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Abstract: Spectral problem for Schrodinger operator of half-crystal with surface impurities is
considered. We use zero-range potentials model based on the theory of self-adjoint extensions
of symmetric operators. The impurities are one-periodic chains of point-like potentials. The
impurity leads to appearance of additional bands. The corresponding states are concentrated
near the chain, i.e. it looks like a waveguide state. Hence, the electron density near the
nanoparticle surface increases. This results in increasing of the catalytic activity of the
nanoparticle.
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1 Introduction

Nano catalysts are the most widely used catalysts in modern chemistry (see, e.g., |1]).
The main advantage is good surface/volume ratio for nanoparticles. The most important
problem is to ensure high catalytic efficiency and to suggest a computational method for
determination of characteristics of the corresponding structures. The problem can be
considered with using of different (rather complicated) approaches (see, e.g.. [2]), but
simple model which allows one to predict the corresponding properties of the system is
preferable. Nanoparticle can be treated as a crystal of finite (nano) size. One can mention
an interesting phenomenon: the catalytic activity of nanocatalyst increases considerably
if there are irregular inclusions at the nanoparticle surface. It was demonstrated in
several cases: the electrocatalytic activity of oxygen-modified tungsten carbide [3]; the

reaction of ethanol on metallic and oxidized cobalt surfaces |4|; the formation of carbonate
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species on alumina [5]; reaction intermediates of methanol synthesis and the water-gas-
shift reaction on the ZnO(0001) surface [6]. The presence of substitutional atoms can
lead to modified chemical centers on the surface. Particularly, one obtains enhancing
the catalytic activity of a nanocluster by designed incorporation (doping)of an impurity
on the surface. Doping by a single impurity atom changes significantly the bonding and
activation of Oy compared to the pure gold tetramer |1]. It is interesting to note that even
water molecule absorbed on the surface can drastically change the activity - for certain
supports moisture is able to increase the activity of gold catalysts by about two order
of magnitude. Chen and Goodman [17] have created well-ordered gold mono-layers and
bilayers that completely wet (cover) the oxide support, thus eliminating particle shape
and direct support effects. High-resolution electron energy loss spectroscopy and carbon
monoxide adsorption confirm that the gold atoms are bonded to titanium atoms. Kinetic
measurements for the catalytic oxidation of carbon monoxide show that the gold bilayer
structure is significantly more active (by more than an order of magnitude) than the
monolayer. As for computational approaches, a Monte Carlo simulation technique has
been used, e.g., for investigation of the effect of sulphur impurity and ceria support on
the surface composition and catalytic activity of Pt-Rh/ceria nanocatalysts |7|

The rise of the surface area is not sufficient to explain this increase. But it is possible
to declare additional reasons. Particularly, it is known that other things being equal
the catalytic activity increases when the electron density increases at the nanoparticle
surface. In [8] we put forward an idea that this effect can be related with the surface
irregular inclusion. In the present paper we give one an effective mathematical model for
detailed description of surface states related with surface impurities.

We suggest a simple model to explain the growth of surface electron density. Namely,
a nanoparticle is considered as a three-dimensional semi-infinite crystal with zero-range
potentials [9, 10]. Additional chains of centers on the surface of the half-crystal play a role
of impurities. Due to this perturbation of the initial Schréodinger operator for an electron
in the half-crystal, additional bands appear in the spectrum. The corresponding band
states are concentrated near the chains, i.e. near the nanoparticle surface. It means that
one can observe an additional electron density near the surface. As a result, the catalytic
activity increases. We investigate the band state characteristics. The situation of such
type is observed, for example, when one deals with low-energy electron-induced reactions
in thin films of glucose and N-acetyl-glucosamine [11], the influence of the surface state
onto the distance distribution of single molecules and small molecular clusters [12], the
role of sub-surface oxygen in Cu(100) oxidation [13] and the role of nanocavities at nearly
ideal (271)Si(100) inner surfaces as nanoreactor |14], etc. We deal with heterogeneous
redox catalysis which is related with the electron transfer. That is why the surface
electron state is important for this type of catalysis. The catalytic efficiency depends
also on the electron interaction between reactants and the surface of the nanocatalysts
and other factors. In the present paper we consider only electron density influence. The
obtained result is one of important reasons explaining extremely high catalytic activity of
the system Zr O2 - Al203 in the reaction of hydrogen oxidation. This phenomenon was
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observed in [15]. The analogous effect is described in [16] where the influence of nanoscale
layers of V and V205 on the surface of InP and GaAs on the process of thermal oxidation
of these semiconductors is demonstrated.

