С. А. Щёголев*, В. А. Ситник**
*Одеський національний університет імені І. І. Мечникова
**Одеський національний політехнічний університет

О СУЧЕСТВОВАНИИ И УСТОЙЧИВОСТИ РЕШЕНИЙ СПЕЦИАЛЬНОГО ВИДА КВАЗИЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В БАНАХОВОМ ПРОСТРАНСТВЕ

Щёголев С. А., Ситник В. А. Про існування та стійкість розв’язків спеціального виду квазілінійного диференціального рівняння у банаховому просторі. Вивчається квазілінійне диференціальне рівняння у банаховому просторі. Для цього рівняння отримано умови існування та стійкості часткового розв’язку зображуваного у вигляді ряду Фур’є з повільно змінними коефіцієнтами та частотою. Ключові слова: многовид повільно змінний диференціальний ряд Фур’є.

Щёголев С. А., Ситник В. А. О существовании и устойчивости решений специального вида квазилинейного дифференциального уравнения в банаховом пространстве. Изучается квазилинейное дифференциальное уравнение в банаховом пространстве. Для этого уравнения получены условия существования и устойчивости частного решения, представленного в виде ряда Фурье с медленно меняющимися коэффициентами и частотой. Ключевые слова: многообразие, медленно меняющийся, дифференциальный ряд Фурье.

Shchogolev S. A., Sitnik V. A. On existence and stability of the solutions of special type of the quasilinear differential equation at the Banakh space. The quasilinear differential equation at the Banakh space is studied. The condition of existence and stability of particular solution which represented by a Fourier-serie with slowly varying coefficients and frequency are obtained. Key words: Banakh space, slowly varying, differential equation. Fourier series.

1. Введение. Дифференциональным уравнениям в банаховых пространствах посвящены многчисленные исследования [1-4]. Целью данной статьи является получение аналогов для случая банаховых пространств результатов работ [5-7], касающихся вопросов существования у систем дифференциальных уравнений частных решений, представимых абсолютно и равномерно сходящимися рядами Фурье с медленно меняющимися коэффициентами и частотами. По сравнению с работой [8] в данной работе за счёт изменения метода доказательства получены менее жёсткие условия существования решений указанного типа, а также исследован вопрос об их устойчивости.

2. Основные обозначения и определения. Пусть B — банахов пространство. Обозначим:

$$G = \{ t, \varepsilon : t \in \mathbb{R}, \varepsilon \in [0, \varepsilon_0], \varepsilon_0 \in \mathbb{R}^+ \}$$

Определение 1. Скажем, что вектор-функция $f : G \rightarrow B$ принадлежит классу $S_m, |m| \in \mathbb{N} \cup \{0\}$, если:

© Щёголев С. А., Ситник В. А., 2010
1) \(f \in C^m(R) \) по \(t \),
2) \(\frac{d^k f}{dt^k} = e^k f_k(t, \varepsilon), \sup_{G} \| f_k \| < +\infty (0 \leq k \leq m), \) где \(\| \cdot \| \) — норма в бана-
ховом пространстве \(B \), а производная \(\frac{df(t, \varepsilon)}{dt} \) функции \(f(t, \varepsilon) \) со значениями в \(B \) понимается в смысле следующего определения [9]:

\[
\lim_{\Delta t \to 0} \left\| \frac{f(t + \Delta t, \varepsilon) - f(t, \varepsilon)}{\Delta t} - \frac{df(t, \varepsilon)}{dt} \right\| = 0.
\]

Определение 2. Скажем, что вектор-функция \(f(t, \varepsilon, \theta(t, \varepsilon)) \) принадлежит классу \(\hat{B}_m \) \((m \in \mathbb{N} \cup \{0\}) \), если:

