

This theorem is proved by the same scheme as Theorem 1.48. We have to
observe only that, by virtue of the uniform continuity of the function f, we
can choose a number §(¢) independent of x.

One of important applications of Theorem 1.51 is the classical Weierstrass

Theorem on approximation by trigonometric polynomials.

Theorem 1.52 (Weierstrass). Let f be a 2m-periodic continuous func-
tion on R. Then for any € > 0 there exists a trigonometric polynomial 7" such
that

|f(x) =T (z)| <e forall zeR.

Indeed, by Theorem 1.51, the arithmetic means o,, converge uniformly to

the function f. Therefore for a sufficiently big n we can take o,, as T.

Theorem 1.51 yields also the property of completeness of trigonometric

system.

Theorem 1.53. Let f be a 2m-periodic continuous function on R. Then

the Fourier series of f mean square converges to f, that is

™

/ F(2) — So(@)]? dz — 0 (n — o0).

—Tr

PROOF. Let ¢ > 0. By Theorem 1.51, there exists a number N such that

F() = ou@)] < /o
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for all n > N and all x € R. Then, by virtue of the minimal property of the

partial sums S,, of a Fourier series (see Theorem 1.24),
[ U@ - 8,@P < [ 1f@) - ou@dr <z =N g

Remark 1.54. Theorem 1.53 remains true if f is merely integrable in
[—m,m|. For the proof it is sufficient to apply Theorem 13 on approximation

of an integrable function by continuous functions.

Another formulation of Theorem 1.53 is:

The trigonometric system is complete.
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Exercises to Chapter 1

1.1. Construct the graphs of the following periodic functions.

1.1.a. fle)=2 (-l<x<l), flz+2)=f(x).
1.1b. flz) = { O mm<a<l o) = f).
cosr, O<z<m,

0, —7m7<x<0,
2, 0<zx<2m,

1.1.c. fx) = { f(z+3m) = f(x).

1.2. Evaluate the Fourier coefficients of the given functions. All functions

assume to be 27-periodic. Construct the graphs of these functions.

1.2.a. flx)=2z (—w<z<m).

1.2.b. flx)=2% (—7m<z<m).
0, —7<x<O,

1.2.c. flx) = { L O<z<n

1.2.d. flz)=2 (0<x<2m).

1.3. Find the Fourier series of the following functions. Sketch the graphs

of their periodic extensions.

1.3.a. flx)=lz] (-l<x<1).

-3, —2<2<0,
1.3.b. f(z) = { v

3, O0<z<2.

1.4. Construct the periodic extensions of the following functions.

1.4.a. flz)=2 (-l<a<1).



EXERCISES 61

1.4.b. flz)=2 (-1<x<1).
l.4.c. flx) =22 (~1<z<1).
1.4.d. flx)=2° (—2<x<2).

1.5. Find the cosine- and sine-series for the following functions. Sketch

the graphs of the odd and even extensions and their periodic extensions.

1.5.a. fx)=1 on (0,a).
1.5.b. fz)==z on (0,a).
1.5.c. f(z) =sinz on (0,1).
1.5.d. f(z) =sinz on (0,7).

1.6. Find the Fourier series of the following functions.

1.6.a. flx)=2x on (-2,2).
1 1
) —5 < <3
1.6.b. fy=3 7 T2
1—=x 5 << 5-
1.7. Find the Fourier series of the function (cosx)™.
0
1.8.a. Prove that the system of functions {\/(1/7‘(’) sin (n + %) a:} is
n=0

orthogonal on [—m, 7).
1.8.b. Using this result and Bessel’s inequality, give an alternative proof of

the equality

hm——/f &n@+;)mm—o (f € Rl—m,]).
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oo

1.9. Applying Bessel’s inequality to the system {\/2 /7 sin na:} :

n=1
show that

where

™

2 ™
B, = —/f(x) sin nx dx.
0

1.10. Let f(z) = 5% (0 < x < 27). For any n € N, find a trigonometric

polynomial 7}, of degree n, which minimizes the norm

ot 1/2

2
£ =Talls = | [ 1£@) - Tuta)* o
0
1.11. Let f be a continuous 27-periodic function. For arbitrary «, 3, ~,

set
T

F(a,B,7) = 1 / [f(z) — a — Beosz — ~cos 10z]* dx.

™

Prove that F' attains its minimum at one and only one point («g, 50,70), and

find this point if:

1.11.a.  f(z) = cos? x;

1.11b. f

11lc. f

1.11.d. f(z)=1-—2cosx;

1.11.e. f(z) = |z|;

1.11.f.  f(z)=|sinz|.
1.12. The same for

1 ™
F(a,B,v) = - / [z —a — Beosz — vsin2x]” dx.

—Tr
1.13. Assume that 27-periodic continuous function f is such that for any

n € N there exist numbers «,,, 3,, such that

s

/ [f () — an — Bpsinz]” da <

— T

1
o
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Determine f.
1.14. Assume that 27-periodic continuous function f is such that for any
n € N there exist numbers «,,, 8,, ¥ such that

/[f(x) — —Bncosx—ynsina}]z dr < l

n
-7

Determine f.

1.15. Let a function f be Riemann integrable on [a, b]. Evaluate:

b
1.15.a. lim [ f(z)cos® nzdz;

n— oo
1.15.b.  lim fbf(;c) cos® nx du.
=00 a

1.16. Prove that absolute values of all extrema (maximums and mini-
mums) of the Dirichlet kernel D,, are not smaller than % Prove that there are
exactly 2n points of the local extrema of D,, in the half-open interval (—, 7].

1.17. Let f be piecewise smooth on an interval (0,a). Prove that the
cosine-series and the sine-series of f at a point xg converge to f(xg) if zq is
a point of continuity of f, and both converge to 3[f(zo+) + f(zo—)] if f is
discontinuous at x.

1.18. We say that f has the right derivative at a point zq if there exists

lim f(z) — f(560+)'

T—xo+ T — Xo

We say that f has the left derivative at a point xo if there exists
i @) = flzo—)

r—Xog— T — :]_’,’O

Prove the following theorem.

Theorem. Assume that 2m-periodic function f is piecewise continuous.
If f has the both right and left derivatives at a point xo, then the Fourier
series of f at xo converges to 5[ f(zo+) + f(zo—)).

1.19. Show that the Fourier series of the function /z on the interval
(—m, ) converges to /x for all z in (—m, 7).

1.20. Lipschitz functions. A function f is called a Lipschitz function of

the order o > 0 at a point xq if on some open interval containing xo there
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holds the inequality

|f(x) = flzo)| < Cla — 20|,

where C is a positive constant. !
1.20.a. Show that f(x) = 2'/3 is a Lipschitz function of the order 1/3 at
the point 0.
1.20.b. Let f(z) = zcos(1l/z) for x # 0 and f(0) = 0. Show that the
function f is Lipschitz of the order 1 at the point 0.
1.20.c. Show that, if f is differentiable at a point zg, then it is a Lipschitz
function of the order 1 at the point x.
1.20.d. Show that the functions in 1.20.a and 1.20.b are Lipschitz at every
point z (the order may be different for different x).
1.21. Evaluate

1.21.a. / D,,(t) sin 100t dt;
1.21.b. / D, (t) cos 100t dt.

1.22. Evaluate £ [ D2(t)dt for n = 100.

sin(t/2)
——, t#0,

1.23. Let g(t) =
9(t) {1/2, t=0.

s

Find lim 1 [ D, (¢)g(¢)dt.
n—oo "

1.24. Let f(x) =1— 22 (z € [-m, 7).
1.24.a. Evaluate ag, a,, b, (n € N).
1.24.b. Find the sums of the Fourier series of the function f at the points
x = Hm and = = 6.

1.25. Find the Fourier series of 1-periodic function

f(x)_{sf—[xl, v ¢ Z,

9 .CUEZ

IWe say also that f satisfies Hélder condition of the order c.
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Find the sums of the Fourier series at the points z =5, x = 3, and =z = 1, 5.
1.26.a. Show that

> sinnz T —x
= 0<x<2m).
R

n=1

1.26.b. Evaluate Z sinnx/n for =27 <z < 0.
1.26.c. Prove that

T X > sin 2kx
S 0<x<m).
19 ; op ~ (O<w<m)

1.26.d. Show that exercises 1.26.a and 1.26.c yield the equality

oo

sin(2k — 1)z
; Y (0 <z <m).

1.26.e. Find the Fourier series of the function 7 signz (|z| < 7). Prove the
equality from exercise 1.26.d, using this series and Dirichlet’s theorem 1.29.
1.27. Let fi(x) =z (x € (—m,7]). Find the Fourier series of f;.
1.28. Using exercise 1.27 and integration, find the Fourier series of the
following functions (formulate the theorem on integration of Fourier series and

verify its conditions)

1.28.a. folz) =2 (z € (—m,7));
1.28.b. fa(x) =2 (z € (—m,7]);
1.28.c. fa(x) =2, (z € (—m,7)).

1.29. Using the Fourier series of the function fo from the exercise 1.28.a,

evaluate

1
1.29.a. E —5
n
n=1

fo'e) _1)"
1.29.b. g ( 2).
n
n=1
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1.30. Let f be a 2w-periodic function. Assume that f € C"(R) (r > 1)

(that is, f has a continuous derivative f("). Prove that
o (£0)]+ o (7))

1.31. Let f be a 2w-periodic continuously differentiable function. Prove
that

an(F)|+ (1) = -

for any n > 1.

max |f(2) = Su(a)| = 2L (1= 1),

where €, — 0 as n — 0o (S, (z) denotes the nth partial sum of the Fourier

series of f).
1.32. Let f € C"(R) (r > 1) be a 2w-periodic function. Prove that

max | f(x) — Sn(z)| =

z€R nr—1/2

where ¢ — 0 as n — oo.

1.33.a. Prove that the series

Z sin nx

converges uniformly on R.

1.33.b. Let f(z) be the sum of this series. Is this series the Fourier series
of the function f ?

1.33.c. Prove that f € C}(R), and the Fourier series of f’ can be obtained
by the term-by-term differentiation of the initial series.

1.33.d. Show that f’ is piecewise smooth and continuous, and

Z sin nx re <07 27‘(‘))

(apply the theorem on term-by-term integration to the series on the right-hand
side and exercise 1.26.a).
1.33.e. Determine f.

1.34. Prove that if f is piecewise continuous on (a,b) and || f |2 = 0,

then f(z) = 0, with a possible exception of a finite number of points.
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1.35. Prove the following theorem.
Theorem. Let f be a periodic function. If f has k continuous derivatives,
then for some positive constant C the Fourier coefficients of the function f

satisfy inequalities
C C

L4n|§ EE’ u%ﬁ S EE

for all n.

A B, —n<x<0,
1.36. Let f(x) = { v = For which values of A and

cosr, 0<zx<m.
B the Fourier series of f converges uniformly to f on [—7, 7] 7
1.37. Let f(x) = mx — z|z| (z € (—m,7]), and f is periodically extended
with the period 27 to R. Is the Fourier series of f uniformly convergent 7
cosr, —w<x<0,

1.38. Let g(x) =
(@) sinx, 0<z<m.

1.38.a. Find the Fourier series of g.
1.38.b. Let

h(z) = /g(t) dt + asin% (—m <z <m),
h(z+27) = h(x). Find values of a for which the Fourier series of h converges
uniformly to h on [—7, 7).

1.39.a. Which of the following series are Fourier series ?

>, sinnx >, cosSnT >, sinnx
D) FOR 2) ) n3;3)§ _—

n=1 n=1 n=1

- - (—1) sinnz " cosnx

4) Zsinnx; 5) Z Z .
n=1 n=1 n=1

1.39.b. Which of these series converge uniformly on R ?