2 Model of Surface Impurities

2.1 Waveguide Band of Infinite Ideal Surface Chain. Single-band Approx-
imation for Crystal

Consider infinite periodic chain of impurity atoms posed along some line (let it be the axis
OX) at the surface of ideal crystal (matrix). In chosen coordinates system, the position
of n—th atom of the chain (n = 0,4+1,4+2,...) is given by a vector na = (na,0,0) , where
a is the chain period. To compute the energy spectrum of the chain, we use zero-range
potentials model. The initial electron system of the crystal-matrix is considered in a
single-band effective mass approximation. It is appropriate if atoms of the chain have
no deep levels (i.e. the levels are close to edges of the crystal bands: donor - to the
bottom of the conduction band, acceptor - to the top of the valence band). As for zero-
range potentials, the background for the model is formed by the theory of self-adjoint
extensions of symmetric operators (see, e.g., [9]). Namely, one may start from the self-
adjoint Schrédinger operator A in Lo(R3) - a sum —A + W (r) of the Laplacian —A with
the domain H?(R?) and a bounded potential W (r). Here H? is the Sobolev space W3.
Let us restrict this operator on the set of smooth functions from H?(R3) vanishing at
points r =mna; n = 0,%£1,... The closure B of the restricted operator is a symmetric
operator with the domain D(B) = {f: f € H*(R?), f(na) =0,n=0,+1,...} having
infinite deficiency indices. Indeed, the resolvent (A — XI)~" for regular X is the integral
operator in Lo(R3). The kernel of this operator (the Green function) G, (r,r’) has the
following property:
G (r, )| dr < co.
R3
Since Gy(-,na) € Ly(R?) at least for non-real A, the difference

1 ivVAr—r'|
Gi(r, 1) ¢

4 =]

has no singularity at r = r’, Gy(-,na) is orthogonal to the domain of B — AI and

_ . 1 1 n = nl
hm ’I’ — ’)’La'G)\(r’ nla) — hm |r na’ ez\/X|r—n’a‘ _ ) 9 (1)
r—na T—)na471'|r _ n/al A )

0, n#n

Hence, B is a symmetric operator with infinite deficiency indices.

To construct a self-adjoint extension of B, it is more convenient to deal with the
initial selfadjoint Schrodinger operator A instead of the adjoint operator B*. There
are several ways of extensions descriptions, e.g., boundary triplets method ([18|, von
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Neumann formulas ([19]), Krein resolvent formula ([20]). We will use here a variant of
the last approach. Having in mind that for regular A the product |[r — r/|G,(r,1’) is
non-singular at r = r’, put

. d
En(N) = plnn—%apnG/\(r’ na), pp,=|r—nal. (2)
and p
G (A) == lim p—pnG,\(r,n'a) = Gy (na,n'a), n#n' (3)
pn—U 0y,

It is worth noting that for Jm\ #£ 0

|Gx(r,na)|* dr =

[ Gt G g = ) e .
Rg )\ _ )\

Taking into account that the independent vectors

Gy(.,,na) = /E Gr(.,nr)5(r' — na)dr’ = (A — X)"'5(- —na), Im\ #0,

o 1
form a basis of deficiency subspace [(B — ) H2(R3)] , one can write down a formal

expression of the Krein resolvent formula directly for the set of Green functions G} (r,1’)
of selfadjoint extensions A, of B [21], [22]:

G (r,r') = Ga(r,x') = > Ga(r,na) ([Q(N) + M]™Y), |, Gi(n'a,r), (6)
where () is a Nevanlinna infinite matrix function with inputs

gn()\% n= n/;
Qn,n’(/\) = (7)
Gi(na,n'a)(\), n#n/,

and M runs through the set of infinite Hermitian matrices generating selfadjoint operators
in the space of bilateral sequences 1,. 2
By (6),(1)(2) and (3) for r’ # na,n = 0,£1, ... one has

1
lim p,GY (r,nr') = —— > " ([Q\) + M]™Y)  G\(Wa,r'),, p,=|r—nal,
pn—0 n,n

lim ipnG§4(r, r') = Z (M Q) + M]_l)n,n/ Gy (n'a,r’).

