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Box-like Shells with Longitudinal Cracks

V.A. Grishin, V.V. Reut and E.V. Reut

Abstract. The problem of how to determine the stress state of an infinite box-
like shell of rectangular profile is solved. Two cracks are located on opposite
sides of the shell and parallel to its edges. On applying a Fourier transform,
the problem can be reduced to a system of two integral equations with re-
spect to jumps at the corner of rotation and normal displacements of the
crack edges. The system of integral equations is solved by the method of or-
thogonal polynomials. Dependence of the stress intensity factor on the length
of cracks and the geometrical dimensions of the cross-sections of the shell is
demonstrated.
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1. Preamble

Thin-walled shells of a rectangular structure are used widely in construction, ship-
building and mechanical engineering. In order to minimize the tedious details of re-
search into plate construction as force elements of building mechanics, researchers
have made various assumptions depending on types of loads and conditions of
their fastenings. Among the first papers in this direction, the intense condition of
thin-walled cores of open and closed structures, we refer the reader to the related
works of Vlasov, Ganilidze, Panovko, Kan, and Reyssner.

Papkovich has applied the methods of plane elasticity theory to the study
of box constructions. Thus he assumed that each plate is in a flat intense condi-
tion and cooperates with adjoining plates only by tangential efforts. Contrary to
Papkovich, in papers of Smotrov and Fleyshman the problems were solved with
only the basic assumption that the construction edges do not bend and play a role
of rigid support. In a general statement or with the use of a minimum quantity
of simplifying assumptions, problems on plate construction were solved by vari-
ous numerical methods, among which are the following ones: variational-difference
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method (method of conjugated gradients), method of finite elements, and the vari-
ational method of Kantorovich-Vlasov. The more difficult problems for compound
shell constructions, in view of actual conditions of their interaction, were solved
by Mossakovsky and his disciples by the homogeneous solutions method. So in a
paper of Musiyaki and Poshivalova, the matrix-vector method (based on a method
of homogeneous solutions) is offered to analyze the constructions of plate design,
and the problem of a folded-plate construction is solved. In a paper of Mossakovsky
and Poshivalova the results are given of a comparison of solutions for the problem
of a thin-walled bar under constrained torsion to a method of homogeneous solu-
tion with Vlasovs results. In a paper of Mossakovsky and Kulikov the method of
homogeneous solutions was applied to problems with dynamic loading.

In paper [1] an account of the method of box-like shell constructions was
offered, and it reduced the problem to one about the joint planar-bend stress
condition for a plate with defects, which role is played by the edges of a shell. The
advantage of this method consists in

1) the number of necessary differential equations and conditions of the joint is
twice reduced,

and in
2) the solution methods for planar and bending problems for plates with defects

now are well developed, and one can find bibliographies in [5, 7].
In papers [2, 3] the problems of inclusion setting in box-like shells are solved

by these methods. In paper [4] the problem of the stress state of a boxed shell
with a crack on an shell edge is solved. In the present paper the problem of a
longitudinal crack is studied.

2. The problem statement
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Let us consider a problem of the stress state of a box-like shell of infinite length
and rectangular structure, weakened by a pair of symmetric cracks (Fig. 1). We
suppose that all plates of which the shell is made are of one material and have
identical thickness h, Poisson factor ν, elasticity module E, and cylindrical rigidity
D. Crack edges are loaded by the bending moments m (y) and planar stretching
loadings σ (y). Loadings that influence the shell are symmetric with the planes
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of symmetry of the shell and are such that the crack edges are not closed. By
the method stated in [1], the problem is reduced to searching for a differential
equations system solution:

Δ2w (x, y) = 0

Δ2σx(x, y) = 0, −a < x < b, x �= 0, |y| <∞ (2.1)

which satisfy the conditions on the shell edge

〈v〉 = 〈τxy〉 = 〈ϕxy〉 = 〈Mxy〉 = 0

〈u〉 = −(w+ + w−); 〈w〉 = u+ + u−

〈σx〉 = −h−1[(Vx)+ + (Vy)−]

〈Vx〉 = h [(σx)+ + (σy)−]

(2.2)

and boundary conditions

Vx = τxy = 0; Mx = m (y) ; σx = σ (y) ; x = −a, |y| < c

Vx = ϕx = u = τxy = 0; x = −a, |y| > c

Vx = ϕx = u = τxy = 0; x = b.

Here u, v, w are the displacements along the axes with respect to x, y, z;
ϕx, Mx, Vx, σx, τxy – the angle of turn, bending moment, generalized cross force,
normal and tangential stresses. It is convenient to present the boundary conditions
as:

Vx = τxy = 0; ϕx = χ(y); u = μ(y), x = −a

Vx = ϕx = u = τxy = 0, x = b,
(2.3)

where χ(y) and μ(y) – unknown functions on an interval |y| < c, equal to zero
outside this interval– represent by themselves an angle of inclination and normal
displacements of the crack edges. Without loss of generality, it is possible to con-
sider that the necessary variable change in x results in both y and c = 1.After
application of a Fourier transformation to elastic unknown values and loadings,
similar to the way it was done in [1], and also to unknown functions χ(y) and μ(y),
we get

χα =

1∫
−1

χ(y)eiαydy, μα =

1∫
−1

μ(y)eiαydy.

