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Abstract: Adsorption hysteresis in the low-pressure range is only rarely described in the literature.
To optimise, for example, heat storage technologies, a deeper understanding of the low-pressure
hysteresis (LPH) process is necessary. Here, two thermodynamically based approaches are further
developed for analysing the LPH within the framework of thermodynamically irreversible processes
and fractal geometry. With both methods developed, it is possible to obtain the description of
the adsorption and desorption branches with high accuracy. Within the framework of the two
thermodynamic models of the hysteresis loop, generalised equations are obtained with the control
parameter in the form of the degree of irreversibility. This is done by taking the adsorption of water
on alumina as an example. It is shown that the fractal dimension of the adsorption process is larger
than the fractal dimension of the desorption branch, meaning that the phase state of the adsorbate is
more symmetric during the adsorption step than in the desorption process.

Keywords: adsorption; desorption; hysteresis; modelling; fractal dimension; degree of irreversibility

1. Introduction

In recent years, it has become apparent that the only way to avoid irreversible climate
change and the dramatic effects of global warming on the planet is to reduce carbon dioxide
emissions. This can be achieved through the introduction of more efficient energy systems
and the use of energy sources that do not allow CO2 emissions.

To solve the problem of global warming, an important role is played by heat storage
technologies, which are based on adsorption processes. In this case, thermal energy is accu-
mulated in the form of adsorption heat and is released during desorption. The processes
of water vapor adsorption–desorption are the most promising for the accumulation of
thermal energy. Since these adsorption systems often show hysteresis, a theoretical study
of adsorption hysteresis is of great interest [1].

The types of hysteresis loops are classified in the IUPAC Technical Report [2], but
only for hysteresis at large relative pressures. The existence of low-pressure hysteresis
(LPH) is mentioned and attributed only to non-rigid solids with micropores, where LPH is
explained by the swelling of the non-rigid porous structure.

One interesting type in the IUPAC classification is the H3 loop, which is often shown
when “the adsorption branch resembles a Type II isotherm”. As shown by Gregg and Sing,
a hysteresis loop which resembles the H3 loop very often continues into the low-pressure
region, and often does not close, even at p/p0 → 0 [3].

More than half a century ago, Arnell and McDermot suggested that hysteresis at low
pressures is due to the formation of “traps” in the adsorbent during adsorption, and that
adsorbate molecules falling into these traps either desorb very slowly or do not desorb at
all [4,5]. “Traps” in the adsorbent can be of two types: diffusional and chemical. Diffusional
traps arise because a deformation of the adsorbent takes place during the adsorption. This
means that cavities that were previously inaccessible to adsorbate molecules open, allowing
access. Due to irreversible changes in the framework of the adsorbent, the structure of
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the sorbent changes during desorption, which significantly slows the diffusion of the
adsorbate from the cavities of the adsorbent into the environment. Chemical traps arise due
to the formation of bonds between polar adsorbate molecules and exchangeable adsorbent
cations. A typical example is the formation of chemical traps in layered silicates. The
formation of two types of traps leads to the potential barrier to desorption increasing in
comparison with the potential barrier to adsorption.

It can be argued that the nature of adsorption hysteresis in the region of micropores
is generally well-understood. In addition, various methods for describing adsorption
isotherms in micropores have been extensively studied [3,6]. However, theoretical methods
for the analysis of adsorption hysteresis in micropores are insufficiently presented.

A thermodynamically grounded approach to the analysis of adsorption hysteresis is
the method of cycles [6–8].

Adsorption hysteresis in the set of micropores is characterised by certain features
associated with the state of the adsorbate in the pores of the adsorbent. In the set of
micropores, the adsorbed phase is defined as a quasi-one-dimensional (1D) phase. In the
quasi-1D phase, a first-order phase transition is impossible [9].

When analysing adsorption hysteresis in the set of micropores, the adsorption–desorption
transition should be defined as a disorder–order transition. In this case, adsorption is
characterized as a short-range order process, and desorption as a long-range order pro-
cess [3]. Thus, adsorption hysteresis should be considered as a change in the degree of
symmetry of the adsorbed phase. Fractal geometry is one of the possible approaches to the
analysis of changes in the symmetry of the adsorbed phase in the adsorption–desorption
processes [10,11].

We previously developed a thermodynamically substantiated method for calculating
the adsorption–desorption process and hysteresis loop in the region of micropores.