1.40. Let {g,} be an orthogonal system on an interval [a,b]. Let f be
a continuous function on [a,b] and let {c,} be its Fourier coefficients with
respect to the system {g, }.

1.40.a. Prove that the sequence of square norms

N
Hf - chgn
n=0 2
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decreases as NN increases.

1.40.b. Prove that Parseval’s identity

o b
S lgull? = / (x) de
—0 2

is true for any continuous function f on [a, b] if and only if {g, } is a complete
orthogonal system on |[a, b).

1.41. Using the completeness of the trigonometric system, that is, the
equality

l\DIi—l

i:: [A2 + B2] = /f2

where A,,, B,, are the Fourier coefficients of f, prove that trigonometric system
with the period 2a is complete on [—a, a], and the systems of sines and cosines
are complete orthogonal systems on [0, a].

1.42. Parseval’s identity can be used for evaluation of sums of some

series of numbers. Applying equality from the exercise 1.41 to the function
oo
f(z) = (72 — 322)/12, find the sum of the series > n~*

n=1
1.43. Show that the orthogonal system {sinnz} -, is not complete on

[0, 7].
1.44. Parseval Theorem.
1.44.a. Prove that an orthonormal system {g,} on [a,b] is complete if

and only if for any two piecewise continuous on [a, b] functions f and g there
holds the equality Z Cnd f f(x)g(z) dx (where ¢,, and d,, are the Fourier

coefficients of f and g with respect to {gn})
1.44.b. Extend this result on the case of orthogonal systems.

n

1.45. Let f,(z) = > (coskx —sinkx) + 1. Evaluate [ f2(z)dx
k=1 —T

1.46. Let f(z) =e * (-7 <z < 7). Evaluate @ E , where a,, are

the cosine-coefficients of the function f.

1.47. Let f be a piecewise smooth continuous function on [0, 7]. Assume
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that f satisfies at least one of the conditions
f0)=f(r)=0 or /f(a:)da:zo.
0

Prove Steklov’s inequality
[ P@is< [ @)
0 0

In which cases it becomes the equality ?
1.48. Let f be a 27-periodic continuous piecewise smooth function and

let

]f(a:) dx = 0.

Prove Wirtinger’s inequality

ifz(x)dxé /W(f')2 () d.

—Tr

oo
1.49. Prove that the series > & isn’t summable in the sense of mean-
n=1

arithmetic means, that is, lim o, doesn’t exist.
n—oo

1.50. Prove that the Fejér means satisfy the following equality

1 . k
on(x) = 5AO + Z (1 — m) [Af, cos kx + By, sin kx|,
k=1

where Ay, By are the Fourier coefficients of f.

1.51. Assume that 2m-periodic function f is piecewise continuous. Prove
that the condition m < f(z) < M implies the inequality m < o,(z) < M for
all x.

1.52. Prove that for any m
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oo

Hint: use the relation between the arithmetic means of the series >’
n=1

sin nx
n

and its partial sums, applying exercise 1.50.
oo

n
1.53. Let ) u, be a numerical series, let S,, = > wuy be its partial
n=0 k=0
sums, and let
_So+ -+ S,

n+1

On

be the arithmetic means.

1.53.a. Show that

u k

k=0
1.53.b. Show that S, = (n+ 1), — nop_1.

oo

1.53.c. Using exercise 1.53.b, show that, if the series )  wu,, is summable
n=0
by the method of arithmetic means, then
S
om0 and 2 0 (n — o0).
n n
1.54. Show that
1 < k
FE,(t) = 5 -|-Z (1 e 1> cos kt
k=1
(F, is the Fejér means of the order n).
o .
1.55.a. Show that for the arithmetic means of the series )  *"% we
n=1

have the equality

on(T) = —%m—k/Fn(t) dt.

0

1.55.b. Show that o, (v) < /5% for all 0 < = < 7.

o0

1.56. Show that the series § + ). cosnz is summable to zero by the
n=1

method of arithmetic means at every point x € [—m, 7| except = = 0. Is this

series a Fourier series? Does this series converge at some point?
o0

1.57. Show that the arithmetic means of the series ) sinnx are equal
n=1
to
1 r  sin(n+2)x —sinx

onlx) = =ct
(#) =5 cte 5 A(n+ 1)sin® 2
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and that o, (z) — %ctg% for any x € [—m, 7|, x # 0.
1.58. Prove that each of the systems

1
{5, cosx, cos2x, ..., COSNT, ... and {sinz, sin2z, ..., sinnx, ...}

is orthogonal and complete on [0, 7].
1.59. Let f be 2m-periodic and f € R[—m,7|. Assume that a, > 0,

oo

n € N. Prove that the series ) a, converges.
n=1

Hint: use the arithmetic means o, (x). We have




2. Fourier transforms

2.1. The main properties

2.1.1. Definitions and examples

We say that a complex-valued function f defined on R is absolutely integrable

on R if f is Riemann integrable in each bounded interval [a, b] and the integral

[1s@ds

converges. This integral is called the norm of f of the order 1 and it is
denoted by || f ||1. Throughout this chapter we denote by A(R) the class of
all complex-valued absolutely integrable functions on R.

Definition 2.1. For a function f € A(R), its Fourier transform fis
defined by

fo) = [ r@e e an (21)
Since }e_i%gw‘ = 1, the integral (2.1) is absolutely convergent for any

§eR.

For a 2r—periodic function integrable on [0, 27| we defined its Fourier coef-
ficients a,,, b, by formulas (1.4) and (1.5) (and the complex Fourier coefficients
cn by (1.11)). Clearly, the Fourier transform is an analogue of Fourier coeffi-
cients which is suitable for functions defined on R (non-periodic). Whereas the
Fourier coefficients depend on discretely varying index n, the Fourier trans-
form is a function of a variable £ which ranges in the whole line R (that is, f
and fhave the same domain R).

First we observe that the following simple properties hold.

72
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Theorem 2.1. Let f € A(R). Then:

(i) if the function f is even, then ]?also is an even function, and
]?(5) = Q/f(x) cos 2wz dx; (2.2)
0
(ii) if f is odd, then ¥ also is odd, and
F(&) = —2i / f(x)sin 27éx da. (2.3)
0

PROOF. We have e #27¢% = cos 2néx — isin 2réx. Assume that f is even.

Then f(x)sin27€x is an odd function of x and thus
/Oo f(x)sin2néx dz = 0.
On the other hand, f(x)cos27€x is an even function of z and thus
70 f(x)cos2néxdr =2 /oof(a:) cos 2méx dx.
—o0 0

These observations imply (2.2). Similarly, we obtain (2.3).

We consider some important examples.
Example 2.2. Let

I(z) _{ Lo el <172

0, |z|>1/2.
Then |
f(e) = Sn;gg (€#0), T(0)=1. (2.4)
Indeed, the function II is even and thus by (2.2),
o° 1/2
ﬁ(ﬁ) = Q/H(x) cos2wéx dx = 2 / cos 2néx dx = Sii;rg

0 0
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for any £ # 0. For £ = 0 we have
I1(0) = Q/f(x) do = 1.
0

The function (2.4) is called the Dirichlet kernel. Since

. sint
im — =1,
t—0 ¢

function (2.4) is continuous on the whole real line R.
Example 2.3. Let
1— <1
VA EE A
0, |z|>1.
Then )
~ sin® w&

MO =5 (€#0. AO)=1 (2:5)

Indeed, taking into account that A is even, and applying integration by

parts, we obtain

00 1
A(g) = 2/A(a:) cos 2méx dx = 2/(1 — x) cos 2néx dx
0 0

1
1 / o€ d 1 —cos2mé  sin®7é
= — [ sin27néxdxr = =
€ 2m2€2 T2€2
0

for any £ # 0. For £ = 0 we have

0

A(0) = 2/A(9:) do = 1.

0

The function (2.5) is called the Fejér kernel. Similarly to the Dirichlet kernel,

the Fejér kernel is continuous on the whole real line R.

Example 2.4. Let f(z) = e=271#l. Then

~ 1

f&) =

BEEYSN (2:6)
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Indeed, the function f is even and thus

~ - i 1 x
f(§) = 2/f(33) cos 2n€x dx = 2/e_2m cos2n€x dx = — /e_tcosﬁt dt.
7r
0 0 0

Two consecutive integrations by parts give (2.6).

2.1.2. Continuity and decay at infinity of Fourier transform

Fourier transforms evaluated in examples given above are continuous func-
tions. We shall show that this is a general property of Fourier transforms.

Theorem 2.5. Let f € A(R). Then the Fourier transform f is a bounded

continuous function on R, and

fle)] < 7 f@)de (€ €R). (2.7)

PrROOF. We have
|f(@)e™™5%] = |f(x)]. (2.8)
Taking into account that f is absolutely integrable on R, and applying Weier-
strass M-test, we obtain that both the integrals

0

/ f(x)e—%rigw d:c, /f(x)e—%rigw dx
—o0 0

—2mi€x

converge uniformly in £ € R. Further, e is a continuous function of

(x,€) € R2. Thus, by Theorem 17, the function

flo) = [ s e i
R
is continuous on R. Moreover, by (2.8),
F©) < [ 17wl

and for any £ we have (2.7).
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A function f € A(R) may be unbounded on R and discontinuous at some
points. However, as we have shown, its Fourier transform is continuous and
bounded on R. Moreover, f(£) — 0 as |¢| — +o0. It is a corollary of the fol-

lowing important statement which is called the Riemann — Lebesgue Lemma.

Theorem 2.6. Let f € A(R). Then

g11)1101o / f(x)coséxdx =0, (2.9)
glggo / f(z)sin&x dx = 0. (2.10)

PrRoOOF. We prove (2.9); the proof of (2.10) is similar. First we assume

that f is a step function vanishing outside some interval [a,b]. This means

that f(z) =0 for all z ¢ [a,b], and [a,b] can be subdivided by points
a=Tg<x1<:--<Tp,=>

such that f(x) = ¢; for x € (z;,2;41) (j = 0,1,...,n —1). Then for any
§#0

Tj+1

n—1
/ f(x)cos€xdr = Z c; / coséxrdr = % zz:o j (sinéxjpq —sinéx;) .

Thus,

C

/f Yeoséxdr| < — ‘5‘

n—1
where C' = 2 > |¢;|. This implies (2.9) in the considered case of a step
5=0

function.
Let now f be an arbitrary absolutely integrable function on R. Let ¢ > 0.
There exists A > 0 such that

—A 00
/|f(:z3)|d:v—|—/|f(x)|d:c<€. (2.11)
—00 A
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Further, by Theorem 12, there exists a step function h, equal to zero for

|z| > A, such that
A

/ F(z) — h(z)| dz < e. (2.12)
A
Now we have

7f(a:)cos§:z:dx < / f(x)d$+/A|f(:U)—h(a:)dsc—|- /Ah(;v)cosfxdx
o0 A A

> A
A

< 2e + /h(x)cosfxd:c :
A

As it was shown above, the latter integral tends to zero as || — oo. Thus,

there exists a number E > 0 such that
/ f(x)coséxdx| <3 (|¢| > E).

This yields (2.9) in the general case.

The Riemann — Lebesgue Lemma immediately implies
Theorem 2.7. Let f € A(R). Then

F(&) =0 (|¢] — o0).

Remark 2.8. This theorem is an analogue of the Riemann — Lebesgue
Lemma for Fourier coefficients (Lemma 1.27) which was derived from Bessel’s

inequality (1.22).

