УПРАВЛЯЕМЫЕ ФОТОПРИЕМНЫЕ УСТРОЙСТВА ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ИЗОБРАЖЕНИЙ НА ОСНОВЕ МЕТОДОВ ГИЛЬБЕРТ-ОПТИКИ

Н. К. Макаренко, Ю. А. Кругляк

Одесский госуниверситет им. И. И. Мечникова

Приведены структуры устройств предварительной обработки изображений, объединяющих управляемые фотоприемники и приборы, реализующие дискретное преобразование Гильберта (ДПГ). Проведено моделирование процессов идентификации и классификации изображений близких объектов по их дифракторграммам и интерферограммам в спектральном пространстве ДПГ.

Развитие видеоинформационных систем (ВИС), решающих задачи технического зрения, дистанционного зондирования, неразрушающего контроля и т. д., обусловливает высокие требования к параметрам видеодатчиков, используемых в этих системах. Одной из важных проблем построения ВИС является согласование скоростей создания информации — многомерных сигналов — в видеодатчиках со скоростями передачи и обработки этих сигналов в вычислительных устройствах ВИС. Эти скорости в настоящее время отличаются на многие порядки. Сократить разрыв в этих величинах можно за счет применения принципов предварительной обработки сигналов и адаптивного управления параметрами видеодатчиков, подобных существующим в зрительных анализаторах человека и других живых существ [1 и др.]. Значительный объем информации следует перерабатывать при распознавании объектов в цветных или многоспектральных (зональных) изображениях. Используя управляемые фотоприемники, например [2-5 и др.], возможно построить устройства предварительной обработки изображений с целью сжатия информации, реализующие функции фильтрации шумов и фонов, контрастирования изображений, бинаризации и срез-разрядовой обработки, пространственной логической корреляционной обработки и выделения характерных признаков распознаваемых объектов.

Вторым перспективным направлением в создании устройств предварительной обработки изображений является объединение фотоприемников и аналоговых дискретных приборов обработки видеосигналов, реализующих принципы Гильбертоптики [6 и др.]. В данной статье представлены структурные схемы устройств предварительной обработки, использующие принципы Гильбертоптики и управляемые цветоразличающие фотоприемники для повышения точности анализа и классификации цветовых спектральных (хроматических) характеристик, а также нелинейные фотоприемники на основе планарных фототиристоров для определения пространственных (дифракционных и интерференционных) характеристик оптических полей.

Структуры анализаторов и классификаторов хроматических характеристик реализуются на основе компенсационного метода измерения цвета [7]. Структурная схема анализатора приведена на рис. 1. Она содержит управляемый фотоприемник, обладающий знакопеременной 5"-образной характеристикой спектральной чувствительности $\#_{u\phi n}$ с варьируемой «нулевой» точкой A_0 в диапазоне $A_{mln...}$ A_{taxx} . При подаче на вход анализатора излучения с определенной спектральной характеристикой т(X) выходной сигнал фотоприемника определяется как

- а) неадаптивная схема;
- б) адаптивна» схема;
- УФИ управляемый фотоприемник
- ГУН генератор управляющего напряжения,
- УС усилитель видеосигнала

где K — постоянный коэффициент. Варьируя величину постоянного смещения U_0 и перестраивая тем самым величину A_0 , добиваются нулевого значения $C y_{upr}$ При измерении формы $\tau(X)$ происходит изменение {/_{upn} и, следовательно, необходимо изменять \ (и) = k'_0.

Изменение t/ может производиться заранее, в процессе настройки на хромотограмму фона, тогда с помощью такого анализатора происходит подавление фона и, следовательно, повышение контраста малоразмерного объекта, полностью попадающего в апертуру фотоприемника при пространственном сканировании. Однако, может быть реализована схема динамического управления фотоприемником. При этом происходит периодическая подстройка X_0 и, следовательно, сигнал f/ "jin(t) является периодическим. Спектральный состав этого сигнала, определяемый с помощью спектроанализатора, является характерным для каждой хромотограммы и может использоваться для распознавания цвета.