Two approaches have been proposed for calculating the hysteresis loop, based on:

(1) The classical theory of volume filling in micropores [4];
(2) The alternative theory of adsorption in micropores [5].

The aim of this work is to further develop methods for analysing the adsorption
hysteresis loop within the framework of thermodynamically irreversible processes and
fractal geometry.

2. Methods
2.1. The Classical Theory of Adsorption in Micropores

In the following, the H3-type hysteresis loop is considered for slit-like pores. The
adsorption process in the area of micropores occurs in pores with a characteristic size h in
the order of (1.6− 1.8) ∗ σ = h (σ: molecular diameter of the adsorbate) [3]. In channels
of this size, the adsorbate behaves as a quasi-one-dimensional phase in the potential field
of the pore walls. The theory of the equation of state for a one-dimensional phase in a
potential field has been developed quite well. However, this theory is complex, and its
practical application is associated with significant mathematical difficulties.

For this reason, in order to describe the equilibrium properties of the adsorbate on the
adsorption and desorption branches of the hysteresis loop in the first approximation, in
this work we used the theory of volume filling of micropores (TVFM), which has proven
itself in practice [3].

The most general TVFM equation is the Dubinin–Astakhov (DA) equation [12–14]:

θ = exp
[
−
(

A
ε

)α]
→ ln(− ln θ) = α ∗ (ln A− ln ε) (1)

The governing parameter in Equation (1) is the adsorption potential (Gibbs potential),
A = −∆G = RT ln(p0/p), where p0 and p are the saturation pressure and equilibrium
pressure of the adsorbate in the bulk phase at temperature T. The parameter θ to be
determined is θ = a/am, where a and am are respectively the adsorption values for some
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intermediate value of the determining parameter A and the value of adsorption for all
pores for the right boundary of the micropore region. Equation (1) was obtained under
the assumption that the distribution of the determined parameter θ over the determining
parameter A can be represented by the Weibull distribution [15]:

fi

(
Ai
εi

)
= αi

(
Ai
εi

)αi−1
∗ exp

[
−
(

Ai
εi

)αi
]

(2a)

f1

(
A1

ε1

)
= (α1 ∗ ε1)

Aα1−1
1
εα1

1
∗ exp

[
−
(

A1

ε1

)α1
]

(2b)

Here and in the following, the index values i = 1 and 2 refer to adsorption and
desorption, respectively.

The coefficients αi and εi are the control parameters of the Weibull distribution. The
parameter εi should be considered as the averaged value of the potential barrier to adsorp-
tion ε1 and desorption ε2. According to the concept of the nature of adsorption hysteresis
in the micropore region, it is possible to determine the relationship between the potential
barriers to adsorption and desorption:

ε2 = ε1 + ∆ε (3)

where ∆ε is the difference between the potential barriers of adsorption and desorption.
Equation (1) contains two defining parameters α and ε. Let us introduce the third

control parameter:

k = 1 +
∆ε

ε1
(4)

Equation (4) determines the degree of irreversibility of the adsorption process k. For a
reversible adsorption process, ∆ε = 0 and k = 1.

Thus, if a hysteresis loop of type H3 is obtained experimentally, Equations (1) and (3)
describe the irreversible adsorption in micropores.

The task in this work is the general description of H3 hysteresis loops for microporous
systems. Therefore, the determination of the equations describing the adsorption and
desorption branches is necessary.

Represented by Equation (2) in the form

fi

(
Ai
εi

)
= (αiεi)

1
Ai

(
Ai
εi

)αi

exp
[
−
(

Ai
εi

)αi
]

, (5)

the Weibull distribution has several specific mathematical properties. On the basis of these
properties, it can be assumed that within the same thermodynamic cycle the product of
the parameters (αiεi), calculated for the forward and reverse branch of the adsorption–
desorption cycle, is constant. These distribution parameters can be represented by the
following relationship:

(α1ε1) = (α2ε2) (6)

The validity of relation (6) was confirmed on the basis of the analysis of the adsorption
and desorption isotherms of various adsorption systems [16].