2.1.3. The Fourier transform of the Gaussian

The function g(z) = e™™ is called the Gaussian. This function plays an
extremely important role in different areas of mathematics.
We shall use the following equality which is well-known from the course of

Mathematical Analysis

oo

/ e ™ dy = 1. (2.13)

— 00
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Theorem 2.9. Let g(x) = e~ z® Then g9(&) = e~
PROOF. Since g is even, we have by Theorem 2.1,

0

9(&) = 2/e_m2 cos 2wéx dx.
0

Set
f(x, &) = e™™ cos 2réxr (x>0, £ € R).

Then f(z,§) and f{(z,§) = e_m2(—27rx) sin 2wéx are continuous functions.

Moreover,
[f@, 8 <e™™,  |fi(z,8)] < 2mwe™™ (220, EER).

Thus, by the Weierstrass M-test, both the integrals

oo oo
/e_m2 cos2méx dx and /e_”wa sin 2wéx dx
0 0

converge uniformly with respect to & € R. Therefore we may differentiate

under the sign of the integral. We obtain

oo

@) (&) = —477/6_7””290 sin 27z dzx.
0

Now we integrate by parts in the latter integral. This gives

@) (6) = 2™ sin 2réx

B 4%5/6_7“2 cos2m€x dx = —2mw€q(€).
=0
0

Thus, the function y = g(&) satisfies the differential equation

dy
= _orgy.
d T8y
The solution is
y(€) = Ce ™
Setting £ = 0 and taking into account (2.13), we get
C=y(0) = / e ™ dy = 1.
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2.1.4. Basic properties of Fourier transforms

In this section we summarize some basic formulas concerning Fourier trans-
forms.

Let a function ¢ be defined on R. For any h € R, denote 7,0(z) = p(x—h).
The operation 7, is called translation or shifting. Further, for any A > 0, set
Irp(x) = p(Az). The operation dy is called dilation.

Theorem 2.10. Let f,g be complex-valued functions, absolutely inte-
grable over R. Then the following properties hold.

(i) Linearity.

— ~

(f +9)(&) = f(&) +9(E)

and for any complex number «

(ii) Shifting. For any h € R

Thf(€) = e 2 hEf(g).

(iii) Change of scale (dilation). For any A\ > 0
_ 1~/¢
arf(§) = Xf (X) :

(iv) Modulation (shifting in Fourier transform). Let f,(z) =
f(x)e®™* where n € R. Then

~ ~ ~

fo(&) = F(&—n) = 1 f(£).

Moreover, for g,(x) = f(x) cos2mnx and h,(z) = f(x)sin 2mnz, we have

7O =5 [Te—m+Fe+n], 7 =5 [Fe+n-Fe—n].

PROOF. (i) By the linearity of integration, we have

F+9)© = [ @) +g@le > do
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_ / flw)e™ 7 do + / g(a)e™ 27 dx = F(€) + (),
and
af(€) = / o f (2)e 27 dg = o / F(@)e™ 27 4 = af(£).

(ii) Setting x — h = y, we obtain

wi©) = [ flo-mePar = [ e gy

-~

— e—i2ﬂ'§h / f(y)e—i%r&y dy — e—i27r§hf(€)'
(iii) Similarly, substitution Az = y leads to the equality
< 7 —i2méx 1 —i2méy/ 1~(¢
oaf(§) = [ f(Ax)e dr =~ [ f(y)e Viddy=<fl~]-
A A A
(iv) First, we have
Fi€) = [ sl mmds = fie -,

Further,

(ei27r17:13 + e—i27‘rnw> : SiIl(27T7]LC) — % (e—i2ﬂ'nw . ei27r17:13) )

N | —

cos(2mnx) =

Thus, formulas for g, and ﬁ; follow by linearity.

By Theorem 2.5, for any function f € A(R) its Fourier transform fis
continuous on R. Now we shall show that if f has a "good" rate of decay at

Y
infinity, then f is differentiable, and ( f) is obtained by the differentiation
with respect to the parameter £ under the sign of the integral in (2.1).
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Theorem 2.11. Assume that the functions f and zf(x) are absolutely
integrable over R. Then the Fourier transform fis continuously differentiable

in R. Moreover,

oo

<]/C\>/ (&) = —2mi / o f(x)e” 2™ dg, (2.14)
Proor. We have
fo) = [ s, (2.15)

Let F(x,£) = e *>™*¢, Then the partial derivative
Fé(:c,f) = —2mize” 2Tt
is a continuous function of variables z, & € R. Further,

|2f (2)e™278| < |af(2)].

This implies that the integral at the right-hand side of (2.14) converges uni-
formly with respect to £ € R. Thus, applying Theorem 18 to the integral
(2.15), we have that this integral is a continuously differentiable function of
&, and its derivative can be obtained by the differentiation under the sign of

the integral. This completes the proof.

Applying Theorem 2.11 and induction, we obtain the following corollary.
Corollary 2.12. Let m € N. Assume that the functions f and g(z) =

x™ f(x) are absolutely integrable over R. Then the Fourier transform f has

AN

m)
the continuous derivative ( f) on R, and

GGEEE) (2.16)

The next theorem gives the Fourier transform of the derivative.

Theorem 2.13. Let f be a continuous, absolutely integrable, and piece-
wise smooth function on R. Assume that f’ also is absolutely integrable.
Then

— o~

(f)(€) = 2mig f (). (2.17)
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PrROOF. By the Fundamental Theorem of Calculus (see Theorem 10), we

/f (x € R).

Since both the integrals f f'(t) dt and f f'(t) dt converge, there exist finite

have

limits

lim f(z) and lim f(x).

T—+00 r— —00
Since f is absolutely integrable, these limits are equal to zero. Integrating by

parts, we get

r—4o0 r—r—00

_ / f(@)e 2o dp = Jim f(x)e 2" — Jim f(z)e 2T

+2mi€ / f(x)e™ 2™ g = 2m§f(£) O

Using induction, we have the following corollary.
Corollary 2.14. Let f, f’,..., f"=D be continuous and absolutely in-
tegrable over R. Assume also that f("~1) is piecewise smooth and f(™ is

absolutely integrable over R. Then

~

(F)(©) = (2mi)"e™ F(e).
2.2. Fourier inversion, Gauss — Weierstrass

summation

We shall consider the Fourier inversion formula, which gives a solution of

the following problem: recover f from f The expected formula is

— [ Fpeea,

This an analogue of Fourier series. However, the integral may not exist (f
)

may not be absolutely integrable). To avoid this difficulty, we multiply f({
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by e~ 7o’ (a > 0). Since ¥ is bounded on R, this product is an absolutely

integrable function on R.
Lemma 2.15. Let f € A(R). Then for any o > 0

/ f(g)e—wa%?eizmc& d¢ = / flx —t)W(t, ) dt, (2.18)
where 1
W(t, Oé) — _e—7rt2/a2.
(07
PrOOF. We have
/ f(é‘)e—ﬂ'a2£26i2ﬂ'wf d§ — / /f(y)e—iQWyﬁ dy e_ﬂazﬁzei%m’g dﬁ
=T | ] e gy

Observe that for each a > 0 the function e=7"¢” is absolutely integrable on

R, and for each x the integral [ f(y)e™ "¢ (¥=2) dy converges uniformly with
— 00

respect to £ on R. Thus, by Theorem 19 (ii), we can interchange the order of
integrations at the right-hand side of the latter equality. We shall also take
into account that the integral
/ o T gmi2ne(y—) ge (2.19)
— 00
(with respect to the variable €) is equal to ga(y — x), where go(t) = e ™t
We have g, (t) = g(at), where g is the Gaussian. By Theorems 2.9 and 2.10 (iii),

the integral (2.19) is equal to

]. 2 2
Ee_”(y_x) [ = W(y —x,a).

Thus,

/ Fleye o€ ei2mat g = / F)W(y — z,a) dy.
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Finally, replacing ¢ by = — ¢, we obtain (2.18).

The function W (t, a) is called the Gauss — Weierstrass kernel.
To remove the factor e~ ¢ in (2.18), we make a — 0. We shall use the
following lemma.

Lemma 2.16. The family of functions

1
Wi(t,a) = —e ™ /% (a>0)

a

satisfies the following conditions:

() /W@@ﬁ:1m>w

(ii) W(t,a) > 0;

(iii) ps(a) = sup W(t,a) =0 (o — 0+) for any 6 > 0;
|t]>8

(iv) / W(t,a)dt -0 (a—04) foranyd> 0.

|t|>6

ProoOF. Equality (i) follows immediately from (2.13), and inequality (ii)

is obvious. Let 0 > 0. First, we have
1 —mt? /o 1 —m6% /o
W(t,a) = —e < —e (It| > 9).
« Q
Applying L’Hospital’s rule, we easily obtain that

lim 16_752/0‘2 = 0.
a—0 «

This implies (iii). Further, changing variable t = oz, we have

%) %) —é -6/
l/(3_7”52/0‘2 = /e_dez, 1 /6_7”52/0‘2 = / e ™ dy.
o e}

6 5/ —0o0 —00

By (2.13), these equalities imply (iv).
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Now we will prove a theorem which enables us to reconstruct a contin-
uous function f from its Fourier transform (Gauss-Weierstrass summation
theorem,).

Theorem 2.17. Let f be a continuous, absolutely integrable function on
R. Then

a— 0+

lim / F(€)e= ™€ o278 ge — f(p) (2.20)

for any = € R.
Proor. Fix x € R. By virtue of (2.18), equality (2.20) is equivalent to
the equality

a—0+

lim 7f(x—t)W(t,a)dt:f(x). (2.21)
Set _OOOO

o) = [ flo =Wt a)dt — f(a)
By Lemma 2.16 (i), -

f(z) = / F (@)W (¢, o) dt.

From here

A, z) = / @ —t) — F@IW(ta)dt.

Let € > 0. By continuity of the function f, there exists a number § > 0 such
that

[f(z—1t) = flx)] <e (t] <9).

Thus, taking into account statements (ii) and (i) of Lemma 2.16, we obtain

(e z)| < / o — 1) — f(@)|W(t o) dt

<e / W(t, o) dt + / |f(x—t) — f(z)|W(t, «)dt

[t|<o |t|>6
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<e+t / f(z — )W (¢, o) dt + | f(z)] / W (t, ) dt

[t|>6 |t|>6

By Lemma 2.16 (iv), there exists n > 0 (depending on € and x) such that

x)\/W(t,a)dt<€ (0 <a<mn).

t|>6

Further, we have

/\fa:—t\Wta)dt<sutha /\f )| du. (2.22)
It>6
It[>6

By Lemma 2.16 (iii), there exists 0 < " < 7 such that for all 0 < a < 7/
the right-hand side of inequality (2.22) is smaller than €. Thus, we have that
[v(a, z)| < 3¢ for all 0 < a <. This implies (2.21).

Remark 2.18. The statement of Theorem 2.17 is true if f is merely

piecewise continuous and

The main result in this section is the following Fourier inversion theorem.

Theorem 2.19. Assume that f is continuous and absolutely integrable

on R. If fis absolutely integrable on R, then
| foertic = 1) @em) (2:23)

ProoOF. Fix £ € R and set

~

(pm(gaa) = (g)emﬂ'xfe—ﬁoﬁgQ'

Then ®, (&, ) is a continuous function of (£, ) € R%. Furthermore,

(¢ 0)] < |F(6)]
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Since fis absolutely integrable, the integral

oo

/ D€, ) de = / Fle)ermmee e g

— 00

converges uniformly with respect to a € R and, by Theorem 17, this integral
is a continuous function of the variable o € R. The continuity at the point

a = 0 gives that

[ vcarie = [ ocod= [ Foers @0,

On the other hand, by Theorem 2.17,

o0

/ (€, a)dE = f(z) (o — 04).

— 00

Thus, we have (2.23).