pn—0pp, ~

2 To avoid the overburdening of the paper by minor questions, we omit here a discussion of technical
details arising from the case of infinite deficiency spaces as irrelevant for the simple versions of the Krein
formula used below.
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Hence, each function f(r) from the domain of self-adjoint extension Ay, of B satisfies the
set of boundary conditions

im0 )(0) 47 3 Mo T (o)) = 0 ®)

Within the scope of this paper we will consider only the simplest class of extensions
corresponding to matrices M being multiple of the unit matrix, M = b - I, that is we
will consider the self-adjoint extensions A, of B, which are associated with the boundary
conditions

fd -
i, {2 1) (6) + 47t )} =0 B

pn—0

with any real b.

We will assume further that the potential W (r) of the initial Schrédinger operator
A doesn’t depend on variable z. By virtue of this assumption, Gy(x,y,z;2',y,2') =
Gi(r — 2/,y,2,0,y,2") = Gx(lx — 2|,y,20,v,2") and, hence, Q(N\) + bl is a Toplitz

matrix,

&(A) +b, n=n';
Q) +01],,, =[Q\) +bI], o= — 00 < n,n < oo,
G)\((n_n/)aa 0)7 n 7& TL/,

(10)
with the symbol
D(k,\) = &N + b+ > Ga(na,0)einke
- "0 (11)
=&(AN) +b+2)° Ga(na,0,0;0,0,0) cosnka, —2 <k<ZI
n=1
Therefore, the inverse matrix [Q(\) + bI]~! is also Toplitz with inputs
Pt = Tt = — / L ek —0o < nyn! < oo (12)
n,n n—n o D(k’, )\) ) ) )
and the symbol D(k, \)~t. Put
f)\(k7r) = ZGA(x7yuz;na7070)eikna' (13)

We see that in the case of z-independent potential W(t) for the class of self-adjoint
extensions A, under study, the Krein formula (6) for the corresponding Green functions
G5 (r,1’) takes the form

Gh(r,r') = G(r, 1) /D i A 1) fx(k, r')dk. (14)
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Remind that irrelatively to a specific problem under study, the matrix function Q(X) in
the Krein resolvent formula is holomorphic in the upper and the lower half-planes, and
it has the following property

1
2o —Q] =0, ;=0
Matrix function Q(§) is also holomorphic at real regular points £ of A and hereat Q(&)* =
Q(&). The same is true for Q(A\)+0b-I with real b and, consequently, for the symbol D(k, \).
From this, we conclude that D(k,\), == < k < T, is real at real regular points § of A

and, moreover, at those points, the following inequality takes place

d
aD(k, )\)b\:5 > 0.

Let 0(A) be the set of real regular points of the initial operator A. By (14), the part
of the spectrum o(A;) of an extension A, on p5(A) can consist only of real A\, A € on(A),
for which there is k, k € [—g, %], such that

D(k,\) = 0. (15)
Let us assume that (15) has only one root E(k) for each k € [—Z,Z], and that E(k)
is a continuous function on [—Z, Z]. Note that by (11), D(k,\) = D(—k, \). As follows,

E(—k) = E(k). Evidently, that for any root E(k) of (15), function fg)(k,r) defined by
(13) satisfies the Schrodinger equation on Ry \ U,{na}:

—Af(x) + W(r)f(r) = E(k)f(r), (16)

and the boundary conditions (8).

Let [Emin, Emaz] be the maximal interval, which is covered by the values of E(k) in
om(A) and let &(s), —oo < s < 0o, be the spectral function of the self-adjoint extension
Ap. Taking any segment [Ey, Es| C [Fumin, Emax] and applying to any smooth function
u € L*(R?) the general relation

E>
s
(E([En, Ea])u,u) e = 1;&)1; Im (Reyie (Ap) u,u) dE, (17)
Eq

one can deduce from (14)that & ([E1, E»)) is the integral operator in L?*(R®) with kernel

jus

(B B 1) = 5= [ o (B0 (k. )00 Tk, (18

where

1, E(k) € [Ey, By,
0, E(k) ¢ [En, Ea],
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and

OD(\ k)

Y(k,r) = l B\ ]_% Jemw (k). (19)

Ix=E(k)

In particular, if the spectrum of A, has not empty intersection with gn(A), then the
orthogonal projector Py onto the spectral subspace W associated with the spectrum of
Ap on px(A) can be written as the integral operator with kernel