The problem (2.1)–(2.3) is reduced to the system of two integral equations

1
π

d2

dy2

1∫
−1

ln |y − η|
[
μ(η)
χ(η)

]
dη +

1∫
−1

[
K11 K12

K21 K22

] [
μ(η)
χ(η)

]
dη =

[
σ∗(y)
m∗(y)

]
(2.4)
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where

m∗ = 2(Dγ)−1m(y); σ∗ = −2σ(y) (2.5)

Kij(y, η) =
1
2π

∞∫
−∞

kij(α)eiα(η−y)dα (2.6)

k11(α) = p11(α)− f+
3μΩ0(−a) + f+

0μΩ3(−a);

k12(α) = −f+
3χΩ0(−a) + f+

0χΩ3(−a)
(2.7)

k22(α) = p22(α)− f−
3χM0(−a) + f−

0χM3(−a);

k21(α) = −γ
[−f−

3μM0(−a) + f−
3μM3(−a)

] (2.8)

p11(α) exp|α|(a+b) = Gα(−a, b)− 0, 5 (a + b) |α|−1
LGα(−a, b)+

p22(α)γ exp|α|(a+b) = −α4Gα(−a, b) +
[
0, 5α(a + b)− 2(1− ν)−1

]
α2LGα(−a, b)

Ωk(x) = T +
k Gα(x, t); Mk(x) = R−

2 T−
k Gα(x, t); γ = (3 + ν)/(1− ν).

Here the following differential operators were used:

R±
k f =

∂kf

∂xk
; k = 0, 1; R±

2 f =
[
L + (1± ν)α2

]
f

R±
3 f =

∂

∂x

[
L− (1± ν)α2

]
f ; Lf =

d2f

dx2
− α2f

Sf =
(
T− − T +

)
f ; Hf =

(
T− + T +

)
f ; T±f = f (±0)

S±
k f = S

[
R±

k f
]
; H±

k f = H
[
R±

k f
]
; T±

k f = T
[
R±

k f
]

and G(x, ξ) – Green function of the boundary problem

L2u(x) = 0, x ∈ (a, b); u′ = u′′′ = 0, x = −a, b.

Vectors Fμ =
(
f+
0μ, f+

3μ, f−
0μ, f−

3μ

)
; Fχ =

(
f+
0χ, f+

3χ, f−
0χ, f−

3χ

)
are the solution of

the linear algebraic equation system AF = B for the right-hand parts B = Hμ

and B = Hχ correspondingly, where
Text is missing!!!

This solution is obtained by solving the one-dimensional discontinuous bound-
ary problems system

L2f±
α = 0; −a < x < b, x �= 0 (2.9)

R−
3 f−

α = R+
1 f+

α = 0; R+
3 f+

α = −α4Eμα;

R−
1 f−

α = χα, x = −a (2.10)

R±
3 f±

α = R±
1 f±

α = 0, x = b

S±
j f±

α = 0 j = 1, 2

S+
3 f+

α = α4E
[
H−

0 f−
α

]
; H+

3 f+
α = α4E

[
S−

0 f−
α

]
(2.11)

S+
0 f+

α = Dh−1
[
H−

3 f−
α

]
; H+

0 f+
α = −Dh−1

[
S−

3 f−
α

]
.
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Then we can write the solution of problem (2.9)–(2.11) in the form

f−
α (x) = χαR−

1 Gα(x,−a) + f−
q − f−

3 T−
0 Gα + f−

0 T−
3 Gα;

f+
α (x) = μ(−α4E)Gα(x,−a) + f+

q − f+
3 T +

0 Gα + f+
0 T +

3 Gα.
(2.12)

So, the stated problem is reduced to a system of integral equations (2.4) con-
taining unknown functions χ(y) and μ(y), which represent the angle of inclination
and normal displacements of the crack edges.

3. Construction of the approximate solution of the integral
equations system

Let us take advantage of the method of orthogonal polynomials [5] and search
for a solution as the expansion of unknown functions into a series about some
Chebychev polynomials of the second kind Uk(η) with the unknown coefficients(

μ(η)
χ(η)

)
=
√

1− η2

∞∑
k=0

(
μk

χk

)
Uk(η), |η| < 1. (3.1)

Let us substitute (3.1) into (2.4), and multiply each equation of this sys-
tem by

√
1− y2Un(y) and integrate by y on the interval (−1, 1). We take into

consideration the spectral correspondence [5]:

1
π

d2

dx2

1∫
−1

ln
1

|y − x|
√

1− y2Un(y)dy = −(n + 1)Un(x)

and orthogonal correspondence [6]

1∫
−1

√
1− y2Um(y)Un(y)dy =

π

2
δmn

and formulas [6]:

1∫
−1

√
(1− x2)

{
sin αx U2n+1(x)
cosαx U2n(x)

}
dx = (−1)n π(2n + 3/2± 1/2

α

{
J2n+2(α)
J2n+1(α)