Remark 2.20. The integral at the left-hand side of (2.23) is equal to
(), where p(&) = f(—ﬁ ). Thus, by Theorem 2.5, this integral is a continuous
function of the variable z. This shows that equality (2.23) is not true without
assumption that f is continuous. Moreover, it can be shown that if f has a
jump discontinuity at some point, then the Fourier transform of f cannot be

absolutely integrable on R.

We have the following uniqueness theorem for Fourier transform.

Theorem 2.21. Let f and g be continuous, absolutely integrable functions
on R. If f: g, then f =g.

This statement follows immediately from Theorem 2.17 (or Theorem 2.19)
applied to the function f — g.

Theorem 2.19 can be applied to evaluate some integrals.

Example 2.22. Let f(x) = e~ 2712l As it was shown in Example 2.4,

~ 1

M= ravey



38 2. FOURIER TRANSFORMS

Functions f and fare absolutely integrable on R, and f is continuous on R.
Thus, the conditions of Theorem 2.19 hold. Applying this theorem, we obtain
that for any x € R
oo ei2mx g o]
/ e
—oc0

or, equivalently,
o

cos 2mxé o
2/777(1+§2) d§ = e

for any = > 0 (Laplace integral).

Example 2.23. Let

f(a:)_{ b=lel/en frls oSy,

0, |z| >«
By Example 2.3 and Theorem 2.10 (iii),

~ 1 sin?
f(&) = a%-

Since the conditions of Theorem 2.19 hold, we have that

1 Vi sin? quré iomex .

for all z € R and all @ > 0. In particular, if z = 0, o = 1, then, setting

0 .2
sin“t .7
2 dt—g. [
0

As we have seen, the Fourier transform of the Gaussian g(z) = e~

w€& = t, we obtain

7T$2

coincides with it, that is, g = ¢. Using Theorem 2.19, we consider the following
Example 2.24. Let f € A(R) be a continuous function on R which is not

identically zero and such that f(§) = Af(£) for some constant A. Prove that

A is equal to one of the numbers 1, —1,7 or —i.
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Denote f1 = f We have f; = Af. Thus, f; € A(R) and therefore the
Fourier transform ]?1 exists. Set fo = ]?1 Then fo = A?f. On the other hand,
by Theorem 2.19,

f(x) = / F(6)e2me de = A / F(6)6>™ de = Af(~a).

Hence, fi(z) = f(—z)/A. From here,

~ 1 1

£2(6) = Fi(6) = 37 = T1(-6) = 5 (©)

Taking into account that fo = A\2f, we obtain f = \*f. Since f # 0, this
implies that \* = 1. [

2.3. Fourier inversion: Dirichlet’s method

Theorem 2.19 shows that a continuous function f € A(R) can be obtained by
equality (2.23), provided its Fourier transform falso is absolutely integrable
over R. However, the latter condition may not hold, and the integral at the
left-hand side of (2.23) may not exist. The following Dirichlet’s Theorem
states that for functions satisfying some good smoothness conditions, this

integral may converge in the sense of principal value, that is, as the limit
00 A
pv. [ FlOe e de = tm [ Fe)emer e
A— oo
—00 —A

Theorem 2.25. Let a function f be absolutely integrable on R. If f is

differentiable at a point x, then
pv. [ Feeee de = f(a). (224)

PRrROOF. For any A > 0

A A

Latw) = [ Foesas= [ | [ fweeray | e ag

—A —A oo
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‘f 7?@wﬁmw@ 3
S\

Observe that the conditions of Theorem 19 (i) on the interchange of the order
of integrations hold. Indeed, the interior integral converges uniformly with

respect to &. Thus,

A
Latw) = [ 1) | [ emm g | ay (2.25)
A
Applying Euler’s formula
‘ eiu - e—iu
siny = ————,
21

we have that the interior integral in (2.25) is equal to

¢=A
1 oi2nE(z—y) _ ei2mAle—y) _ g2 A(r—y) _ sin27A(z — y)'
i2m(x — y) i2m(x — y) m(x —y)
¢=—A
Thus,
1 sm 2w A(x —y
- / fy ) dy.

Setting y — x = t, we get

in27A in27A
i/f ysm2mAt /[fa:+ £) + fla — )22 2: i

Observe that for any a > 0

o
2 / 1nat
T

0

(this is Dirichlet’s integral). Hence,

sin 2w At

zﬂm—ﬂwzi/@ww———ﬁ, (2.26)

t
0
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where
pa(t) = flz+8)+ f(z—1t) — 2f(x).

We show that the integral at the right hand side of (2.26) tends to 0 as
A — 4o00. Let K > 1. We write this integral as the sum of two integrals:
over [0, K| and over [K,+o00). We have

r 2r A [ sin2rA
/ S 2m tdt <—/\fa:+t)+f(x—t\dt+ 2f ( /Smw L
K K
< [ r@ldur2s@)] [ S,
—o00 TAK

We assume that A > 1. Both the terms of the right hand side tend to 0 as
K — +00. Let € > 0; then there exists K such that

[ sin2rAt
/¢x(t)m+ dt| < g (2.27)
K

Fix this K. Since f is differentiable at the point z,

0z (1) 0

(t — 0+).

Thus, the function “DC’JT(t) is Riemann integrable on [0, K]. By the Riemann —

Lebesgue Lemma (Theorem 2.6),

K
/ %t(t) sin2rAtdt -0 (A — 400).
0

Therefore there exists A. > 1 such that

K

«(t) .
/wt()sm%TAtdt <§ (A> A).
0

Together with (2.27), this shows that the integral in (2.26) tends to 0 as
A — +o00 and thus

In(z) = f(z) (A—+400).
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Similarly, we have
Theorem 2.26. Let f be an absolutely integrable and piecewise smooth

function on R. Then at every point x € R

p.v. / Fleyermee gg = 1 (93+)—2Ff(:13—).

Example 2.27. Let a > 0 and
{ e ¥, x>0,

Then -
AN . 1

— —ax  —i2w€x dr = ———

f(©) / ©° T atione

0
Using Theorem 2.26, we obtain

e ¥, x>0,

T ionae
pr. [ gmede=4 12 w=0
—o0 0, z<0.
Denote f_(x) = f(—=). Then f_ (&) = f(—¢).
Let o = f + f—, p(z) = e~ *! (even extension of f). Then
- 2
PO = o

By Theorem 2.19,

T giznat
2a / ——_d¢ =e %l (z eR),

a? + 4mw2£?
— o0
or
v Tux
a (§] . —a|:B|
;/a2+u2du—e (x € R).
— 00
Equivalently,
O
/ COSUT T _alal
a? + u? 2a

0

(Laplace integral).
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2.4. Convolutions

In this section we consider a new operation which plays an extremely impor-
tant role in mathematics, especially for integral transforms.

Let functions f and g be defined on R. Then their convolution is the
function f * g, defined by

= /f(w—y)g(y)dy, (2.28)

provided that the integral exists.

First, we have the following property of symmetry.

Proposition 2.28. Let functions f and g be defined on R. Then f x g =
g * f provided one of them exists.

PROOF. Assume that the integral (2.28) exists. Setting © —y = u, we
obtain that y = x — u and

e /fas— dy—/f oz - u)

By the definition, the latter integral is the convolution g * f.

Various conditions can be imposed on f and g to insure that the integral
(2.28) is absolutely convergent for all x € R. We shall use the following
proposition.

Proposition 2.29. Assume that f and g are defined on R and integrable
in every bounded interval. Then each of the following conditions implies that

the integral

/ F@ - y)g(y)) dy (2.29)

converges uniformly with respect to x € R:

(i) functions f2 u g2 are integrable on R;

(ii) one of functions f, g belongs to the class A(R), and the other is bounded
on R;

(iii) one of functions f, g vanishes outside of a bounded interval [a, b].
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PROOF. First we observe that for any x € R and for any bounded interval
[a, B] the product f(x —y)g(y) is a Riemann integrable function of y in [« 3.
(i) Applying Schwartz inequality (Theorem 23), we have

8 8 /2, g 1/2

/\f(w—y)g(y)ldy < /fQ(fv—y) dy /92(?4) dy

(6 67 (6

/Oofz(w—y)dy /gz(y)dy

Setting w = x — y in the first integral on the right-hand side, we obtain

. 1/2

/\fx— vl dy < /f /g2<y)dy

(6

The integrand on the left-hand side is a non-negative function. Hence, for

any ap € R and any x € R the integral
/\f z — y)g(y)| dy (2.30)

converges. ].\/[OI'GOVGI'7

. 1/2

/\fx— vl dy < /f /g2<y)dy

(6

for any a. The right-hand side doesn’t depend on z, and the second integral on
the right-hand side tends to zero as a — +o00. This implies that the integral
(2.30) converges uniformly with respect to x € R.

Similarly, we obtain that for any 5y € R the integral

/ |z —y)g(y)| dy (2.31)

converges uniformly with with respect to z € R.
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(ii) Using the property of symmetry, we may assume that g € A(R) and
f is bounded,
f(x)| <M (z€R).

Then for any interval [, (]

/uw— |@<M/m|@<M/m|@

As above, this implies that for any oy € R the integral (2.30) converges
uniformly with respect to x € R. Similar arguments yield that the integral
(2.31) also converges uniformly with respect to x € R.

(iii) We assume that g vanishes outside of a bounded interval [a,b]. Then

7vw— wy—/wa— y)|dy =0

for any @ > b and any 8 < a. This implies the uniform convergence of the
integral (2.29).

forallz € R

In the sequel we study convolutions f % g under the assumption that func-
tions f, g satisfy one of conditions (i)-(iii). Although these functions may be

discontinuous at some points, their convolution is continuous.

Proposition 2.30. Let functions f and g be defined on R and integrable
in every bounded interval. Assume that one of conditions (i)-(iii) of Proposi-
tion 2.29 holds. Then the convolution ¢ = f % g is continuous on R.

PrROOF. We give the proof only for the case (i) (in which we use this
statement below in the proof of the Plansherel identity). Let the functions f?2
and g? be integrable in R. Set o(x) = (f * g)(x).

First we assume that f is a continuous function which vanishes outside
an interval [a,b]; then f is uniformly continuous on R. Fix a point z¢ € R.

Applying Schwartz inequality (Theorem 23), we have

W@m+m—¢@wh§/me+h—y%:ﬂ%—ymﬂwwy
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1/2 1/2

<| [teoth-u)-s@o-wPar] | [Py
Let € > 0. Since f is uniformly continuous on R, there exists a 0 < § < 1 such
that if |h| < §, then

|f(x+h)— f(x)]<e (ze€R).

Thus,

oo

/ Flao+h—y) — flao— )P dy

—00
b+1

_ /[f(aerh) Cf@)Pdr < 2(b—a+2)

1/2
if |h| < d. Setting A = < [ ¢*(y) dy) , we obtain

lo(xg + h) —p(xo)| <eAVb—a+2 (|h| <9).

This implies that ¢ is continuous at the point zg.
Let now f be an arbitrary function such that f2 is integrable on R. Let
e > 0. By virtue of the theorem on approximation (Theorem 15), there exists
a continuous function f. with a compact support such that
0o
[ @) - f.@)Pdo <
—oo
Let ¢. = f. * g. As above, applying Schwartz inequality (Theorem 23), we
obtain that
oo

() — pel(a)] = / oz —9)F ) - f- ()] dy

oo

1/2

<Al [Uw-rwre)  <a
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for any x € R. As it was proved, . is uniformly continuous on R. Let xy € R.
Then there exists 6 > 0 such that if |h| < J, then

e (z0 + h) — 0 (m0)| < e.

Thus,
o(xo + h) — @(xo)| < (24 +1)e  (|h] <9).
This yields that ¢ is continuous at the point xg.

The main result in this section is the following Convolution Theorem.