Pur (r,1') = %/w(k’,r)w(k;,r’)dk. (20)

The wave functions from W conform the states of a particle in which it being in the
unrestricted motion along the chain of impurities cannot move far away from the latter,
that is the states from W form the so called waveguide band. According to the definitions
(19) and (13) 9 (k,r) is a generalized eigenvector of A, corresponding to the point of
spectrum E(k) € on(A), which is normalized so that the following relation holds:

(k) Ok, t)dr = 5(k — k), —= <k K <. (21)
Rs3 a a

In addition, it has the property
Uk, T+ a) = e*Y(k, 1), (22)

owing to which, it is so called Bloch function.

The obtained results can be used for modelling of impurity waveguide bands, which
can appear due to regular chains of dopant atoms on the surface of semiconducting crystal.
As an example, let us consider the case of crystal occupying the half-space z < 0 in R
while the half-plane z > 0 is empty. For simplicity, we will assume also that the effective
mass m of electron in the crystal is the same as that in vacuum. Without significant
loss of generality, in this case, we can take, as unperturbed self-adjoint operator A, the
Schrodinger operator

—A+ W(r)

with the domain H?(R3) and the potential

Wy, 2z<0,
W(r) = (23)

0, z>0,

where Wy > 0 is related with the work function E,, for electrons at the bottom of the
conductivity band in the crystal by the relation

2m

Wo - ﬁEw
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The Green function G, (r,, z;1/,2'), r, = (z,y), of A for regular A can be written in

the form
1

G)\ (rm Z;5 r|,|a Z/) = W/ eip‘(r‘.—r",)g/\(z’ Z/;p)dpv b= |p|7 (24)
R2

where g)(z,2';p) for z < 0 and z < 2’ has the form

ga(z,2p) = i e VAT

o \/)\+Wo—p2+\/)\—p2

X {cos \/)\+Wo—p22’+i\/k= msin\/)\—l—wo —pZz’},
-

and gx(z, 2';p) for 2/ < z < 0 can be obtained from (25) by permutation of z and 2’. The

(25)

corresponding expressions for z > 0 can be found is one replaces z, 2z’ in those for z < 0

by —z,—2z" and transposes /A + Wy — p? and /A — p2.

In particular, for z = 2’ = 0 we get from (24, 25):

1 . / 1
Gy (r,,0;1/,0) = @2 /]R2 e’ (=) R s dp. (26)
Since 1 1
At Wo—p+VA-p2 Wo <\/A+W0_p2_ \/)\_p2>
1" 1
“in . N ST
and

o

7 B 1/ dq
2 )\+s—p2_27T @PHp:—A—s

—0o0

it follows from (26) that

Gy (r,,0:r,0) = G 00,0y = L[ e 7
IERSRE TP = Ly 70; = 15 T 2
(0 0:5,0) = G = ,0:0.0) = o= [ s (27)

In the case under consideration, one has
&o(N) = limirG (r,0) = i [()\ + W, )% - )\%] (28)
OV S0dr MY T 6l 0 '
and
\ | d o , 1 Wo ei\/)\+s|nfn’\ad
n,n’ = lim — ) - 29
Cnn (M) pir—I}Odpnr A ') 47TW0/0 In —n'la ° (29)

The self-adjoint operator A, was defined above by the set of boundary conditions (9) at
the points of impurities location. For this operator, the corresponding function D(k, \)
in the Krein formula (14) has the form

D (k,\) ! / " ds -1 © O = Lgnta (30)
, = S - In y = —€ .
4eWoa J, cos VA + sa — coska 2
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To explain how to choose the parameter b of extension A, for given semiconducting
crystal and impurity atoms, let us consider the simplest case of single donor dopant at
r = 0 on the interface z = 0. The effect of the latter on electrons near the bottom of the
conductivity band of given semiconductor can be modelled by using ( instead of A) of
the self-adjoint extension A} with the Green function

G;b(r7 I'/) = G)\(I', I'/) - D1,+()\)G/\(ra O)G)\(Oa I'), (31)