1) \[
f(t, \varepsilon, \theta(t, \varepsilon)) = \sum_{n=-\infty}^{\infty} f_n(t, \varepsilon) \exp(i\theta(t, \varepsilon)), \quad f_n \in \mathcal{S}_m, \quad \frac{d^k f_n}{dt^k} = \varepsilon^k f_{nk}(t, \varepsilon),
\]

\[
\|f\|_{\hat{B}_m} = \sum_{k=0}^{m} \sum_{n=-\infty}^{\infty} \sup_{G} \|f_{nk}\| < +\infty,
\]

2) скалярная функция \(\theta(t, \varepsilon) \) имеет вид:

\[
\theta(t, \varepsilon) = \int_{G} \varphi(t, \varepsilon) dt, \quad \varphi : G \to R^+, \quad \inf_{G} \varphi = \varphi_0 > 0, \quad \varphi \in \mathcal{S}_m.
\]

3. Постановка задачи. Рассматривается следующее дифференциальное уравнение:

\[
\frac{dx}{dt} = A(t, \varepsilon)x + f(t, \varepsilon, \theta(t, \varepsilon)) + \mu X(t, \varepsilon, \theta(t, \varepsilon), x),
\]

(1)

\(t, \varepsilon \in G, \quad A(t, \varepsilon) \) — оператор-функция со значениями в \([B \to B] \), \(f \in \hat{B}_m, \quad x \in D \subset C \hat{B}. \) где \(D \) — некоторая замкнутая ограниченная область банахового пространства \(B. X \) — вектор-функция со значениями в \(B. \mu \in R^+. \)

Целью статьи является установление условий, при которых уравнение (1) имеет частные решения класса \(\hat{B}_m. \)

4. Некоторые вспомогательные утверждения.

Наряду с уравнением (1) рассмотрим соответствующее линейное неоднородное уравнение:

\[
\frac{dx}{dt} = A(t, \varepsilon)x_0 + f(t, \varepsilon, \theta(t, \varepsilon)).
\]

(2)

Лемма 1. Пусть уравнение (2) удовлетворяет следующим условиям.

1) \(A(t, \varepsilon) \in C^m(G) \) по \(t \),

\[
\frac{d^k A(t, \varepsilon)}{dt^k} = e^k \tilde{A}_k(t, \varepsilon) \quad (k = 0, m), \quad \max_{0 \leq k \leq m} \sup_{G} \| \tilde{A}_k(t, \varepsilon) \| = A < +\infty,
\]

где \(A = \sup_{\| x \| \leq 1} \| Ax \|. \)
2). Однородное уравнение

\[\frac{dy}{dt} = A(t, \varepsilon)y \] \hspace{1cm} (3)

является экспоненциально дихотомичным на \(\mathbb{R} \), то есть любое решение \(y(t, t, \varepsilon) \) уравнения (3) представимо в виде

\[y(t, \varepsilon) = y_1(t, \varepsilon) + y_2(t, \varepsilon), \]

причём существуют положительные постоянные \(K_1, K_2, \gamma_1, \gamma_2 \), не зависящие от \(\varepsilon \), такие, что справедливы оценки:

\[||y_1(t, \varepsilon)|| \leq K_1 \exp(-\gamma_1(t - \tau)) ||y_1(\tau, \varepsilon)||, \quad -\infty < \tau \leq t < +\infty, \]

\[||y_2(t, \varepsilon)|| \leq K_2 \exp(\gamma_2(t - \tau)) ||y_2(\tau, \varepsilon)||, \quad -\infty < t \leq \tau < +\infty. \]

Тогда уравнение (2) имеет единственное частное решение \(x_0(t, \varepsilon, \theta) \in \hat{B}_m \), причём \(\sup \subset K \in]0; +\infty[\), такое, что

\[||x_0(t, \varepsilon, \theta)|| \leq K_0 ||f(t, \varepsilon, \theta)|| \hat{B}_m. \]

Доказательство. Введем оператор Грина однородного уравнения (3), т.е. есть оператор \(G(t, \tau, \varepsilon) \), определяемый вследствие условия 2) соотношениями:

1) при \(t \neq \tau \):

\[\frac{\partial G(t, \tau, \varepsilon)}{\partial t} = A(t, \varepsilon)G(t, \tau, \varepsilon), \quad \frac{\partial G(t, \tau, \varepsilon)}{\partial \tau} = -G(t, \tau, \varepsilon)A(\tau, \varepsilon). \]

2) \[G(t + 0, \tau, \varepsilon) - G(t - 0, \tau, \varepsilon) = E; \quad G(t + 0, \varepsilon) - G(t - 0, \tau, \varepsilon) = -E. \]

3) \(E \cdot \text{единичный оператор}, \)

\[||G(t, \tau, \varepsilon)|| \leq M \cdot \exp(-\gamma|t - \tau|). \] \hspace{1cm} (4)

где \(M, \gamma \) — положительные постоянные, не зависящие от \(t, \tau, \varepsilon \).

Решение класса \(\hat{B}_m \) уравнения (2) ищем в виде:

\[x_c = \sum_{n=-\infty}^{\infty} x_{0n}(t, \varepsilon) \exp(in\theta(t, \varepsilon)) \] \hspace{1cm} (5)

Подставляя выражение (5) в уравнение (2) и приравнивая коэффициенты при \(\exp(in\theta) \), получим следующие уравнения для определения коэффициентов \(x_{0n} \):

\[\frac{dx_{0n}}{dt} = A_n(t, \varepsilon)x_{0n} + f_n(t, \varepsilon). \quad n \in \mathbb{Z}, \] \hspace{1cm} (6)

где \(A_n(t, \varepsilon) = A(t, \varepsilon) - in\varphi(t, \varepsilon)E, \)

\[f_n(t, \varepsilon) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t, \varepsilon, \theta) \exp(-in\theta) d\theta. \]
Не сложно показать, что однородное уравнение:

\[
\frac{dy_n}{dt} = A_n(t, \varepsilon) y_n
\]

имеет оператор Грена задаваемый формулой:

\[
G_n(t, \tau, \varepsilon) = G(t, \tau, \varepsilon) \exp \left(-\int_{\tau}^{t} \varphi(\xi, \varepsilon) d\xi \right).
\]

Действительно, на основании 1) имеем при \(t \neq \tau \):

\[
\frac{\partial G_n}{\partial t} = \frac{\partial G(t, \tau)}{\partial t} \exp \left(-\int_{\tau}^{t} \varphi(\xi, \varepsilon) d\xi \right) - \int_{\tau}^{t} \varphi(\xi, \varepsilon) d\xi) G(t, \tau, \varepsilon) = 0.
\]

Аналогично:

\[
\frac{\partial G_n}{\partial \tau} = -G_n A_n(\tau, \varepsilon).
\]

Далее на основании 2):

\[
G_n(\tau + 0, \tau, \varepsilon) G_n(\tau - 0, \tau, \varepsilon) = G(\tau + 0, \tau, \varepsilon) - G(\tau - 0, \tau, \varepsilon) = E. \tag{7}
\]

\[
G_n(t, t + 0, \varepsilon) - G_n(t, t - 0, \varepsilon) = G(t, t + 0, \varepsilon) - G(t, t - 0, \varepsilon) = -E. \tag{8}
\]

А вследствие 3):

\[
\|G_n(t, \tau, \varepsilon)\| = \|G(t, \tau, \varepsilon)\| \leq M \cdot \exp(-\gamma|t - \tau|). \tag{9}
\]

Рассмотрим следующее решение уравнения \(6\):

\[
x_{on}(t, \varepsilon) = \int_{-\infty}^{+\infty} G_n(t, \tau, \varepsilon) f_n(\tau, \varepsilon) d\tau.
\]

При \(m = 0 \) на основании \(9\) получим оценку:

\[
\sup_{G} \|x_{on}\| \leq 2M \sup_{G} \|f_n\|.
\]

При \(m \geq 1 \) рассмотрим отдельно два случая

\[
A_n |n| \leq A_n \varphi_0^{-1}.
\]