Theorem 2.31. Let functions f and g belong to A(R) and satisfy one of
conditions (i), (ii) or (iii). Then f x g € A(R) and

—_— -~

fxg(&) = f(€)g(). (2.32)

/ﬁfx— )| dy.

By Proposition 2.30, the function I = |f|x|g| is continuous on R and therefore

PROOF. Let

it is integrable in each bounded interval. Further, let

/|f:13— y)| dz.

J@wzm@M/Wﬂx—wa:m@mum.

Then

Thus, J(y) is integrable in each bounded interval; moreover,

(0.]

/ﬂw@:Mh/mw@:wme

Applying Theorem 20 to the function F(z,y) = |f(z — y)g(y)|, we have that
the integral [ I(z)dx also converges. Since |f * g(x)| < I(z), it follows that

f*gEA(R)_-
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Now we consider the Fourier transform of the convolution
fxg(&) = / f g(x)e—mm& dr = / / Flz—vy)g(y)dy o—i2maé g

As above, using Theorem 20, we interchange the order of integrations in the

last iterated integral. Thus, we obtain

Fea(e) = / 9(y) / Flo —y)e 2 g | dy

-]

g(y)e= 2™ dy / Fluw)e 27 du = 5(6)F(6).

2.5. Plansherel identity

In this section we prove one of the fundamental theorems in the theory of
Fourier transforms — Plansherel’s identity. It can be interpreted as a contin-
uous counterpart of Parseval’s identity.

We shall consider complex-valued functions f = u 4+ iv, where v and v are
real-valued functions on R. If u,v € A(R), then we say that f € A(R). In this

case the Fourier transform of the function f is defined, as usual, by
fo) = [ r@e s,

Theorem 2.32. Let a complex-valued function f belong to A(R). Assume
2
that |f|? is integrable on R. Then )ﬂ also is integrable on R and

]O £ @) dr = 7 7 ae (233

PROOF. Set g(x) = f(—x). Then g and |g|? are integrable on R. Let
h = f xg. By the Convolution Theorem (Theorem 2.31), h € A(R) and
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-~ -~

A() = F©)3(6). But

A~

36 = [ e metdn = [ Fliedy = 7o)
~ 2
Thus, h(€) = |F(6)]
By Proposition 2.30, the function A is continuous on R. Applying Theo-

rem 2.17, we have that

/ h(€)e ™ € ei2mT ge s h(z) (o — 0)
for any z € R. Taking x = 0, we obtain

B(a) = / h(©)e ™ dg = h(0) (o — 0). (2.34)
Observe that /f;(f) = ‘f(f)‘z
function on (0,00) and, by (2.34), ®(«a) < h(0) for a > 0. Further, if |¢| <
1/a (a > 0), then e~ ™€ > =7 Thus,
1/a
[ heas < ehio)

-1/

> 0. Hence, ® is a non-negative non-increasing

for any v > 0. This implies that the integral

JRIGE:
converges. Hence, we can apply Theorem 2.19 (Fourier inversion). By this

theorem,
oo

h(z) = / o2 (6 de

— o0

for any x € R. For x = 0 this gives that
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~ ~ 2 2
Since h(§) = ‘f(f)‘ , then )f’ is integrable on R and

(0) = 7 Fel a

On the other hand,

(o.e)

h(0) = /

g(—t)f(t)dt = / FO dt.

This implies (2.33).

Example 2.33. Let

1
f(x)—{ bl < 2

" _sinﬂf
f(&) = e
Thus,
OOSin27Tf _OOA 2 _002 _
Zo Wdf—lo 7 df—[@f () do = 1.
From here,
oo,
/SlIZ122dZ:7T' _

This equality has been obtained above (see Example 2.23).
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Exercises to Chapter 2

2.1. Evaluate Fourier transforms of the following functions

2.1.a. flz) = { Lo lel<1,

0, [|of>1;

1, 0<z<l,

2.1.b. f)={ -1, -1<z<o,
0, |z|>1;

2.1.c. f(z) = eIl

2.1.d. f(z) = el cos 2ma;

2.1.e. f(x) = e 1ol 4 iTI(2)

(the definition of the function II see in Example 2.2);
2.1.f. f(x) = A(x) +ie”?1"l cos 2ma

(the definition of the function A see in Example 2.3).
2.2. Cosine-transform.
2.2.a. Prove that if a function f € A(R) is even, then

flu)=2

f(x) cos 2ruz dx.

2.2.b. For a function f € A(0,00) its cosine-transform f(; is defined by

N 00

fo(u) = 2 [ f(x)cos2mux dx. Prove that the cosine-transform of a function
0

f is equal to the Fourier transform of the even extension of f.

2.3. Evaluate cosine-transforms of the following functions

2.3.a. flx) =e"%;
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1, 0<x<?2,
0, x>2;

2.3.b. h(z) = {

1-22, 0<uz<1/2,
2.3.c. k(x)—{ ’ z<1f

0, z>1/2.

2.4. Evaluate Fourier transforms of the following functions

<
2.4.a. flx) = z, lzl<a,
0, |z|>a;
<
2.4.b. fa)= 4 8T lelsm
0, |z|>m;
1 <
2.4.c. fa) = | e lelsm
0, l|azf>m;
2.4.d. f(x) = |zle” !l
e’, x <0,
24.e. xr) =
/(@) { —e T, x>0.

2.5. Evaluate Fourier transforms of the following functions

25.a. flz) =TI (x _ %) ;
2.5.b. f(fL“)ZH(x_a%a> (a > 0);
25.c. F(x) = Ti(x) sign

2.5.d. flx)=e"c=7t (¢>0, beR);



EXERCISES 103

2.5.e. flz)=e @/ (¢>0, beR);
2.5.f. f(x) =e lsinbz (¢>0, beR).
2.6. Prove that [e ™ *"sincrdr = z$7 and [e " coscrdr = %,
0 0

where a > 0, c € R.

2.7. Evaluate Fourier transforms of the following functions

1, < Le,
2.7.a. f(z) = { 2l < 3¢

0, |z|> 3¢

T < 1
2.7.b. flay=1{ e ‘f‘ 2¢
0, |z|> 3¢
2 mx < 1
2.7.c. flz) = R e lx| 2¢
0, |z|> 3¢
1 x
2.7.d. fz) = A (—) (¢ > 0);
c \c
2.7.e. flx) = x2e” T
2.7.f. f(z) = (4mz® — 1) e

(0.]
2.8. Using the equality [ L?t dt = %, evaluate the Fourier transform of
0

the function f(z) = 9 (g > 0).

x

2.9. Evaluate the Fourier transforms of the following functions

2.9.a. fx)=e" (a>0);

2.9.b. flx) = o drt—du—1,
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2

2.9.c. flx) =xe ™.

0, =<0, .
2.10. Let H(z) = Evaluate the Fourier transforms of the

1, x>0.

following functions

2.10.a. f(x) = H(x)e™ ™ (a > 0);

2.10.b. f(x) = H(x)e " *cosbxr (a >0, b+#0);

2.10.c. f(x) = H(x)e " *“sinbzr (a >0, b#0).

2.11. Let f € A(R). Evaluate the Fourier transforms of the following

functions

2.11.a. f(=z);
2.11.b. f(xz—z0) (20 €R);
2.11.c. f(x)eo® (& € R);
2.11.d. f(z) sin o
2.11.. f(Bz)e™;
2.11.f. f(2z).

2.12. Assume that f is continuously differentiable, f’ is piecewise smooth,
fy f', f” and xf’(x) are absolutely integrable on R. Apply Fourier transform

to solve the equation

f'(x) +xf'(x) + f(x) =0, f(0)=1, f/(0)=0.
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-~ -~

2.13. We shall write f(z) D f(u) to denote that f(u) is the Fourier

transform of a function f(z). Prove that if f and fare absolutely integrable,

~

and f is continuous, then f(x) O f(—wu). Using this result, verify that

—27|ul.
2.13.a. 22 D me” “TUl
sin? T A
2.13.b. o 2 Aw).
2.14. Using 2.13.b, prove the equality [ Sl?}# dr = .

2.15. Prove that if the second derivative f” belongs to A(R) and is
piecewise continuous, then f € A(R).

Hint: Apply Corollary 2.14.

2.16. Assume that functions f, g € A(R) are piecewise continuous.
Prove that if f: g, then f = g, with a possible exception of a set which is
finite in each bounded interval.

2.17. Give an example of a continuous bounded function on R which
is not absolutely integrable. Conversely, give an example of a continuous
absolutely integrable function which is unbounded.

2.18. Let a piecewise continuous function f € A(R) have points of
o0

unremovable discontinuity and is such that 0 < [ |f(z)|dz < oco. Prove
— 00

that fcannot be absolutely integrable.

2.19.a. Prove that ime=271*l sign z > ﬁ

2.19.b. Show that g(u) = 3% is not absolutely integrable.
2.20.a. Using Example 2.2 and basic properties of Fourier transforms,
7 1 7 1 sin? Tu
.2
2.20.b. Show that g(u) = #=T is not absolutely integrable.

U
2.21. A function f is said to satisfy two-sided Lipschitz condition at a
point x if

[f(z+5) = fla+)] < As™ (61 >5>0),

[f(z+s) = flz=)| < Bs” (=0 <s5<0),
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where A, B, a, (3, 61, 02 are some positive constants. Prove the following

theorem.
Theorem. Let f € A(R) be a piecewise continuous function. If f satisfies

two-sided Lipschitz condition at a point x, then

pv. [ )™ du= 3(f(w+) + f(o-).

2.22. Let f € A(R) be a continuous function. Assume that

N . 1_527 |§|§1’
f(&)—{ o It

Find f.
2.23. Let f € A(R) be a continuous function. Let

PR B Bl S g B
f(f){O, > 1.

Find f.
2.24. Using the Fourier inversion formula, prove the following equalities

oo

coséx T ale '
2.24.a. /m dﬁ = %e =] (.T € R, a > O),
0
i 1242 1 /7m0 _ =22
2.24.b. /e 298 coséx dé = —\/;e 2.2 (z €R, 0> 0);
o
0
2 7Sin2§ 1— |z, |z| <1,
2.24.c. — cos (2éx) d€ =
w ] e em Y { 0. Jal > 1.

2.24.d. Using exercise 2.24.c, derive the equality

oo

sin? ¢ 7
[
0
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2.25. Find a continuous and absolutely integrable function f on [0, c0)

such that

(€ €R).

/f(x)cosﬁxdx = 1‘352
0

Is f determined uniquely?
2.26. Find a continuous and absolutely integrable function f on [0, c0)
such that

1 —cosé

f(x)cos€xdr = e

(€ € R).

Is f determined uniquely?
2.27. Using the Fourier transform of the function II from Example 2.2
and Plansherel identity (2.33), prove that

o0

[osta-s

0

2.28. Let g(&) = (Ecos& —sin &) /€2,

2.28.a. Using the rule of differentiation of Fourier transform, find g.
2.28.b. Evaluate the integral

oo

) 2
TCOST — SInT
5 dx.
T

0

2.29. Prove the equality

2 1—x 1+x

rsintzx 1 [sinm(l—2) sinw(l+ x)
1—x2 2

] (z # +1).

Using this equality, evaluate:

599 x sin i
.29.a.

1— 932 s
0

2.29.b. /n(x$nﬂw> dr.
1 — 22
0
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2.30. Let W(t, ) be the Gauss — Weierstrass kernel (its properties see in
Lemma 2.16). Denote the right-hand side of equality (2.18) (see Lemma 2.15)

by
/fa:—t (t, @) /f W(x — s,a)ds.

Let a function f € A(R) be bounded and piecewise continuous. Prove that
oW x f(z) uniformly with respect to z in R tends to zero as a — oo.

2.31. Assuming that f € A(R), prove that

/\W* \d:c</\f )| da.