The potential barrier of desorption is determined according to Equation (3). Then,
relation (6) can be rewritten as follows:

α1 = α2

(
1 +

∆ε

ε1

)
(7)

Substituting Equation (7) into Equation (1), we obtain the final version of the ex-
tended Dubinin–Astakhov equation—the so-called Dubinin–Astakhov-Advanced (DAA)
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equation—to determine the degree of filling of micropores in the adsorption and desorption
process, respectively:

θ1 = exp
[
−
(

A1

ε1

)α1
]

(8)

θ2 = exp

[
−
(

A2

ε1k

)α1/k
]

(9)

The DAA equation differs by the initial introduction of an additional third control
parameter k = 1 + ∆ε/ε1. This option should be regarded as the degree of irreversibility
of the adsorption system. If the difference of the potential barriers is zero, the adsorption
process in the low-pressure region is reversible k = 1 and the Equations (8) and (9) become
the original DA Equation (1). Thus, the analytical DAA equation is proposed to describe
the H3 hysteresis loop in micropores.

For what follows, we introduce a more general definition of the filling of micropores
in the form:

θ =
a1,2 − am,1,2

a0 − am,1,2
(10)

In the definition, a1,2 is the amount of adsorbate in micropores for some intermediate
value of the determining parameter A1,2 during adsorption and desorption, respectively.
The value am,1,2 was determined earlier. The amount of a0 is proposed to a0 ∼ h

σ ∗ am.
Based on formulas (8) and (9), the following equations can be written for the adsorption

and desorption branches of the hysteresis loop:

Adsorption : a1 = am,1

{
1 +

(
h
σ
− 1
)

exp
[
−
(

A1

ε1

)α1
]}

(11)

Desorption : a2 = am,2

{
1 +

(
h
σ
− 1
)

exp

[
−
(

A2

ε1k

) α1
k
]}

(12)

Let us define the desorption loop from the condition

a2x2 = a1x1 (13)

Then, the value of the relative pressure on the desorption branch of the hysteresis loop
is determined as follows. Let us rewrite Equations (4), (7), and (12) in the form:

A2 = ε1k

[
− ln

(
a2

am,2
− 1
)(

h
σ
− 1
)−1

] k
α1

(14)

The value of the relative pressure of desorption x2 is calculated as follows:

x2 = exp
(
− A2

RT

)
(15)

Equations (14) and (15) will further be used to describe the desorption branch of the
hysteresis loop.

2.2. An Alternative Theory of Adsorption in Micropores

It is assumed that the process of adsorption in micropores occurs in the same way as
the volume filling process, which has been studied in other works. TVFM is based on the
assumption that the adsorption in the pores should be treated by volume filling (similar
to the capillary condensation process), rather than by layer-by-layer filling. The physical
analogy between both processes implies their formal analogy, that is, the volume filling
of pores and the capillary condensation could be expected to obey a similar mathematical
treatment.
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For the pore width range σ < h < (1.6− 1.8) ∗ σ, a quasi-one-dimensional phase
(molecular associate, cluster which does not exhibit any surface tension) is formed in the
pore.

The capillary condensation process is described by the Kelvin equation [13]:

x =
p
p0

= exp
(
− λ Vl

RT t σ

)
(16)

Here, λ and Vl are the surface tension and molar volume of liquid adsorbate, σ is the
van der Waals’ diameter of the adsorbate molecule, and t is the thickness of the condensate
film on the pore walls. The governing parameter in Equation (16) is the relationship
between capillary and adsorption forces [17,18].

In particular, the expression analogous to Kelvin’s equation was proposed where the
governing parameter ϕ is the molecular associate energy in the potential field of pore walls.
For slit-like pores, the equation derived in [17] becomes:

x =
p
p0

= exp
{

ϕz0

RT h

[
1− 1

2h
(χ− 1)

]}
(17)

where h is the pore width, z0 and χ (0 ≤ χ ≤ 1) determine the geometric characteristics
of the pore space, and ϕ is the potential energy of interaction of molecules in a potential
field of walls. In [17], the parameter z0 is rigorously and analytically determined, but in
practical applications its calculation is too complicated.

On the other hand, within the transition region the approximation h/z0 ≈ h/σ = θ
provides reasonable accuracy for low-molecular-weight substances.