Используя принцип следящей системы возможно построение анализатора динамических цветовых характеристик (ДЦХ) с адаптацией X_0 . При этом структурная схема измерителя-анализатора представлена на рис. 1 б.

Алгоритм функционирования состоит в управлении величиной $U_0(t)$, следовательно, A_0 с целью обеспечения равенства нулю $C_{u\phi n}(1)$. При этом информация о ДЦХ переносится в закон изменения во времени напряжения управляющего сигнала $U_0(t)$. Подобная структура может использоваться в сканирующих радиометрах систем дистанционного зондирования или в других приборах пространственно-хроматического анализа изображений.

Использование методов Гильберт-оптики позволяет повысить качество распознавания хромотограмм в корреляционно-экстремальных классификаторах. С этой целью необходимо дополнить структуру корреляционно-экстремального классификатора хромотограмм устройством вычисления дискретного преобразования Гильберта (ДПГ) (рис. 2). Конкретная реализация такого устройства может быть различной — как цифровой, так и аналоговой. Подчеркивание с помощью алгоритма ДПГ аномалий, особенностей хромотограмм позволяет повысить достоверность их классификации. На рис. 2 б приведены графики вероятностей правильной и ошибочной классификации реальных хромотограмм, из которых видно, что классификация в пространстве преобразования Гильберта значительно эффективнее и помехоустойчивее, чем в исходном пространстве хромотограмм.

Анализаторы пространственных характеристик изображений

Применение управляемых ключевых (логических) видеодатчиков на основе планарных фототирпсторов [2; 3; 4] позволяет получать разрядные

Рис. 2. Структура — а и характеристики — б корреляционно-экстремального классификатора хромотограмм

БЭС-ОЗУ— блок-библиотека эталонных спектров, хранящаяся в ПЗУ,

БПР — блок питания классификационного решения.

Рис. 3. Классификаторы формы объектов в изображениях на основе топорных фотопшристорны.х структур и ДПГ ра зрядных срезов

а) структура классификатора,

б) структура матричного фотопшристоргого приемника — сканера с прострочно, постолбцовым суммированием. срезы — бинарные изображения обрабатываемых полей, веса которых равны степени 2 и управляются электрическим или оптическим смещением. Получаемый в режиме сканирования видеосигнал имеет вид бинарной последовательности и может быть подвергнут одномерному преобразованию Гильберта с последующим корреляционным сравнением в пространстве преобразования (рис. 3 а). Кроме этого, используя принцип построчного (постолбцового накопления (рис. 3 б) с помощью вращающейся приемной фототиристорной матрицы, возможно производить идентификацию формы объектов, либо производить корреляционно-экстремальную классификацию формы, инвариантную к повороту объекта в плоскости изображения.

Используя преобразование Гильберта возможно повысить качество распознавания объектов, например, частиц или дефектов поверхности по изображениям их дифракционных картин. При этом получаемый с помощью сканирующего фотоприемника видеосигнал, повторяющий во времени форму сечения дифракционной картины, подвергается преобразованию Гильберта и дальнейшему корреляционному сравнению.

В таблице 1 приведены результаты моделирования задачи классификации объектов близкой формы по их дифракционным картинам. Как видим, при воздействии аддитивных шумов (отношение сигнал/шум 10) переход в пространство преобразования Гильберта позволяет в 1,-7,5 раз снизить вероятность ошибки (неправильной классификации). Аналогичную структуру можно рекомендовать для анализаторов пространственных частот в интерференционных картинах. Используя преобразование Гильберта одномерной интерференционной картины /(х)

$$/(*) = -J_{ItJ^{A}X-x'} dx',$$
 (2)

и вычисляя обобщенную огибающую A(x) и частоту со(x) по формулам

$$\Pi(x) = \frac{1}{2}(x) + \frac{1}{2}(x'); \qquad \cos(x) = i - \arctan 4 \operatorname{rr}, (3)$$

возможно скомпенсировать мультипликативные помехи и определить пространственную частоту с высокой точностью.

В таблице 2 приведены результаты моделирования задачи оценки пространственной частоты в зашумленных интерференционных картинах. Как видим, использование преобразования Гильберта позволяет повысить помехоустойчивость определения пространственных частот.