2.32. Let a function f € A(R) be continuous and m < f(z) < M (x € R).
Prove that m < W« f(x) < M (z € R).

2.33. Using the definition of a convolution, prove that II x II(z) = A(x).

2.34. Evaluate the convolution {agiﬁ} * {b%lrwg}.

2.35. Let f € A(R) and let

o0 1_
:/f(x—u)iu(;osudu, x € R.

Express g in terms of f

2.36. Using Fourier transforms, solve the equations

2.36.a. /f flo —t)dt = ™4™

2.36.b. / F)f (e — 1) di = - 4—1932



3. Legendre polynomials

3.1. Definition and recursion formula

The classical Legendre polynomials are algebraic polynomials that form an
orthogonal system on the interval [—1,1].

First we introduce a general notion of a generating function which will be
used to define the Legendre polynomials.

Let {an} -, be a sequence of numbers. We consider the power series

oo
g an,r”.
n=0

If this series has non-zero radius of convergence, then its sum is called the
generating function for the sequence {a, }.

For example, if all a,, = 1, then

o . 1
F(fr):Zr =T Ir| < 1.

n=0

Set
1

Flar) = (1 —2rz +12?)

1/2°

For a fixed x € [—1, 1], we consider F(x,r) as a function of r. If x = 1, then

1 oo
F(l,r) = = r".
1—7r
n—0
If z = —1, then
1 O
F(-1,r) = = (=1)"r".
147
n=0

109
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Now we fix an arbitrary € [—1,1]. The function r — F(z,r) is infinitely
differentiable at r = 0. Denote by P,(z) the nth Taylor coefficient of this

function at r = 0, that is,

1 0"F(x,0)
P(z) =~ —— o (3.1)
In particular,
Py(x) =1, Pi(z)=u=. (3.2)

Thus, the Taylor expansion of F(x,r) with respect to r is the power series

Z P (x)r". (3.3)

It will be shown below that this series converges to F(z,r) for |z| < 1 and
7| < 1. For small |r| one can prove it with the use of the Taylor expansion
for (1 — 2)~Y2 for |z| < 1, taking z = 2zr — 72, and applying the binomial
formula to each power of (2xr — %)™,

We shall derive the recursion formula for P, (x). We observe that it is not
necessary to use the convergence of the series (3.3) since we can operate only

with Taylor coefficients.

We have
8F( ) x—r
—(z,7r) = :
or (1 —2xr+ 7“2)3/2
Thus,
oy OF
(1—2zr+1?%) a—(a:, r)=(x—r)F(z,r). (3.4)
r
It follows from (3.3) that the Taylor series for OF/0r is
Z(n + 1) Py (x)r™
n=0

(this series is obtained by a formal term-by-term differentiation of the series
(3.3)). Therefore for any n > 1 the Taylor coefficient of r™ for the function at
the left-hand side of (3.4) is

(n+1)Ppt1(x) —2nzPp(x) + (n — 1) Py—1(x).
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On the other hand, for the function at the right-hand side of (3.4) the Taylor
coefficient of 7™ is
zP,(z) — P_1(x).

Since these coefficients are equal, we get
(n+1)Ppt1(x) — 2n+ 1)zP,(x) + nP,—1(x) = 0. (3.5)

This relation is called a recursion formula. It follows immediately by in-
duction and (3.2) that P, (x) is an algebraic polynomial of degree n. The
polynomial P,(x) is called Legendre polynomial. =~ The function F(z,r) is
called the generating function for the Legendre polynomials.

Proposition 3.1. The system of Legendre polynomials has the following
properties:

(i) the leading coefficient of P, (x) is
1-3-----(2n—1)

n!

an = 3

(ii) Poy,(x) contains only even powers of x; Ps,_1(x) contains only odd
powers of x. Thus, P,(—xz) = (—=1)"P,(z);

(i) Po(1) = 1, Pa(—1) = (~1)";

(iv) for each n € N the power ™ is a linear combination of Py(z), k =
0,...,n

(v) any algebraic polynomial ) of degree m can be represented in the form

ZakPk

k=0
PrRoOOF. Indeed, for the proof of (i) we observe that by the recursion
formula (3.5),
(n+ Dapy1 = (2n+ 1)ay,

and thus
2n+1

n+1

an_|_1 — an.

It remains to apply the induction.
Statements (ii) — (iv) also can be easily proved by induction, with the use

of the recursion formula (3.5); (v) follows from (iv).
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3.2. Rodrigues formula

The Rodrigues formula gives an explicit expression for Legendre polynomials.
Sometimes it is used for the definition of these polynomials.
We shall apply the following Leibniz’s rule. Let u = u(z), v =v(x) be n

times differentiable functions. Then

Theorem 3.2. For any n € N

1 dr
—onpl dan

P, (x) (z2 —1)". (3.6)

PrOOF. Denote by R, (x) the right hand side of (3.6). It is obvious that
Ro(x) =1=Py(z) and Ri(z)=z= Pi(x).

The theorem will be proved if we show that R, satisfy the same recursion

formula as P,.
We have
d 2 n+1 2 n
— -1 =2 1 —1) .
L@ =)™ = 2t e (® - 1)
Thus,

1 dnT1
Bna(@) = 20+ (n 4 1)! et

(:1:2 — 1)n+1

L d" {x (z° — 1)”} : (3.7)

- 2nn! dxm

By Leibniz’s rule, we obtain

Rn~|—1($) =

— onp)

1 dm n dn—l "
[xd:c_” (:1:2 — 1) + no (332 — 1) ]

=zR, P
vhn(7) + 2nn!

where
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Performing one differentiation on the right hand side of (3.7), we have

<:1: (;U2 — 1)n>/ = (;U2 — l)n + 2nz? (;U2 — 1)n_1

—@n+1) (2> —1)"+2n (2= 1)""".

From here and (3.7),
1 dn—l

— 2 n 2 n—1
Ruti(2) = o= |20+ 1) (22 = 1)" +2n (a2 = 1)
2n +1
Thus, ) |
n 4+
Rn+1($) - Rn_l(a:) = on] Cbn(x) (38)
Before we have already obtained that
n
n - n = @n .
Ruer (2) = 2R () = 51 (2)

From these equalities it follows that
(n+1)Rpt1(z) — (2n+ 1)zR,(z) + nRy—1(z) = 0,
which coincides with the recursion formula for P,. Thus, R, = P,.

From (3.8) we obtain the second recursion formula for Legendre polyno-
mials.

Theorem 3.3. For any n € N

Py (z) = Py (x) = (20 + 1) P (). (3.9)

3.3. Orthogonality
In this section we show that the Legendre polynomials form an orthogonal
system on [—1,1].

Theorem 3.4. The Legendre polynomials satisfy the following orthogo-

nality relations

/ ) 0, m#n,
/Pm(CE)Pn(CE)dSL’{ 2/2n+1), m=n.
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PRrOOF. Using Rodrigues formula, we have for any function ¢ € C(™[-1,1]

(9:2 — l)n dx

|
H\}—‘
A
—~
8
N—
o
) Q
:‘ S

Q"n!/gp(x)Pn(x) dx =

= (—1)"/90(") () (332 — 1)n dx.

The last equality follows by a successive n-fold integration by parts; all the
integrated terms are equal to zero. If m < n and ¢(z) = P,(z), then
©™ (x) = 0. Thus,

1
/ Po(2)Py(@)dz =0 (m % n). (3.10)
1
Now, we denote
1
Cn = | P%(z)dx.
/

Let a,, be the leading coefficient of P,,. We have

Gn

P,(x) = Py—1(z) + Q(z),

an—1

where Q(x) is a polynomial of degree not greater than n — 1. By Propo-
sition 3.1 (v) and equality (3.10), polynomials P, and @ are orthogonal on
[—1,1], and hence

This gives that
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By Proposition 3.1 (i),

ap 2n —1
Ap—1 N n '
Thus,
2n —1
C, = Ch_1.
on+1 """

Besides, Cp = 2. Thus, C,, =2/(2n+1).

Corollary 3.5. For any n € N the polynomial P,, on the interval [—1,1]
is orthogonal to any polynomial () of the degree not greater than n — 1.
Indeed, by Proposition 3.1 (v), any such polynomial ) is represented in

the form

It remains to apply Theorem 3.4.
To some extent, the converse statement also is true.

Proposition 3.6. Let G be an algebraic polynomial of degree n, n € N.
Assume that the polynomial G on the interval [—1,1] is orthogonal to any
polynomial of degree < n—1. Then G(z) = ¢ P, (z), where c¢ is some constant.

PROOF. By Proposition 3.1 (v), the polynomial G can be represented in

the form

G(a:) = Z ck,Pk(:c)

By Theorem 3.4, we have

for any m < n — 1. On the other hand, by our assumption, the integral at

the left-hand side is equal to zero. Hence, ¢,, = 0 for any m < n — 1, and
G(x) = cpPu(x).

So, {P,(z)},° , is an orthogonal system on [—1,1]. We shall consider

expansions into Fourier series with respect to this system. Let f be a Riemann
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integrable function on [—1, 1]. Taking into account that

2
Pn = PR
Pl = /s

and applying formula (1.17), we define the Fourier-Legendre coefficients of
the function f by

/f(a:)Pn(x) dr (n=20,1,...). (3.11)

Example 3.7. Expand the function

1, 0<zx <1,
flz) =

0, -1<z<0

in series of Legendre polynomials.
Solution. By (3.11), we have

1
2
”+ /i% (n=0,1,..).
0

First, cg = 1/2. Further, for n > 1 we apply Rodrigues formula (3.6). This

gives

on+inl | dxn
0

1
n n—1
cn=2n+1/ d (x2—1)ndx:2n+1 d — (:1:2—1)n‘l.

Set o(z) = (z2 — 1) Clearly, @1 (1) = 0. On the other hand, by the
binomial formula, .
o) = SO (1)
k=0
The derivatives of order n — 1 of the powers z?* at = = 0 are equal to 0 unless
2k = n — 1. For an even n this case cannot hold and thus ¢,, = 0 for even n.
Let n = 2m + 1. Then simple computations give that

dm + 3 2m + 1
_ _1\m |
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iy )m4m—|—3 (2m)!
B 4m+l ml(m 4+ 1)1

Thus,

oo

1 4 3 2m)!
f(x) ~ B + Z (=)™ ;7;1_1 m'gmm_?_ 1)‘P2m+1(37)' [
m=0 ' '

3.4. Completeness

In this section we shall prove that the system of Legendre polynomials is
complete. According to Definition 1.43, this means that for any function f

continuous on [—1, 1], its Fourier-Legendre series

0

> enP() (3.12)

n=0

(where ¢,, are defined by (3.11)) mean square converges to f. The proof of
this fact is based upon the following Weierstrass theorem on approximation

by algebraic polynomials.

Theorem 3.8 (Weierstrass). Let f be a continuous function on [a, b].

Then for any € > 0 there exists an algebraic polynomial ) such that
|f(z) — Qx)| <e forall =z € la,b].

PrROOF. We shall derive this theorem from the Weierstrass theorem on
approximation by trigonometric polynomials (Theorem 1.52). We may as-
sume that [a,b] = [0, 7] (otherwise we apply the linear change of variable x =
a+t(b—a)/m, 0 <t <, and consider the function ¢(t) = f(a+t(b—a)/x)).
Further, we extend the function f to [—m,0] as an even function, and then to
the whole real line with the period 27. Denote the extended function by g.