; 3 3
DY()\) = A (A+Wo)2 — Az | + b,
that is the extension, which plays the role of the "perturbation" of A by the single zero-
range potential at r = 0. It is equivalent to the restriction imposed on the involved wave
functions ¢ (r) in the form of the following boundary condition

lim {diiw(r) + drb- mp(r)} o, (32)

r—0

For b > 0 the zero-range potential results in the isolated eigenvalue \y < —Wj below the
bottom of the conductivity band. It is a donor level with minimal energy

2
B, = _W (o + Wo)
2m

required to remove an electron from this level to the conductivity band. If for certain
semiconductor and donor dopant Ej,, is known , then, according to (31), the natural way
to model the effect of donor impurities by the zero-range potential (32) is to take

b

5 2
] , g (33)

= ion W - 2 ion — 1o
vy Lo T Wo)? = €] s cion = 55
Let us denote, as above, by E(k) the wave guide band energy defined from the equation

D(k,\) =0, k € [-n/a,n/a), A < 0, with D(k, \) defined by (30). The generalized

Bloch eigenfunction ¢ (k, r) corresponding to the quasi-momentum k and the energy E (k)

is given according to (13, 19) by the expression

.27

¢(kar)2/\/’(k‘)eik“ > 617“% f dge'®y

S§=—00

X [9(—z)gg(k) (z; \/(k: +27s/a)’ + q2) + Q(Z)gg(k) (z; \/(k +27ms/a)’ + QQH )
gy (:p) = . eV 2 <0

N \/A+Wo—p2+\/>\—p2 '
9y (zp) = —T—in s VAT <0

o= Tt L)

(34)

J

where

[V

O\

and 0(z) is the Heaviside function.
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In the simplest case W), the waveguide band can be described in more details due to
the elementary expression for D (k, s):

1 d
D (k,s)=—In

a cos(as) — cos (ak)’ (35)

where d = exp (—ba) /2. For d < 2, the waveguide band is overlapped with the conductiv-
ity band (for E > 0) and for d < 2 it disappears. Formation of the band corresponds to
existence of roots of (35) of the form s = iy, x > 0. The dispersion law for the waveguide
band is given by the expression
h2X2
E=-— , (36)
2
where Y is related with k& by the following manner

ch (xa) = d+ cos (ka) . (37)

As a result,

2

B (k) = _2Za2 {m {d + cos (ak) + /(4 + cos (ak))’ - 1} }2 (L17)  (38)

The sign of the square root in (38) is determined by the condition x > 0. The band edges
are determined by the relation |cos (ka)| =1

h? 5 2
Epin = — In |d+1 d+1)7° =1 ,
ZMGQ{H{+ +1/(d+1) ” (39)

By — 1" {m{d—u (d—1)2—1”2, (40)

B 20

Let us determine the effective masses of electron near the bottom and near the top of
the waveguide band. Consider the difference

E (k) — Enin =

{ln2 [d +1+ \/M} — In? {d + cos (ak) + \/(d + cos (ak))? — 1} }
PR In[d + 1+ VP + 2d]

~ho0 o, &+ 2d

One can see that near the bottom of the waveguide band, one has

Vd?+2d

202

Merr = . 41
I i ld+ 1+ V& + 2d] (4)
Analogously, near the top of the waveguide band, one has
d? —2d
(42)

M T A1+ V&= 2d]
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If the waveguide band is inside the gap for the crystal and the number of free electrons
corresponding to a single atom, equals one then the band is half-filled (up to the Fermi
energy Er which corresponds to ka = +m/2:

Ep— 2 [d + m] ). (43)

B 20

One can obtain the electron wave function for the waveguide band:

Vxd f exp [—x |r — na| — ikna]

= r — na
47T\/\/(d + cos (ka))? — 1= | |

(44)

Here the quasimomentum k and the energy parameter y = /2u |E| are related by (37).
When obtaining expression (44), one use the expansion of D (k,s) near its roots (poles
of the Green function).