The potential energy of interaction of molecules in a potential field of walls is [4]

ϕ = ϕ0
h/σ

h/σ− B
(18)

where ϕ0 is the potential of interaction of molecules for h/σ → ∞ .
We give a brief analysis of Equation (17). In general, it is not possible to consider the

influence of the parameter χ in Equation (17). Consider two limiting cases of the geometric
characteristics of the pore space [17]:

x =
p
p0

= exp
{

ϕ

RTθ

[
1 +

1
2h

]}
for χ = 0 (19)

x =
p
p0

= exp
{ ϕ

RTθ

}
for χ = 1 (20)

However, in the framework of the thermodynamics of disordered media, the exponent
in formula (17) can be represented in the following form:

x = exp
[( ϕ

RTθ

)κ]
(21)

For χ = 1 is κ = 1; for χ = 0 is κ < 1.
For further calculations, we represent formula (21) in the form:

RT(lnx)
1
κ =

ϕ

θ
(22)

Introducing the adsorption potential A = RT ln(1/x), Equation (23) is obtained from
Equation (22) [5]:

θ = B +

(
A0

A

)1/κ

(23)



Molecules 2021, 26, 5074 6 of 12

Here B = θ0 is the initial filling of micropores determined by formula (23) and A0 is
the adsorption potential corresponding to the relative pore range where the influence of
the opposite pore walls becomes negligibly small—that is, A0/RT = ϕ0/RT = − ln(x0),
where x0 is the relative pressure at which ϕ→ 1 . Therefore, Equation (23) is obtained here
in the framework of the basic TVFM postulate.

Let us now consider the description of the hysteresis loop based on Equation (23). We
write Equation (23) in the form:

θ1,2 = B1,2 +

(
A0

1,2

A1,2

)β1,2

(24)

where β1,2 = 1/κ1,2 indices 1 and 2 refer, as before, to adsorption and desorption processes,
respectively. Let us introduce by analogy with formulas (3) and (4) the value of the poten-
tial barrier for the processes of adsorption ∆A0

1,2 and desorption, and the irreversibility
parameter k.

∆A0
1,2 = A0

2 − A0
1 (25)

k = 1 +
∆A0

1,2

A0
1

(26)

Let us write Equation (24) for the hysteresis loop:

Adsorption : a1 = am,1

B1 +

(
A0

1
A1

)β1
 (27)

Desorption : a2 = am,2

B2 +

(
A0

2
A2

)β2
 (28)

Based on formulas (13), (27), and (28), and under the following assumptions:(
A0

1

)β1
=
(

A0
2

)β2
; β2 = kβ1 ; B2 = B1

am,2

am,1
; A0

1 β2 = A0
2 β1 (29)

we obtain an equation for describing the desorption branch of the hysteresis loop:

A2 = kA0
1

(
a1

am,2
− B1

am,2

am,1

)−( 1
β1k )

(30)

The value of the relative pressure of desorption x2 is calculated as follows:

x2 = exp
(
− A2

RT

)
(31)

In the future, Equations (29) and (30) will be applied to predict the desorption branch
of the hysteresis loop.

2.3. Adsorption Hysteresis and Fractal Characteristics in Microporous Structures

Previously, we proposed a method for analysing the fractal characteristics of microp-
orous materials, based on the analytical solution of the integral Dubinin equation [18]. Here
are the main provisions of the developed method. The integral equation of M. Dubinin has
the following form:

θ(T, p) =
lmax∫

lmin

f (l) ∗ exp
[
−
(

lA
kβ

)]
dl (32)
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Then, Equation (31) should be rewritten as:

θ(T, p) =
∞∫

0

ml3−D ∗ exp

[
−
(

lA
kβ

)2
]

dl (33)

θ(T, p) =
∞∫

0

ϕ(l) ∗ l3 ∗ exp

[
−
(

lA
kβ

)2
]

dl ; with ϕ(l) = m ∗ l−D (34)

For analytical solutions of Equation (33) we make the following additional assump-
tions:

(1) The quantity θ(T, p) is an additive function;
(2) In Equation (31), the integrand has a sharp maximum. This determines the maximum

value of θ(T, p) corresponding to a certain l∗(lmin < l∗ < lmax) for a given value of A;
(3) The function of density distribution ϕ(l) = ml−D is a continuous and slowly varying

function;
(4) In the neighbourhood of l∗ the function f (l) has a constant value equal to the value f

(l∗).

