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Charge screening in single-walled armchair carbon nanotubes

VY pamkax METOIy BUMAIKOBOI (pa3u OTPUMAHO KBa3i0 HOBUMIPHUM ¢KpaHOBAHHUM (CKTUBHUM
MOTEHITiA B3a€MOJTIT IJISl 3aps/PKEHUX YaCTUHOK, 110 JIOKAIi30BaHi HA CTiHIII OJHOIIAPOBOI MeTaje-
BoT BymieleBoi armchair nanorpyoku (BHT).

B pamMkax Merona ciay4aifHo# (azbl MOdydYeH KBa3HOAHOMEPHBINA YKPAHUPOBAHHEIN YK THB-
HbIM TIOTEHIMA B3aUMOJICHCTBUS JUJISI 3aPSKCHHBIX YACTHIL, JIOKAIU30BAHHBIX HA CTEHKE OIHOCJION-
HOM MeTajindeckoil yriepoHoi armchair nanorpyoxu (YHT).

The screened effective quasione-dimensional interaction potential for charged particles local-
ized on the wall of a single-walled metallic armchair carbon nanotube (CNT) was obtained within the
framework of the random phase approximation (RPA).

Introduction. The single-walled CNT is a strip of the 2D graphite plane rolled up into
cylinder. Remind that the 2D graphite plane is composed of hexagons, every vertex of
which is the carbon atom. The chirality of CNT is defined by two integer numbers (n, m)
which specify the 2D co-ordinate of the hexagon imposed on the hexagon located at the
origin, when the strip of the 2D graphite layer is rolled up. CNTs with (n, #n) chirality are
the “armchair” CNTs. All the previous works [1-5] clearly assert that armchair CNTs with
any chirality numbers have metallic conductivity, that is why here we can use approxima-
tions that proper to the theories of metals. However, fundamental results of the theory of
metals cannot be applied directly to armchair nanotubes for their one-dimensional structure.
At the same time their one-dimensional analogues are of the barest necessity for investiga-
tion of optical and transport properties of nanotubes. This note is aimed at derivation of one
important result of this kind, namely the derivation of explicit expression for the effective
quasione-dimensional potential of charged interstitial defect, which would account the col-
lective effect of dielectric screening of the defect by free electrons of nanotube.

Because of its relatively large length (~1-10 um) and small diameter (~1-10 nm) CNT
may be considered as a quasione-dimensional system. So we’ve used here the Lindhard
screening theory (so-called RPA approximation) in one dimension. Then in the limiting
case of small wavenumber we have got the Thomas-Fermi screened potential for two
charges localized on the wall of tube. The further transverse integration of the obtained ex-
pression yields the self-consistent one-dimensional charge-charge interaction potential,
which can be used for account of multi-particles effects in CNTs.

1.General form of screened potential

Within the framework of the Lindhard screening theory we consider the one-
dimensional Fourier transform of the following Poisson equation for screened electrostatic
potential ¢(7):

(0> = 2, Jola. ) = 470 (0.7, )+ (0. 751))- (1.1
where p?'(4,7,,) is the one-dimensional Fourier transform along the tube axis of the den-
sity of extraneous charge, p"(q,7,,) 1s that of the charge density induced by the extrane-
ous charge, g is the longitudial component of wave vector, and 7, is the transverse compo-

nent of the radius-vector. For simplicity we will assume that p®

is axial symmetric,
P (q, %) = p<(q.1,,,)» and localized in the small vicinity of the tube wall. As follows
o(q.7,,)> " (q.7,,) depend on 7 = only through ; —and besides whatever the case o™ is

ind

localized in the small vicinity of the tube walls. The p™ may be written as follows:
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P (q.15,,) = e [exp(=igz) Y f(E, (k)| v (F)[ dz = p°(q.75,,) (1.2)

where f'is the Fermi-Dirac function, £ (k)and y , () = exp(ikz)u,, (7)/~/N are the band
energies and the corresponding Bloch wave functions of m-electrons, p° is the charge den-
sity without extraneous charges and L is the length of CNT. Following the Lindhard
method we get the linear in ¢ approximation for the induced charge density:

ind 2 E(E)- (G
P (q,rw)= —¢ ;;f( E((k)))— Efik')( ’ g
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0 s

: (1.3)

where N is the number of unit cells in CNT and s, s' number n-electrons bands crossed by
the Fermi level. Further, writing ¢(7) in the form

N le
co(r)=zze" P(q-15p)
q

and taking into account that the sought potential varies slightly inside the unit cell we get
from (1.3) that