Поскольку \(x_{on}(t, \varepsilon) \) единственное (вследствие экспоненциальной дихотомии) ограниченное решение уравнения \(5\), то \(\forall t, \varepsilon \in G \):

\[
\frac{dx_{on}}{dt} = A_n(t, \varepsilon)x_{on}(t, \varepsilon) + f_n(t, \varepsilon). \tag{10}
\]
Правая часть этого тождества ограничена в \(G \) при рассматриваемых значениях \(n \), следовательно, \(\frac{d x_0(t, \varepsilon)}{d t} \) также ограничена в \(G \). Следовательно, при указанных значениях \(n \) и имеем право продифференцировать (10):

\[
\frac{d}{dt}(x_0(t, \varepsilon)) = A_n(t, \varepsilon)x_0(t, \varepsilon) + \frac{dA_n(t, \varepsilon)}{dt}x_0 + \frac{df_n(t, \varepsilon)}{dt}.
\]

Таким образом \(x_0(t, \varepsilon) \) является единственным ограниченным решением уравнения:

\[
\frac{dx}{dt} = A_n(t, \varepsilon)x + \varepsilon g_n(t, \varepsilon),
\]

где

\[
g_n(t, \varepsilon) = \left(A_1(t, \varepsilon) - \frac{1}{\varepsilon} \frac{d}{dt} \frac{d}{dt}(t, \varepsilon) E \right) x_0 + \frac{1}{\varepsilon} \frac{df_n(t, \varepsilon)}{dt} \in \mathcal{S}_{m-1}.
\]

Потому \(x_0(t, \varepsilon) = \varepsilon \int_{-\infty}^{\infty} G(t, \tau, \varepsilon)g_n(\tau, \varepsilon) d\tau \), откуда получаем

\[
\frac{d x_0}{d t} = \varepsilon x_{01}(t, \varepsilon),
\]

где \(x_{01}(t, \varepsilon) \in \mathcal{S}_{m-1} \).

Предположим по индукции, что для некоторого \(l \) (0 < \(l < m \)) выполнено:

\[
\forall \nu = 0, l: \quad \frac{d^\nu x_0}{d t^\nu} = \varepsilon^\nu x_{0\nu}(t, \varepsilon),
\]

где \(x_{0\nu} \in \mathcal{S}_{m-\nu} \), и покажем, чтс

\[
\frac{d^{l+1} x_0}{d t^{l+1}} = \varepsilon^{l+1} x_{0,l+1}(t, \varepsilon),
\]

где \(x_{0,l+1} \in \mathcal{S}_{m-l-1} \). Действительно, дифференцируя \(l + 1 \) раз тождество (9), получим:

\[
\frac{d}{dt} \left(\frac{d^{l+1} x_0}{d t^{l+1}} \right) = \sum_{k=0}^{l+1} \frac{d^k A_n(t, \varepsilon)}{d t^k} + \frac{d^{l+1-k} x_0(t, \varepsilon)}{d t^{l+1-k}} + \frac{d^{l+1} f_n(t, \varepsilon)}{d t^{l+1}} = A_n(t, \varepsilon) \frac{d^{l+1} x_0}{d t^{l+1}} + \sum_{k=1}^{l+1} \frac{d^k A_n(t, \varepsilon)}{d t^k} + \frac{d^{l+1-k} x_0(t, \varepsilon)}{d t^{l+1-k}} + \frac{d^{l+1} f_n(t, \varepsilon)}{d t^{l+1}} = A_n(t, \varepsilon) \frac{d^{l+1} x_0}{d t^{l+1}} + \frac{d^{l+1} x_0(t, \varepsilon)}{d t^{l+1}} + \frac{d^{l+1} f_n(t, \varepsilon)}{d t^{l+1}} = A_n(t, \varepsilon) \frac{d^{l+1} x_0}{d t^{l+1}} + \varepsilon^{l+1} g_{nl}(t, \varepsilon).
\]