Как показано в данной статье, сочетание управляемых фороприемников с устройствами вычисления дискретного преобразования Гильберта повышает эффективность анализа хроматических и пространственно-частотных характеристик и качество распознавания процессов и объектов с помощью классификаторов, использующих представленные структуры.

Рис. 4. Конструкция — а и характеристики «Свет-сигнал» планарно-объемной фототиристорной структуры — б).

С целью реализации логической пороговой обработки изображений были разработаны и исследованы планарно-объемные структуры (ПОС), обладающие регулируемыми фотоэлектрическими свойствами. Они представляют собой планарный фототиристор с нанесением со стороны высокоомной базы полупрозрачным покрытием из золота. К покрытию подключается прижимной электрод. ПОС обладает в режиме слабых сходных сигналов занакопеременными свет-сигнальными характеристиками (ССХ), а в режиме сильных сигналов – фототиристорными свойствами. Конструкция ПОС приведена на рис. 4 а, на рис. 4 б приведены семейства ССХ ПОС. Режимы включения определены в комментариях к рисунку. Наличие управляющего электрода позволяет варьировать режимами ПОС-фотоприемника.

Как показывает анализ полученных зависимостей, ПОС-фотоприемники обладают весьма гибкими функциональными возможностями:

1. ССХ является знакопеременной. Нулевая область смещается пропорционально приложенному смещению. Крутизна линейного участка ССХ значительно больше, чем участок насыщения и незначительно изменяется в диапазоне перестройки нулевой области; 2. Изменение напряжения на управляющем электроде приводит к резким изменениям формы CCX, а также к резким вариациям чувствительности;

3. Вариации коллекторных напряжений приводят к изменениям на 2 или 3 порядка фототоков при фиксированном потоке излучения;

4. ПОС обеспечивает фототиристорные свойства. Поток порога переключения регулируется с помощью напряжения, прикладываемых между управляющим электродом и покрытием высокоомной базы.

Литература

1. ПрэттУ. К. Цифровая обработка изображений. / Пер. с англ. Под ред. Д. С. Лебедева. М.: Мир, 1982,—Т. 1,2.

2. Фотоприемники с двумя барьерами Шоттки Au-nAl_xGa, _xAs-Au на варизонном полупроводнике / Дмитриев М. В., Кулиш У. М., Макаренко Н. К. и др. // Исследование полупроводниковых соединений сложного состава и *p-n* переходов на их основе. — КалГУ, Элиста, 1076. — С. 88-93.

3. Кравченко С. Н., Макаренко Н. К. Фотоприемные устройства на основе тиристорных структур. Современное состояние и пути совершенствования // Фотоэлектроника: Респ. межвед. сб. науч. ст. — 1987.— Вып. 1,—С. 98-102.

4. Кравченко С. Н., Макаренко Н. К. Исследование спектральных характеристик планарных фототиристоров // Фотоэлектроника: Респ. межвед. научн. сб. — 1988. — Вып. 2. — С. 112-114.

5. Макаренко Н. К. Исследование динамических характеристик управляемых оптронных устройств на основе планарных фототиристоров // Фотоэлектроника: Респ. межвед. научн. сб. —1990. — Вып. 3. — С. 67-71.

6. Сороко Л. М. Гильберт-оптика. — М.: Наука. Главная редакция физико-математической литературы, 1981. — 160 с.

7. Якушенков Ю. Г., Луканцев В. Н., Колосов М. П. Методы борьбы с помехами в оптико-электронных приборах. — М.: Радио и связь, 1981. — 180 с.