Clearly, g is a continuous even 2m-periodic function, and
g(x) = f(x) forall ze]0,n]. (3.13)

Let ¢ > 0. By Theorem 1.52, there exists a trigonometric polynomial 7" such
that
g(z) — T(2)| < % forall z€R. (3.14)
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The Taylor series of the function 7' converges uniformly to 7'(x) on every
bounded interval (since 7' is a linear combination of cosines and sines). Let
S, be a partial sum of the Taylor series of T. Then for a sufficiently big m
we have that

T(z) — Sy ()] < % for all € [0, 7). (3.15)
Now (3.13), (3.14), and (3.15) imply that

|f(x) — Su(x)| <e forall ze€l0,n]
Since S,, is an algebraic polynomial (of degree m), this proves the theorem.

]

Now we prove the completeness of the system of Legendre polynomaials.

Theorem 3.9. The system of Legendre polynomials { P, }, -, is complete
on [—1,1].
PROOF. Let f be a continuous function on [—1,1]. We denote by S,, the

nth partial sum of the Legendre expansion of f, that is,

n

Sp(x) = Z ek Pr(x),

k=0
where ¢, are defined by (3.11). We show that

n— oo

lim / [f(2) — Sy (2)]2dz = 0. (3.16)

Let ¢ > 0. By Weierstrass Theorem 3.8, there exists an algebraic polynomial
() such that

|f(x) = Q(z)| <e forall ze[-1,1]. (3.17)
Let m be the degree of (). Then

Qx) =) arPu().
k=0

Using the least squares property of partial sums of Fourier series (Theo-

rem 1.24) and applying (3.17), we obtain that

[ = Su@)ie < [ 1) - Q)Pde < 22
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for all n > m. This implies (3.16).

By Theorem 1.44, the completeness property can be expressed in the fol-

lowing equivalent form.

Theorem 3.10. Any function f continuous on [—1,1] satisfies Parseval’s

identity
1
St - [ P
< 2n + 1 " '
n= -1

3.5. Legendre equation

In this section we show that Legendre polynomials satisfy a second order

differential equation.

Theorem 3.11. The nth Legendre polynomial y = P, (x) satisfies the

differential equation
(1- ;132) y" —2zy +n(n+ 1)y =0. (3.18)

PrROOF. For n =0 and n = 1 the theorem is true (see (3.2)). Let n > 2.

Equation (3.18) can be also written in the form
[(1—2?)y] +nn+1)y=0. (3.19)

Let g(z) = [(1 —2?) PT’L(x)}/ Since P! is a polynomial of the degree n — 1,
then (1 — z?) P/ () is a polynomial of the degree n+1, and g is a polynomial of
the degree n. We show that the polynomial g is orthogonal to any polynomial
of the degree not greater than n — 1. Let ® be such a polynomial. Integrating

twice by parts, we obtain
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(the integrated terms are equal to zero due to the factor 1 — x2?). Since the
degree of the polynomial ®'(z) doesn’t exceed n—2, then [(1 — z?) CID’(a:)}/ is a
polynomial of the degree not greater than n—1. By Corollary 3.5, the integral
on the right-hand side of (3.20) is equal to zero. Thus, the polynomial g of the
degree n on the interval [—1, 1] is orthogonal to any polynomial of the degree
not greater than n — 1. By Proposition 3.6, this implies that g(z) = ¢ P, (z),
where c is some constant. Applying Proposition 3.1 (i), we easily obtain that
the leading coefficient of the polynomial g is equal to —n(n + 1)a,,, where a,
is the leading coefficient of the polynomial P,,. Thus, g(x) = —n(n+1)P,(z).
It follows that P, satisfies equation (3.19).

Equation (3.18) is called Legendre’s equation. As it was already observed,

it can be written in the form

(127 y’)/ +n(n+1)y =0.

3.6. Laplace’s integral representation

Along with Rodrigues formula, there are known different integral represen-
tations for Legendre polynomials. The following representation is due to

Laplace.

Theorem 3.12. For each n
1 1/2 n
— (2% —1) cosgp} dep. (3.21)
T
0

PROOF. Denote by y,(z) the right-hand side of (3.21). We have

y1(z)

>1|~

/ x—|— z® —1) b2 cosgo] dp =x = Pi(x).
0

Our theorem will be proved if we show that functions y,, (z) satisfy the same

recursion formula as P, (z).
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Set Q@ = = + (22 — 1)/2 cos ¢. Then
1 e n—1
yn—l(x) - - Q d807
0
0
1 2 1/2 n—1
yn(x) = - {:1: + (:1: — 1) cos gp} Q dy
0
and _
1 2 1/2 2 -1
Ynt1(x) = - [a: + (22 = 1) " cos go] Q" d.
0
This implies that
1 T
(1 + D) = 20+ Dy ) + ngaca (@) = & [ WQMdp, (322
0

where
W=(n+1) {:1:2 + 2z(2% — 1)Y2 cos ¢ + (22 — 1) cos? gp}

1/2

—(2n+ 1)z {:1: + (2% - 1) cosgo} +n

= —n(z? —1)sin? o + (22 — 1)Y2Qcosp = U + V.

Integrating by parts, we obtain

™ o

/VQ"_ldgp = (332 — 1)1/2/62" cos pdp

0 0

= (2> = 1)"/? | (Q" sin ) [§ + n(z” — 1)1/2/62”_1 sin® pdip
0

™ o

= n(z? — 1)/Q“’_1sin2 odp = —/UQ”_ldgp.

0 0

Thus, the right-hand side of equality (3.22) is equal to 0. This implies that
yn(x) satisfy the recursion formula (3.5) and therefore (3.21) holds for all n.

]
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Applying Theorem 3.12, we obtain an upper bound for Legendre polyno-

mials.

Corollary 3.13. We have
|Po(z)] <1 forall ze[-1,1] andall n. (3.23)

PRrROOF. Indeed,

‘x+i(1—x2)1/2cosgo‘2:a:2+(1—x2)c032¢§x2+1—x2:1.

In view of (3.21), this implies (3.23). 7

Applying (3.23) and Weierstrass M-test, we obtain that the series

Z P, (z)r" (3.24)

converges for all z € [—1,1] and all r € (—1,1).

Furthermore, using (3.23) and recursion formula
Frii(@) = Py (2) = 2n+ 1) Pu(z), (3.25)

(see (3.9)), we obtain that

n(n+1)

P’ <
P ()] < =

(r € [-1,1], n € N). (3.26)

Indeed, denote by A,, the maximum of | P/ (x)| on [—1, 1]. It follows from(3.25)
and (3.23) that
An+1 S An—l + 2n + 1. (327)

We have also Ag = 0 and A; = 1. Applying these equalities and (3.27), and
using the induction, we easily obtain (3.26).
Let r € (—1,1) be fixed. By (3.26), the series

> 1P @)
n=0

converges uniformly for |z| < 1. Thus, by Theorem 7, we obtain the following

result.
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Corollary 3.14. We have

0 (v n) N proyn
o (nzo P, (2)r ) =Y P(x)r (3.28)
for all x € [-1,1] and all r € (—1,1).

We have already observed that for sufficiently small |r| the sum of series

(3.24) coincides with the generating function

1
F = )
(@,7) 1 —2rx 4 r?
Now we can show that -
F(x,r) = Z P, (x)r" (3.29)
n=0

for all x € [—1,1] and all r € (—1,1).
Indeed, fix ¢ € [—1,1]. The function y = F(z¢, ) satisfies the differential

equation

d
(14 7% — 2r:c0)d—:i +(r—z0)y=0 (3.30)

for all r € (—1,1). On the other hand, set

o0
Goo(r) =Y Pu(zo)r™, |r|<1.
n=0

Then g,, is a continuously differentiable function on (—1,1). Moreover, using
the recursion formula (3.5), we obtain that g,, also satisfies equation (3.30).
But this equation is equivalent to

o o —T
1472 —2rzg

(Iny(r))’

It is easy to see that its solution is unique up to multiplication by a constant.
Since ¢, (0) = F(x9,0) = 1, we have that g,,(r) = F(xo,r) for allr € (—1,1).
Since xg is arbitrary, we obtain that equality (3.29) holds for all x € [—1,1]
and all r € (—1,1).

Example 3.15. Expand the function f(z) = (5 — 42)~'/2 in a series of

Legendre polynomials on the interval [—1,1].
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We have

1 1 1
1) = s = 5" (#3)-

Thus, by (3.29),
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Exercises to Section 3

3.1. Prove that each of the systems

{Pan_1},2, and {Pa}.,

3.1.a. is orthogonal on [0, 1];
3.1.b. is complete on [0, 1].

3.2. Represent the function f(x) = (10 — 62)~'/2 as a series in Legendre
polynomials on the interval [—1,1].

3.3. Use the recursion formulas (3.5) and (3.9) for Legendre polynomials
to solve the following problems.
3.3.a. Show that

Pa0) =~ 2P (0) (0> 2),

and evaluate P,(0).
3.3.b. Show that P/ (0) = nP,_1(0).

3.4. Expand each of the following functions in series of Legendre poly-
nomials in two ways:

1) using Rodrigues formula (3.6) and exercise 3.3.a;

2) using recursion formula (3.9) and exercise 3.3.a.

1, 0<z<,
3.4.a. €xr) = -
fi(@) {0, -1 <x<0.
3.4.b. fa(z) =signx  (Jz| <1).
3.4.c. fa(z) = x| (Jz| <1).

3.5. Show that

Pr)=— 3 (1) (2n — 2j)le"~%

T L, = )i —27)
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Hint: use the Rodrigues formula (3.6) and the expansion of (332 — 1)n by the
binomial formula.
3.6. Show that
1

[ 1Pate) do <

—1

(n €N),

Bl

where C' is some constant.
3.7. Let f be a continuously differentiable function on the interval [—1, 1].

Prove the following estimate

A
len| < —= (neN),

NG

where ¢, are the Fourier coefficients of the function f with respect to the

Legendre system and A is some constant.

Hint: use the recursion formula (3.9), Proposition 3.1 (iii), and exercise 3.6.
3.8. Show that

1
Pl < gnt (| < 1.
Hint: use the recursion formula (3.9) and inequalities (3.23), (3.26).

3.9. Prove the equalities

— 712(:;711) [Pn_1(x) — Ppy1(x)]

= —nzP,(x) + nP,_1(x)
— (n + 1)3;Pn(33) — (n + 1)Pn—|—1(x)‘

3.10. Using equalities from exercise 3.9, prove that
(1—2) [Py(z) + Poya(@)] = (n+ 1) [Pa(@) = Prya(2)].

3.11. Using the Laplace integral representation (3.21), prove the estimate

2

1P, (z)] < 11— (1—2?)sinp]"? dp (2] <1).

SR
e
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3.12*. Prove the estimate

[P ()] < T (lz] <1),

where (' is some constant.

Hint: use exercise 3.11 and inequalities
et >1+t (teR);

. 2 T
sing > —¢ (0§¢§§).
T



Answers to exercises

2 4
1.2.b ao—ng, an—p(—l)”, by=0 (n=1,2,...)
1.2.c.
2
ap=1, a, =0, b,=0(n=2k); b,=— (n=2k—-1), (k=1,2,...).
™

1.2.d. ap =27, a, =0,b,=-2/n (n=1,2,...).

1.3 ! 4 i 1 (2 1)
.3.a. - — — ———cos(2n — )7z
2 72 ot (2n —1)2
12 1 2n — 1
1.3.b. sn 72D
2n —1 2
4o~ 1 2n — 1
1.5.a. Evenext.: 1. Oddext.: — Z sin m(2n )
7r 2n —1 a
n=1
xO
2n — 1
1.5.b. Even ext a_ _az m(2n ):13
2 7w (2n—1)° a
20 1 ™
Odd ext — in —
ex - z:: sin " x.
1.5.c.
1
Even ext 1 —cosl—2 Z 7r2n2 " cos COS TNX
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)nl

Odd ext.: 2msinl Z WZL sin mnax.
n=1
2 4 1

1.5.d. Even ext.: — — — cos2nxz. 0Odd ext.: sinz.