где \(g_{nl}(t, \varepsilon) \in \mathcal{S}_{m-l-1} \). Тое есть \(d^{l+1} x_0/dt^{l+1} \) является единственным ограниченным решением уравнения:

\[
\frac{dx}{dt} = A_n(t, \varepsilon)x + \varepsilon^{l+1} g_{nl}(t, \varepsilon).
\]
А тогда:

$$\frac{d^{k+1}x_{0n}}{dt^{k+1}} = \varepsilon^{k+1} \int_{-\infty}^{+\infty} G_n(t, \tau, \varepsilon) f_{0n}(\tau, \varepsilon) d\tau,$$

откуда и вытекает требуемое.

Б. $|n| > A_{\varphi_0}^{-1}$. Теперь ситуация усложняется тем, что необходима не только ограниченность $x_{0nk} = \varepsilon^{-k} t^k x_{0n}/dt^k \ (k = 0, m)$ в G, а и принадлежность решения $x_0(t, \varepsilon, \theta)$ классу \mathcal{B}_m, для чего нужно выполнение условия:

$$\sum_{n=-\infty}^{\infty} \sum_{k=0}^{m} \sup_G \|x_{0nk}(t, \varepsilon)\| < +\infty.$$

Воспользуемся представлением:

$$x_{0n} = I_{1n} + I_{2n},$$

где

$$I_{1n} = \int_{-\infty}^{t} G_n(t, \tau, \varepsilon) f_n(\tau, \varepsilon) d\tau, \quad I_{2n} = \int_{t}^{+\infty} G_n(t, \tau, \varepsilon) f_n(\tau, \varepsilon) d\tau.$$

Очевидно, что при рассматриваемых значениях n оператор $A_n(t, \varepsilon) = A(t, \varepsilon) - i n \varphi(t, \varepsilon) k E$ имеет обратный $A_n^{-1}(t, \varepsilon)$, причём:

$$\|A_n^{-1}(t, \varepsilon)\| \leq \left\| \left(-i n \varphi(t, \varepsilon) \left(E - \frac{1}{i n \varphi(t, \varepsilon)} A(t, \varepsilon) \right)^{-1} \right) \right\| \leq \frac{1}{|n| \varphi_0} \left\| \left(E - \frac{1}{i n \varphi(t, \varepsilon)} A(t, \varepsilon) \right)^{-1} \right\| \leq \frac{1}{|n| \varphi_0} \sum_{k=0}^{m} \left(\frac{1}{i n \varphi(t, \varepsilon)} A(t, \varepsilon) \right)^k \leq (11)$$

Для каждого из интегралов I_{1n}, I_{2n} применим l-кратное интегрирование по частям ($l = 1, m$), вследствие чего получим:

$$I_{1n} = \int_{-\infty}^{t} G_n(t, \tau, \varepsilon) A_n(\tau, \varepsilon) A_n^{-1}(\tau, \varepsilon) f_n(\tau, \varepsilon) d\tau =$$

$$= \int_{-\infty}^{t} \partial G_n(t, \tau, \varepsilon) \partial A_n^{-1}(\tau, \varepsilon) f_n(\tau, \varepsilon) d\tau =$$

$$= -G_n(t, t - 0, \varepsilon) A_n^{-1}(t, \varepsilon) f_n(t, \varepsilon) \sum_{k=0}^{l-1} D_n^k(f_n(t, \varepsilon)) + \int_{-\infty}^{t} G_n(t, \tau, \varepsilon) D_n^l(f_n(\tau, \varepsilon)) d\tau,$$

где

$$D_n(u) = \frac{d}{dt} \left(A_n^{-1}(t, \varepsilon) u(t, \varepsilon) \right), \quad D_n^k(u) = D_n(D_n^{k-1}(u)).$$
Аналогично:

$$I_{2n} = G_n(t, t + 0, \varepsilon) A_n^{-1}(t, \varepsilon) \sum_{k=0}^{l-1} D_n^k(f_n(t, \varepsilon)) + \int_0^{+\infty} G_n(t, \tau, \varepsilon) D_n^l(f_n(\tau, \varepsilon)) d\tau.$$