. > E (k)— f(E(k— o _ -
p" (qﬂ’w): _%Z e E\((l)f) q];( é((k) 7 W(QvR)B,vs' (k,k—q,a)J.tu(z,rzp)u,m.(z,rzp)dz > (14)

where a is the longitudial period of nanotube, R - its radius, and

Bss"(k7k BCE Cl) = J.J.ﬁks'(z’ ’_;ZD) ulf—qs (Z7I7ZD) dZd;‘;D ’ (1 5)
0
By (1.1)
(D(Qa’”zn) =4z J.Go(q"_’;Da’_”)z,f))(pe'\ﬁl(%rzrn)+pmd(q’rz,n)) dF.Z,D ’ (1.6)
£,

where G, (4.7, Djz’u) is the Green’s function for 2D Helmbholtz equation,

oy ] I
Go(%rzmrzn):%Koqanzn_rzr) |)’ (1.7
where K (|q||7,, -7, |) - the modified Bessel function of the second kind. By our assump-

tions both the p*'(q,r,,) and p™(q,r,,) are actually localized on the tube wall. Hence, for
r,, = R from (1.6) and (1.7) we have
2(q.R) = 9" (q.R) +2K, (| ¢ | RV, (1 q| B) [ " (q.73,) dFy, - (1.8)
I
where (4, Ry is the contribution to the Fourier transform of the total potential from ",
and /,(|¢|R) is the modified Bessel function of the first kind. We see from (1.4) and (1.8)
that
R) — (0 (q5 R) s
ex(q)
e’ 7 f(E (k)— f(E (k-
) =1+ [T LELD S (Ek—g)
T s A Es’(k_q)_Es(k)
For low and room temperatures the main contributions to (1.9) are made by quasi-
momenta from the small vicinity of the Fermi quasi-momentum k,.. Due to the orthogonal-

»(q,

B, (k.k-q.a) dk1,(q|RK,(q|R)- (19

ity and normalization condition of the Bloch function for k = k — g = k,, we have

0 fors # s,
1B, (k. k- g,a) ;{ 1 f‘:rss =§' : (1.10)
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and, besides with account of spin degeneracy

E.(k—-q)—- E (k)
where §(E, (k) - E,) is the Dirac delta-function. It follows from (1.9) — (1.11) that
2¢ 1
=1+ 1 RK R)> (1.12)
ex(g) =1+ - ZV (g RK(gq|R)
where
y = Lok (k) (1.13)
Con| Ok |,

is the velocity of electrons of the § -th band on the Fermi level.
Actually, according to (1.9) ¢,(g) is an analogue of the Thomas-Fermi dielectric func-

tion for any quasione-dimensional metallic nanotube. The screened quasione-dimensional
electrostatic potential produced by a charge ¢, distributed with the density

P (F) = = 8(ry, — R)S(2)

27R
in accordance with (1.12) is given by:
oo, R)= dj‘lo(|q|R)K0( q| R)expligz) (1.14)

7 5 1+gl,(q|R)K,(q|R)
with the constant

2

_2e s 1 (1.15)
wh SV,

Note that the interaction energy E, of electrons of infinite nanotube with the given ex-

ternal charge due to screening appears to be finite:
£ =20, . (1.16)

q €

g
where 7, is the number of electrons per unit length of nanotube.

2.Numerical calculations
Both the velocity of electrons and Fermi energy for the (n, n) carbon nanotube can be
obtained from any single-electron model (the tight binding method, for example). Band
structure of 2D graphite was obtained in [6] within the framework of the tight binding
method. It has up to constant shift the following form:

E(kx,kz): i;/o\/l + 4cos[\gkbecos(k;bj + 40052[%j > 2.1

2

where y, =2.79¢l and b =0.246 nm are the nearest-neighbour transfer integral and the in-

plain lattice constant, respectively. According to [5], when 2D graphite layer is rolled up as
cylinder the number of allowed states in the circumferential direction becomes limited. So
allowed values for the wavenumber in the circumferential direction for armchair nanotubes
can be written as:

v 2r
k' =— > (2.2)
Y a3
where v =1, ..., n, n- chirality number.

Thus one-dimensional dispersion relation for 2n energy bands of (n, n) single-walled
armchair CNT was obtained in [5]. It follows from (2.1) and (2.2) that with respect to (2.1)
the Fermi energy E, =0 and only two bands



Charge screening in single-walled armchair carbon nanotubes 115

wl(z),V

ra

L 2 ]
gz @ ® 1 1.5

Fig. 1. Screened potential ¢(z) according to (1.14) for (5,5) nanotube (plotted point by point) in com-
parison with unscreened averaged Coulomb potential (solid line)

E (k)= J_r)/()[l - 2005(%)}

cross the Fermi level at = k, = 27 As follows,

3b
V+ — }/()b\/g
h 2h
and
g= 3¢ 23)
ﬂ\/gj/ob

is the universal constant for the all armchair tubes within the framework of tight binding
approximation. Fig. 1 shows numerically calculated screened potential (1.14) for (5.5)
nanotube, with radius R =0.339 nm, in comparison with unscreened averaged over axial

component Coulomb potential.

Thus the dielectric screening of the Coulomb potential by the free m-electrons in arm-
chair nanotubes results in substantial reducing of the effective depth of Coulomb well at the
origin and rather faster vanishing of the corresponding potential at infinity.
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