Therefore, to solve Equation (33) one can apply the method of steepest descent, also
known as the “saddle point” method. Assuming that for the maximum of the integrand,
in the vicinity of l∗, the function ϕ(l) takes a constant value of ϕ(l∗), Equation (33) can be
rewritten as follows [15]:

θ(T, p) = ϕ(l∗)
∞∫

0

l3 ∗ exp

[
−
(

lA
kβ

)2
]

dl (35)

Equating the derivative of the integrand to zero, one can determine the value l∗:

l∗ =

√
3
2
∗ kβ

A
(36)

After this, integrating (34), we obtain:

θ(T, p) =
1
2

(
kβ

A

)4
ϕ(l∗) (37)

From Equation (36) we determine the formula for determining the distribution func-
tion ϕ(l∗):

ϕ(l∗) = 2θ(T, p)
(

A
kβ

)4
(38)

As stated above, the distribution function is defined as ϕ(l) = ml−D.
Thus, on the basis of formula (37) and with the experimental values θ(T, p) and A,

one can determine the fractal dimension D as follows:

2θ(T, p)
(

A
kβ

)4
= m ∗ (l∗)−D (39)

ln

[
2θ(T, p)

(
A
kβ

)4
]
= ln ϕ(l∗) = ln m− D ∗ ln(l∗) (40)

To analyse the experimental data, we represent formula (38) with the help of Equation (35)
in the form:

θ(T, p) = AD−4 ⇔ ln θ(T, p) = (D− 4) ln A (41)
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3. Results and Discussion

As an example, let us consider the adsorption–desorption isotherm of water vapor on
an Al2O3 sample (Figure 1). A preliminary analysis of the adsorption isotherm (Figure 1)
was carried out on the basis of the t-plot [3].

Figure 1. Isotherms of adsorption (•) and desorption (#) of water vapor on Al2O3.

Figure 2 shows the isotherm of water vapor adsorption on the Al2O3 sample in
coordinates a = f (t), where t = a/am is the statistical thickness of the monolayer. For
further analysis, the adsorption values of the monolayer were determined by the BET
method [3]. For the adsorption isotherm am,1 = 0.61 mmol/g, for the desorption isotherm,
am,2 = 0.63 mmol/g. The plot shown in Figure 2 is characteristic of the adsorption process
in slit-like pores. The condition for determining the area of micropores is 1 < h/σ ≤
1.6− 1.8 [3]. For definiteness, let us choose a value for the right boundary of the micropore
region to h/σ = 1.7. Then, for the adsorption values of the right boundary micropores
on the adsorption branch, it is valid that 0.61 < a1 ≤ 1.0 mmol/g, and for the desorption
branch, 0.63 < a2 ≤ 1.07 mmol/g.

Figure 2. The t-plot for the adsorption branch of the isotherm of water vapor on Al2O3.

To determine the parameters of Equation (1), we analysed the adsorption and desorp-
tion branches of the isotherm hysteresis loop (Figure 1) using the standard method [3]. The
analysis results are shown in Figure 3. For the parameters of Equation (1), the following
values were obtained: ε1 = 0.66; α1 = 1.95; ε2 = 0.86; α2 = 1.5. Equations (8) and (9), with
the obtained parameter values, describe the experimental adsorption–desorption isotherm
with a maximum relative deviation of ±δ = 8.5%.
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Figure 3. The adsorption (•) and desorption (#) branches of the hysteresis loop in the coordinates of
the linearised Equation (1); Y = ln(− ln θ).

The numeric values of the parameters ε1, α1 and ε2, α2 satisfy condition (6). The
irreversibility parameter of the hysteresis loop is k = 1.3. Note that this value of the
parameter k coincides, on average, with the values of the parameter k for the adsorption
systems considered in [16]. Thus, the analysis of adsorption hysteresis was carried out
within the framework of the classical theory of adsorption in micropores.

Now let us analyse the isotherm in Figure 1 on the basis of an alternative theory of the
adsorption process in micropores. In Figure 4 the segment of the adsorption isotherm in
the micropore region is presented in the coordinates of Equation (24). It is seen that the
adsorption branch of the hysteresis loop can be represented by Equation (27), with the
parameters B1 = 0.77; A0

1 = 0.32 RT; β1 = 1.

Figure 4. The adsorption (•) and desorption (#) branches of the hysteresis loop in the coordinates of
Equation (24).

The desorption branch of the hysteresis loop in the region of micropores must be
described with a parameter β not equal to unity (Figure 5). With Equation (28) for the
desorption branch of the hysteresis loop in the region of micropores, the following values
were obtained: B2 = 0.82; A0

2 = 0.42 RT; β2 = 1.23.
With these values of the parameters, Equation (24) describes the adsorption and

desorption branches of the hysteresis loop in the region of micropores, with a maximum
relative deviation of ±δ = 7.8%.

The irreversibility parameter of the hysteresis loop determined by the alternative
theory of adsorption in micropores is k = 1.35. The comparison of the irreversibility
parameter k, calculated in the TVFM formalism and the alternative theory of adsorption in
micropores, gives a good coincidence of k for both models.
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Figure 5. Desorption branch of the hysteresis loop in the coordinates of the linearised Equation (24).