Учитывая теперь соотношения (7), (8), окончательно получим:

$$x_{0n} = -A_n^{-1}(t, \varepsilon) \sum_{k=0}^{l-1} D_n^k(f_n(t, \varepsilon)) + \int_{-\infty}^{+\infty} G_n(t, \tau, \varepsilon) D_n^l(f_n(\tau, \varepsilon)) d\tau.$$

(12)

Действуя на x_{0n} оператором $D_n^{l-1}(\frac{d}{dt})$, получим:

$$D_n^{l-1}\left(\frac{dx_{0n}}{dt}\right) = A_n(t, \varepsilon) \int_{-\infty}^{+\infty} G_n(t, \tau, \varepsilon) D_n^l(f_n(\tau, \varepsilon)) d\tau.$$

Нетрудно видеть, что вследствие (11) $D_n^l(f_n(t, \varepsilon))$ может быть записан в виде:

$$D_n^l(f_n(t, \varepsilon)) = \frac{e^\nu}{n^l} u_{nl}(t, \varepsilon).$$

где

$$\sum_{n=\infty}^{\infty} \sup_G ||u_{nl}(t, \varepsilon)|| < +\infty.$$

Полому

$$D_n^{l-1}\left(\frac{dx_{0n}}{dt}\right) = \frac{e^\nu}{n^{l-1}} \bar{u}_{nl}(t, \varepsilon).$$

где

$$\sum_{n=\infty}^{\infty} \sup_G ||\bar{u}_{nl}(t, \varepsilon)|| < +\infty.$$

Из этого неравенства, расписывая $D_n^{l-1}(\frac{dx_{0n}}{dt})$ и учитывая, что $\forall \nu = 0, l - 1$:

$$\frac{d^\nu x_{0n}}{dt^\nu} = e^{\nu} x_{0n}(t, \varepsilon), \quad \sum_{n=\infty}^{\infty} \sup_G ||x_{0n}(t, \varepsilon)|| < +\infty,$$

получим, что

$$\frac{d^l x_{0n}}{dt^l} = e^{l} x_{0n}(t, \varepsilon), \quad \sum_{n=\infty}^{\infty} \sup_G ||x_{0n}(t, \varepsilon)|| < +\infty.$$

С учётом (12) отсюда вытекает, что уравнение (2) имеет единственное частное решение $x_0(t, \varepsilon, \theta)$ класса \bar{B}_m, причём существует $K_0 \in [0, +\infty]$, не зависящая от функции f такая, что

$$||x_0||_{\bar{B}_m} \leq K_0 ||f||_{\bar{B}_m}. $$

(13)

Лемма доказана.
Замечание 1. Независимость постоянных $K_1, K_2, \gamma_1, \gamma_2$ от параметра ε в условии 2) леммы выполняется, вообще говоря, не всегда. Некоторые достаточно условия этого приведены, например, в [10].

5. Основные результаты.
Введем область

$$
\Omega = \left\{ x \in \tilde{B}_m : \| x - x_0 \|_{\tilde{B}_m} \leq d \quad 0 < d < +\infty \right\}.
$$

Теорема 1. Пусть уравнение (1), такое, что
1) при $\mu = 0$ выполнены условия леммы 1,
2) вектор-функция $X(t, \varepsilon, \theta, x)$ непрерывна по x, и если $x \in \tilde{B}_m$, то $X(t, \varepsilon, \theta, x)$ также из класса \tilde{B}_m,
3) $L(d) \in [0, +\infty[$, $\forall x_1, x_2 \in \Omega$ выполнено неравенство:

$$
\| X(t, \varepsilon, \theta, x_2) - X(t, \varepsilon, \theta, x_1) \|_{\tilde{B}_m} \leq L(d) \| x_2 - x_1 \|_{\tilde{B}_m}.
$$

Тогда для достаточно малых значений параметра μ уравнение (1) имеет в области Ω единственное частное решение $x(t, \varepsilon, \theta(t, \varepsilon), \mu)$ класса \tilde{B}_m.