Таблица 1 а Характеристики вероятностей правильной (P_m) и (P_{гуп}) ошибочной классификации по их дифракционным изображениям в исходном пространстве (отношение с/ш q — 10)

№№ объек-	1	2	2		-	6	л(к)
	1	2	3	4	5	0	ИП
эталонов							
1	1,0	0,66	0,50	0,40	0,32	0,40	2,14
2	0,08	0,9	0,54	0,44	0,60	0,50	1,97
3	0,56	0,89	0,89	0,66	0,66	0,50	1,34
4	0,72	0,46	0,50	0,95	0,78	0,66	1,17
5	0,64	0,36	0,48	0,56	0,86	0,48	1,85
6	0,42	0,33	0,54	0,60	0,93	0,99	1,82
р(К) ИП	0,47	0,45	0,66	0,81	0,46	0,54	

Таблица 1 б

Характеристики вероятностей правильной (P_o) и ошибочной классификации (P_{on}) объектов по их дифракционным изображениям, преобразованным в спектральное пространство преобразования Гильберта (ППГ) (q = 10)

№№ объек- №Ду \. ^{тов} эталонов	1	2	3	4	5	6	д(к) ппг
1	0,90	0,48	0,12	0,55	0,42	0,34	7,35
2	0,20	1,0	0,36	0,10	0,36	0,22	4,55
3	0,34	0,22	1,0	0,35	0,20	0,05	3,5
4	0,06	0,12	0,1	0,95	0,40	0,15	3,4
5	0,06	0,12	0,34	0,20	0,80	0,20	2,34
6	0,10	0,24	0,32	0,25	0,44	0,90	4,64
/И*) ни	0,12	0,23	0,28	0,27	0,34	0,19	

Примечание:

- 1) Диагональные элементы Р_{по}, внедиагональные — Р он
- 2) объект № 1 (эталон № 1) частица эллипсоидальной формы; объект № 2 (эталон № 2) — частица эллипти-

ческий цилиндр;

объект № 3 (эталон № 3) — частица круговой цилиндр:

№ 4 (эталон № 4) — частица конической формы;

объект № 5 (эталон № 5) — частица плоская квадратной формы; объект № 6 (эталон № 6) — частица плоская ромбической формы;

усредненная по ансамблю эталонов р(к) усредненная по ансамбл ошибка классификации к-то объекта.

Таблица 1 в

Характеристики вероятностей правильной (Р_{ПО}) и ошибочной (Р,_ш) корреляционно-экстремальной классификации объектов заданной формы в исходном пространстве (ИП) и спектральном пространстве преобразования Гильберта (С_{І:}ПГ) в зависимости от отношения сигнал/шум

р	q	1,0	3,0	5,0	7,0	9,0	11,0
р(г	(ип) 10	0,4	0,48	0,57	0,73	0,94	0,99
р(с по	сппг) 0	0,3	0,65	0,86	0,99	0,995	0,998
p(o	(ип) Эш	0,4	0,17	0,08	0,01	0,003	0,001
p(c or	сппг) п	0,14	0,05	0,01	0,003	0,001	0,000

Примечание:

Классификация проводилась путем корреляционного сравнения биназированных объектов сложной формы с эталонными объектами, как в исходном пространстве (без предварительного преобразования), так и в спектральном пространстве ДПГ, (с предварительным переносом классифицируемых объектов и эталонов в СП ДПГ) и принятием классификационного решения по максимуму взаимнокорреляционной функции.

Таблица 2 а

Значения нормированной погрешности определения пространственной частоты dw интерферограммы (с помощью ДПГ в условиях шума q є (1...10²))

		І. Инт	ерферограмма	с постоянно	и пространс	твеннои час	$momou$ ($F_x =$	consi
тип оценки	q	1	3	5	10	30	100	
1		0,3	0,17	0,13	0,1	0,05	0,008	
2		0,15	0,1	0,07	0,03	0,01	0,005	
3		0,2	0,1	0,03	0,015	0,005	0,0015	

. .. . *(*t)

2. Интерферограмма с пространственной линейной частотной модуляцией (ЛЧМ) (F = F₀

q тип	1	3	5	10	30	100
1	0,8	0,5	0,4	0,3	0,2	0,03
2	0,6	0,3	0,2	0,15	0,06	0,01
3	0,3	0,15	0,1	0,07	0,02	0,005

Примечание: 1) — оценка частоты баз предварительной обработки;

2) фильтрация с помощью медианного фильтра; 3) фильтрация с помощью скользящего среднего.