T m 4n? — 1
n=1

1.6.a.

4 XK (-D)t
— Sin 7[13
T n
n=1
1.6.b.
4 o0 (_1)n—1
= Z (o172 sin(2n — 1)7x
n=1
1.7.
[242]-1
(cosx) ! (n) cos(n — 2k) B
n—1 n
2 P k
where

anz—"< " ) (n=2k), Bp=0n=2k-1,k=1,2,...).

1.10. T, (z) = Z Zsinkz. 1.11.a. ag =1, 80 =0, 7% =0, F (3,0,0) =
2/3

1. 1.11.b. Qg =T 50:—4 ’}/0:004 F(OAO 5070):4857T4—18gg1%
1,3.1.11.C. 040250 ’}/0—0 F(OOO)_l 1.11.d. 040—1 Bo —2 Y0
0, F(1,-2,0) = 0. 1.11.e. ap =%, fo = 4,70 =0, F (Z,-2,0) = =" - 1¢

T2

111f. ap =2, 80 =0,7 = —59=, F (2,0, -32) = 1 — o225, 1.12. ap = 0,

)

Bo=0,v =-1, F(0,0,—-1) = %7‘(’2 —1.1.13. f(x) =a+ Bsinzx (a, B € R).

b
1.14. f(z) = a+ Bcosz + ysinz (o, B,7 € R). 1.15.a. 1 [ f(z)dz. 1.15.b.

0. 1.21.a. 0. 1.21.b. 0 (n < 100), 7 (n > 100). 1.22. 100,5. 1.23. 1.
1.24.a. ap =1— 272, a, = H(-1)""1, b, =0 (n=1,2,...). 1.24.b. °

s

and 0, resp.

1 1 1 1
]. . 5 ; E — Sln 27Tn£C 5, 5, 5
T+ = sin(2k — 1)z = (=)t
1.26.b. — 5 1.26.e. E ok 1 . 1.27. 2 E Tsmna}.
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(=D"

n

2 o0
i
1.28.a. —+4

— (—1)"*! 6
cosnr. 1.28.b. 2 Z (; (772 — —) sin nx.
n=1

U G (_1)n 2 6
1.28.c. €—|—8nz::1 2 ( —ﬁ>cosnx.

1.29.a. 2/6. 1.29.b. —72/12. 1.33.b. Yes.
1.33.e. w21 /6 — w?x?/4 + 23/12. 1.36. A=2/7, B =1. Yes.

o0

1 1 2 1
1.38.a. - + i(cos:zj +sinz) — — ]; FTCRE] (cos2kx + ksin 2kx) .

1.38.b. —1. 1.39.a. All, except the fourth. 1.39.b. 1), 2), 6). 1.42. g—;.
1.45. 27(n +1). 1.46. 14+ =" 1.47. f(z) = asinz (a € R); f(z) =

Beosz (B € R). 1.56. No.

~ ~ sin 2m&

21a f0)=2, J(&)="5> (€#0)
~ ~ sin? 7€
21b. J0)=0, fl&) =2~ (€#0)
21c — 2 2.1.d ! !
O T e S T N B Ty PR
- _ —~ 2 sinmé
210 fO)=2+i FO =i jam i €#0)
2.1.f. f(0)=1+ 9+627T2,
~ _sin27r§ 2 0
f(g)—ng+ 2(94—4772(54—1)2+9+4772(£—1)2> (&#0).
9 ~ ~ in4
288, oo 23D he(0)=4, hc(u)zsmm (u # 0)
~ 1 ~ in? Tu
2.3.c. ko(0) =5, holu)= 81:2“22 (u # 0)
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2.4.c. f(i%) = Frmi, f(&) = %Sin%?g (5 4 i%) .

1 — 4m2£2 2 4 4mi&
: : 4de. ——.
(1 + an2¢2)° T+ 4n2g2

= (L—e72™8)  (£#£0).
2.5.b. f(0)=a, f(¢= it (1—e72™8)  (£4£0).

2.5.c. f(0)=0, f(&)= i(cos € —1) (£#£0).

0

2ce2mibs 242 | o
—m(7wc“E°+2ibE
2.5.d. 2 1 4n2e2 262 2.5.e. +/mce ( )

8mbcié

250 T BT D) (@ E e = D))

2.7.8. J(0)=c. A<§>=S“;§Cf (6 #0).

~(, 1\ ¢ _ 2c¢ _cosmcg 1
2.7.b. f (:l:§c> = 5, f(f) = T 1_ 46262 (g # :l:2C> .

sin cé

c -~ -~ 1
5 T(0) =1 TO=gentem (#0)




132 ANSWERS

~ ~ sin meé

274 fO)=c flo="5g (€40

1
2.7.e. (— —& > e ™ 2.7.f. (1 — 4%{2) e

(w2 =0,
2.8. [ =9 m & <a/(2n),
0, [&] > a/(2m).

2a ﬁ e w242 3 242
miE— =& See —TE
2.9.3. m 2.9.b. Te v 4 . 2.9.C. — 7TQZ§€ .
1 a+ 2mi¢ b
2.10.a. ———. 2.10.b. . 2.10.c. .
ot 2mic (a + 2mi€)? + b2 “ lat2mie)? 1 b2

2.11.a. f(—¢). 2.11.b. e~2mi€¥0 f(¢). 2.11.c. f (£ — & /(27)).

2.11.d. 2i [f (5 . §—°> — 7 <§+ §—°>] 2.11.e. f (%éw_ 1) .

2ALEL 3F(5). 212, /2
2.17.

fl) =225 @ #0), f0)=1;

f(z) =0, (mﬁ%) F(k) =k, f(kikl?)):() (k=2,3,...),

and we define f as a linear function between any two neighboring points in
which f is already defined.

4 1 [sin2nx
2.22 f(O):§, f(x)zﬁ( Sy —costc) (x #0)
sin® 7z
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2.25. e~ 7, determined uniquely. 2.26. f(z)=1—-2z (0 <z <1), f(x) =0
(x > 1), determined uniquely.

“on%ie, |a] < 1/(2),

2.28.a. g(x) = { 0, |z|>1/(2m).

m(a+b)

2.28.b. . 2.29.a. 2. 2.29.b. 2/4. 2.34. .
/6 a. w/ T/ b (22 + (@t D)7

~

m(1 = 2nm|g))f(), €l <1/(2m),

2:35. 9(0) _{ 0, &> 1/(2n).

2.36.a. 4257 2.36.h. 4+ -1
.36.a. . 2.36.b. N S

oo

. (4n+3)(2n)!
3.4.b. ) (-1) Gn < 22 () Py ().

n=0

. dn+1 1-3-----(2n—1)
3.4.c. - - (—1)" : Py ().
e 57 2005 i1y Lenl®)

n=1



Index

A, class of absolutely integrable functions,
72

C, class of continuous functions, 8

A, 74

L2, 37

PC, class of piecewise continuous functions,
8

PS, class of piecewise smooth functions, 9

I1, 73

R, class of Riemann integrable funcions, 11

Il - |l2, quadratic norm, 37

|| - |l1, the norm of the order 1, 72

~, the correspondence of the Fourier series
to a function, 24

D, the correspondence of the Fourier trans-
form to a function, 105

%, the convolution, 93

aW * f transform, 108

Coeflicients
— Fourier — Legendre, 116
— Fourier of a function, 24
— — of an arbitrary period, 34
— — with respect to an arbitrary system,
38
— of a trigonometric series, 22
Completeness
— of an orthogonal system of functions, 53
— of the system of Legendre polynomials,
118
— of the trigonometric system, 58

Complex conjugation, 31

Condition

— Holder, 64

— of convergence of a series, necessary, 9
Convergence

— mean square

— — of a sequence, 53
— — of a series, 53
— of an integral in the sense of principal
value, 89

Cosine series, 26
Cosine-transform, 101
Derivative of a function

— left, 63

— right, 63
Dilation of a function, 79
Distance between functions

— euclidean, 39

— quadratic, 39
Equality

— Parseval, 54, 68

— Pythagorean, 41
Extension of a function

— even, 6

—odd, 6

— periodic, 7

Fourier transform, 72

134
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Formula Integral
— Dirichlet, 43 — improper, 12
— Euler, 30 — — convergent, 12
— for Legendre polynomials,recurrent, 111, — — — absolutely, 12
113 — — — uniformly, 15
— inversion of Fourier transform, 82 — — dependent on parameter, 15
— of integral calculus, fundamental, 11 — Laplace, 88, 92
— Rodrigues, 112 — undefinite, 11
Function Integral representation
- A, 74 — Laplace, 120
—1II, 73 — of a partial sum of a Fourier series, 43
— absolutely integrable, 12 jump, 8
— — complex-valued, 72 Jump of a function, 8
—even, 5 Kernel
— Dirichlet, 6 — Dirichlet, 84
— generating, 109 — Gauss—Weierstrass, 43, 74
— — for Legendre polynomials, 111 — Fejér, 55, 74
— limit of a sequence, 10 Legendre equation, 120
— Lipschitz, 63 Leibniz’s rule, 112
—odd, 5 Means
— piecewise continuous, 8 — arithmetic, 19
— piecewise smooth, 8 — Fejér, 55
— periodic, 6 Norm of a function
— step, 12 — of the order 1, || - ||1, 72
— two-sided Lipschitz, 105 — quadratic, L2, || - ||2, 37
— with a compact support, 14 Orthogonal functions, 22
Gaussian, 77 Part of a function,
Identity — even, 27
— Bessel, 41 — odd, 27
— Plansherel, 98 Period of a function, 6
Inequality Polynomial
— Bessel, 41 — Legendre, 111
— Cauchy, 18 — with respect to an arbitrary system, 38
— Schwarz, 19 — trigonometric, 25
— Steklov, 69

— Wirtinger, 69
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INDEX

Property
— completeness of the trigonometric sys-
tem, 58
— of the partial sums of Fourier series, min-
imal, 40
— symmetry of convolution, 93
— uniqueness of the Fourier series, 53
Riemann — Lebesgue Lemma on convergence
to zero
— of Fourier coeflicients, 41
— of Fourier transform, 76
Scalar product of functions, 22
— complex-valued, 32
Sequence
— convergent
— —on a set, 10
— — uniformly, 10
— summable by the method of arithmetic
means, (C,1), 19
Series
— convergent, 9
— — absolutely, 9
— — conditionally, 9
— —on a set, 10
— — uniformly, 10
— (C, 1)-summable, 20
— divergent, 9
— Fourier, 24
— — of a function with arbitrary period,
34
— — with respect to arbitrary system, 38
— Fourier — Legendre, 117
— numerical, 9
— summable by the method of arithmetic
means, 20
— trigonometric, 22
Sine-series, 26
Sum of a series, 9
— of functions, 10

— partial, 9

Summation by the Gauss — Weierstrass
method, 85
System
— exponential, 31
— of functions,
— — complete, 53
— — orthogonal, 22, 37
— — orthonormal, 37
— Rademacher, 37
— trigonometric, 22
Terms of a numerical series, 9
Theorem
— Cauchy, on summability of a sequence,
19
— convolution, 97
— Dirichlet
— — on convergence of Fourier series at
a point,
— — on inversion of Fourier transform,
86, 89, 44
— Fejér
— — on summability of Fourier series at
a point, 56
— — on uniform convergence of Fejér
means, 58
— Gram, 40
— of integral calculus, fundamental, 11
— on uniqueness
— — of Fourier series, 54
— — of Fourier transform, 87
— Parseval, 68
— Weierstrass on approximation
— — by algebraic polynomials, 117
— — by trigonometric polynomials, 58
Translation of a function, 79
Weierstrass test of the uniform convergence

of an integral, 15
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