Доказательство. Решение класса \tilde{B}_m уравнения (1) будем искать методом последовательных приближений, полагая в качестве начального $x_0(t, \varepsilon, \theta)$, а последующие определим как решения класса \tilde{B}_m линейных уравнений:

$$
\frac{dx_{j+1}}{dt} = A(t, \varepsilon)x_{j+1} + f(t, \varepsilon, \theta(t, \varepsilon)) + \mu X(t, \varepsilon, \theta(t, \varepsilon), x_j), \quad j = 0, 1, 2, \ldots \quad (14)
$$

Обозначим:

$$
M(d) = \sup_{x \in \Omega} \| X(t, \varepsilon, \theta, x) \|_{\tilde{B}_m}.
$$

Используя методику принципа скатых отображений [9], на основании неравенства (13) несложно показать, что при выполнении условия

$$
\mu K M(d) \leq d_c < d
$$

все приближения $x_j \ (j = 0, 1, 2, \ldots)$ остаются внутри области Ω. А при выполнении условия

$$
\mu K L(d) < 1
$$

последовательность $\{x_j\}_{j=1,2,\ldots}$ сходится по норме $\| \cdot \|_{\tilde{B}_m}$ к решению $x(t, \varepsilon, \theta, \mu)$ класса \tilde{B}_m уравнения (1), причем $x(t, \varepsilon, \theta, 0) = x_0(t, \varepsilon, \theta)$.

Очевидно, что неравенства (15), (16) выполнены при достаточно малых значениях параметра μ.

Рассмотрим теперь вопрос об устойчивости решения \tilde{x} класса \tilde{B}_m уравнения (1). Введем область:

$$
\Omega_1 = \left\{ x \in B : \| x - \tilde{x} \| \leq h \in \mathbb{R}^+ \right\}.
$$
Теорема 2. Пусть в области Ω_1 уравнение (1) удовлетворяет следующим условиям:
1) оператор-функция $X(t, \varepsilon, \theta, x)$ дифференцируема по x в смысле Фреше,
2) $\left| \frac{\partial X(t, \varepsilon, \theta, x)}{\partial x} \right| \leq L_1$,
3) выполняется неравенство $\gamma - \mu L_1 > 0$, где константы μ, γ определены неравенством (4).

Тогда решение $\ddot{x}(t, \varepsilon, \theta, \mu)$ класса \tilde{B}_n уравнения (1) экспоненциально устойчиво в положительном направлении.

Доказательство. Произведём в уравнении (1) подстановку
$$y = x - \ddot{x}.$$ \hspace{1cm} (17)

Тогда если $x \in \Omega_1$, то $\|y\| \leq h$. Относительно y получим уравнение:
$$\frac{dy}{dt} = A(t, \varepsilon)y + \mu \frac{\partial X(t, \varepsilon, \theta(t, \varepsilon), \ddot{x} + \nu y)}{\partial x} y.$$ \hspace{1cm} (18)

$0 < \nu < 1$. Очевидно, что $\ddot{x} + \nu y \in \Omega_1$. Поэтому:
$$\left| \frac{\partial X(t, \varepsilon, \theta, \ddot{x} + \nu y)}{\partial x} y \right| \leq \left| \frac{\partial X(t, \varepsilon, \theta, \ddot{x} + \nu y)}{\partial x} \right| \cdot |y| \leq L_1 |y|.$$

Таким образом уравнение (18) удовлетворяет всем условиям теоремы об устойчивости нудового решения нелинейного уравнения с нестационарной главной частью в банаховом пространстве [1, с. 414]. В соответствии с этой теоремой условие 3) гарантирует экспоненциальную устойчивость решения класса \tilde{B}_n уравнения (1).

Теорема 2 доказана.