Let us now consider the nature of adsorption irreversibility in micropores within the
framework of the fractal geometry formalism.

Adsorption hysteresis in micropores is determined by two factors: the pore size
distribution function and the structural state of the adsorbate in micropores.

Let us consider the determination of the fractal dimension of a microporous sample
on the adsorption and desorption branches of the hysteresis loop. The corresponding
calculations were carried out using formulae (34, 41). The calculation results are shown in
Figure 6. The following values of the fractal dimension were obtained: for the adsorption
process D1 = 2.75, for the desorption process D2 = 2.33. Now let us give a number of
explanations about the obtained values of the fractal dimension for the adsorption and
desorption branches of the hysteresis loop.

Figure 6. Linearised scaling dependence (40) for the adsorption (•) and desorption (#) branches of
the hysteresis loop.

To determine the structural characteristics of a set of pores in the theory of fractal
structures, the connectivity index of the set is introduced µc [11]:

µc = 2(D− 1) (42)

The connectivity index number of the set of pores considered by formula (42) in the
process of adsorption is µc,1 = 3.5 and in the process of desorption µc,2 = 2.66. The smaller
value of the connectivity index of the set of pores during desorption is determined by the
long-range order characteristic of desorption [3].

Now, let us carry out a comparative analysis of the results obtained in the description
of the hysteresis loop for the adsorption of water vapor on the Al2O3 sample, and for
the adsorption systems presented in Table 1. The adsorption–desorption processes for
all adsorbate–adsorbent systems are characterized by large values of potential barriers
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compared to potential barriers for the hysteresis loop during the adsorption–desorption of
water vapor on the Al2O3 sample.

Table 1. Parameters of the DA Equation (1).

Adsorption System
Adsorption Desorption

∆ε/RT k
∆ε1/RT α1 ∆ε2/RT α2

Water–lunar regolith [19] 2.61 1.77 3.75 1.18 1.14 1.44

Water–shungite [20] 4.28 1.62 5.50 1.19 1.22 1.29

Water–kaolinite [21,22] 1.95 2.50 2.14 2.20 0.19 1.10

Pyridine–montmorillonite [23,24] 3.24 1.91 4.69 1.41 1.45 1.45

Water–lunar regolith (α1ε1) = 4.61; (α2ε2) = 4.41. Water–shungite: (α1ε1) = 6.83; (α2ε2) = 6.54. Water–kaolinite: (α1ε1) = 4.57; (α2ε2) = 4.68.
Pyridine–montmorillonite: (α1ε1) = 6.18; (α2ε2) = 6.61.

Adsorbents such as lunar regolith, shungite, and kaolinite are characterised by a
high degree of adsorption deformation (swelling) compared to Al2O3. Additionally, these
adsorbents form stronger covalent bonds with water molecules [19–24]. In this case,
diffusional and chemical “traps” have higher values in comparison with the values of traps
during the adsorption–desorption of water vapor on the Al2O3 sample.

Note that the parameter α for the processes of adsorption–desorption and the degree
of irreversibility for the hysteresis loop k during the adsorption of water vapor on the
lunar regolith and shungite samples are close in value to the analogous parameters for the
adsorption of water vapor on the Al2O3 sample.

Equations (6) and (29) should be considered as thermodynamic invariants of the
hysteresis loop during adsorption in micropores.

In the future, a more detailed study of thermodynamic invariants and their relationship
with the geometric characteristics of the adsorbate and adsorbent is required.

4. Conclusions

The classical theory of volume filling in micropores (DA equation) and the alternative
theory of adsorption in micropores (generalised Kelvin equation) are presented in the form
of universal equations. The proposed universal equations are based on a thermodynamic
invariant. The determination of the thermodynamic invariant is based on the values of
potential barriers to adsorption–desorption and the degree of deviation of the pore size
distribution function from the Gaussian distribution.

The governing parameter of the universal equations is the degree of irreversibility of
the thermodynamic adsorption–desorption cycle.

Thus, it is possible to predict the desorption branch of the hysteresis loop based on
the governing parameters for the adsorption branch.

The hysteresis loop in the set of micropores is defined as a disorder–order transition.
Higher potential barriers to desorption determine a greater degree of phase order and a
lower degree of symmetry with respect to the adsorption phase. This is expressed in a
smaller value of the fractal dimension.
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