}
. Then after simple transformations and permutation of the integration order in
which we get expressions for Kij(y, η), we pass to an infinite system of linear
algebraic equations of the second kind which, by Poincaré-Koch, are normal with
respect to the coefficients of expansion:

(n + 1)
(

μn

χn

)
+

∞∑
k=0

A(k,n)

(
μk

χk

)
=
(

σn

mn

)
, n = 0,∞ (3.2)
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where components of a matrix A(k,n) and coefficients of the right-hand parts are

A
(2k,2n)
ij = 4(−1)n+k(2n + 1)(2k + 1)×

∞∫
0

kij(α)α−2J2n+1(α)J2k+1(α)dα;

A
(2k+1,2n+1)
ij = 4(−1)n+k+1(2n + 2)(2k + 2)×

∞∫
0

kij(α)α−2J2n+2(α)J2k+2(α)dα;

A
(2k+1,2n)
ij = A

(2k,2n+1)
ij = 0; i, j = 1, 2(

σn

mn

)
=

2
π

1∫
−1

(
σ∗(y)
m∗(y)

)√
1− y2Un(y)dy.

Thus kij(α), σ∗(y), m∗(y) are determined in (2.5)–(2.8) and Jk (α) is a Bessel
function. Let us note that the procedure using the components of matrices A(k,n)

is simpler in essential ways owing to block symmetry, which is easily seen by
replacing n with k or vice versa. The calculation of integrals with respect to α is
also simpler owing to an exponential decrease of the function under integration.
The solution of infinite algebraic system (3.2) allows us to determine all elastic
unknown values, using the solution of a problem in transformations (2.9)–(2.11)
in the form (2.12) and the convolution theorem, and also to estimate the intensity
factor of plane k+ and bend k− stresses. Following [7], we shall understand the
stress intensity factor k± to be the factor through which the main parts of stresses
near the crack ends are expressed. By the main parts of stresses we mean the
coefficients of the singularities for stresses near to the crack ends. To obtain these
main parts formulas it is enough to find a limit with y → ±1 (|y| > 1) of the
integrals (

ϕ+

ϕ−

)
=

1
π

lim
y→±1

⎛⎝√y2 − 1
d2

dy2

1∫
−1

(
μ(η)
χ(η)

)
ln |y − η| dη

⎞⎠
and to use the correspondence [5]

1
π

d2

dy2

1∫
−1

ln
1

|y − η|
Un(η)dη√

1− y2

=
|y|Un(y)√

y2 − 1
+
√

y2 − 1 · U ′
n(y)sgn y − 1

2
(n + 1)Un(y), |y| > 1.

As a result, after obtaining the integral main parts in the form(
ϕ+

ϕ−

)
=

∞∑
k=0

(
μk

χk

)
· Uk(±1), |y| > 1
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we can find the stress intensity factors values and the main parts of the elastic
values.

The numerical solution of the stated problem (2.1)–(2.3), which was reduced
to an infinite system of linear algebraic equations (3.2), was obtained by a reduction
method that eliminated four members of expansion for μ(y) and χ(y) in (3.1). And
the loading, which influences the shell, undertook the role Of the bending moment
of intensity m = const and planar normal stresses of intensity σ = const that
applied to crack edges. Thus the stress intensity factors in both crack vertexes have
identical values k±(±1) = k± and are connected with dimensionless coefficients
km
± , kσ

±, which were calculated, by the following correspondences

k± = km
±

6m
√

c

h2
; k± = kσ

±σ
√

c. (3.3)

In Table 1 the values of stress intensity factors of plane and bend stresses
(3.3) with a/b = 0, 5 for a different ratio c/a are shown.

Table 1

b/a c/a

0.1 0.4 0.8 1 1.2 1.5 1.8 2

2 kσ
+ 1.010 1.130 1.270 1.610 1.800 2.090 2.390 2.590

km− 0.999 0.991 0.980 0.953 0.937 0.913 0.889 0.874

kσ
− · 103 0.004 0.0703 0.155 0.343 0.408 0.443 0.398 0.324

km
+ · 103 0.021 0.346 0.759 1.710 2.120 2.590 2.900 3.050

1 kσ
+ 1.010 1.130 1.270 1.610 1.790 2.080 2.380 2.580

km− 0.992 0.988 0.974 0.935 0.912 0.875 0.838 0.814

kσ− · 103 0.003 0.050 0.109 0.219 0.243 0.230 0.163 0.092

km
+ · 103 0.015 0.246 0.533 1.130 1.340 1.560 1.680 1.730

0.5 kσ
+ 1.010 1.130 1.270 1.620 1.820 2.120 2.450 2.670

km− 0.999 0.983 0.962 0.906 0.873 0.823 0.776 0.746

kσ− · 103 0.018 0.307 0.655 1.220 1.300 1.130 0.667 0.200

km
+ · 103 0.089 0.153 0.322 0.650 0.763 0.877 0.942 0.970

The results of calculations show that, under the action of bending loadings,
the intensity factors km

− of bend stresses of some orders exceed the intensity factors
of plane stresses kσ

−; and under the action of plane loadings the intensity factors
km
+ of bend stresses on some orders are lower than the intensity factors kσ

+ of plane
stresses.
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