Consider the asymptotic behavior of the wave function 44) for p = (2% + y2)1/2

— 00,
i.e. far from the chain axis. Let us deal with the general case without limitation d > 2
as in (44) and correspondingly, not only for £ < 0). We will show that there is a
localization near the chain axis. Moreover, this property preserves if the energy belongs
to the conductivity band of the crystal. We start from the general expression for the

wave function:

~+00 . ;
_ Gk Z exp [is|r — na| — zkna]‘ (15)

 Ar

n=—oo

Wy, (1)

lr — na|

Here (% is the normalizing factor (for £ > 0, the parameter s is real, for £ < 0, one
has the expansion (44)). Using the Poisson summation formula, after integration in the
cylindrical coordinates system (related to the chain) one represents (45) in the form

“+o00 . 2
2 2
Uy (r) = Chexp (kz) Z exp { W;lx] K, p\/(k + —;Tl) —s2 |, (46)

2ma

l=—o00

where K (2) is the McDonald function. The decreasing of Wy (r) is predetermined by the
asymptotics of the main term (for [ = 0)

Uy (1) psyoo i\/zexp [—p\/ﬂ} exp (ikx) . (47)

2ma \l 2p

One can check it by consideration of the average density for the state (46):

a —+00

(|, (x)*) = é/dx/dydzmlk ()2 =

0 —00

+oo
‘Ck‘Q +o0 27l 2 )
Py Z dydzKy | p k+7 i
l:—oo_OO
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with using of the known asymptotics of the McDonald function for great argument values.
Parameters k and s are related by (compare with (37)

cos (as) = d + cos (ak) . (48)

Here |ak| < 7, s is found for d + cos (ak) < 1, s =iy, x > 0 for d + cos (ak) > 1. The
values of the power of the exponentially decaying factor from (47) are equal (due to (48)
to

[ (had) = { [k2a% — arccos? (d + cos (ka))]'"*, d + cos (ka) < 1, (49)
a,d) ={.
[k2a® + Arcch? (d + cos (k‘a))]l/2 , d+ cos (ka) > 1,

for the Fermi level (k = kp = 7/2a).

2.2 Waveguide Band of Infinite Ideal Surface Chain. Double-band Approx-
imation for Crystal

Consider the case of deep energy level of the impurity chain. We will confine our attention
by two energy domains: near the bottom of the conductivity band and near the top of
the valence band. In this section we will deal with the simplest case of constant crystal
potential W as at the end of the previous section.

Following [23], one considers (in the framework of the effective mass approximation)
the unperturbed Hamiltonian Hj in the form:

2
i, U —5 A+ 3B, 0 U, | (50)
0, 0 A — 1F, 0,
Here py, ¥y and po, Wy are effective masses and electron wavefunction near the bottom
of the conductivity band and near the top of the valence band, correspondingly, £, is
the width of gap. Electrons from different bands looks like different one-electron excita-
tions with positive and negative energies (the origin for energies is chosen at the center
of the gap). The Hamiltonian spectrum consists from two disjoint parts: [%Eg, +oo) )
(_Oov_lEg] :
The construction of the model is the same as in the previous section. For the case of
single impurity atom at point r = 0, the solution of the matrix Schrodinger equation.

HybW = EV

has the form

v ph CW exp (—xar) /r

Tz C® exp (—xar) /7

: (51)

1/2

X1 = [=2m (E - Ey/2)/ (h*)]"7,
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1/2

X2 = [2u2 (B + E,4/2) / (h?)]

To take into account an influence of two crystal bands, we choose a specific form
of self-adjoint operator extension, namely, that corresponds to the following "boundary
condition" at zero:

Here B is a Hermitian matrix,

In the case of periodic chain, the presentation analogous to (51) has the form

00 M1 C(l) exp[—xi1|r—an|]

_ Z 4rp2 M |r—an)| : (53>

< po (2) exp[—xe|r—an]]
=T\ arn? Cn [r—an)|

The boundary condition at n—th point in this case takes the form

) 0
plir—{lo {3_]% - B] p¥ =0, (54)

pn=|r—mnal; n=0=+1,...

Substitution of (53) into (54) gives one the following system for C”, C%:
1 1) expl—v1aln—n’ 9
S e L et Fe

MACH + (2 + B) O = X4, O 228 = 0.

aln—n/|

(55)

Let us introduce matrix notations in (55):
D, -7
A (k’, E) — ’
b2
Vim Do

where

Do (k,x1) = (x1 +a) = Y _exp[—xaa|n| + iknal / (a|n]),
n#0

Dg (k,x2) = (x2+ B) = > exp[—xaa|n| + ikna] / (a|n]).
n#0
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System (55) can be rewritten in the form

> CMexp (ikna) 0
Ak,E)[ ™ = (56)
> i exp (tkma) 0

Impurity waveguide bands appear when there are additional branches of roots £ = E (k)

of equation
detA(k,E)=0 (57)

belonging to the gap. Our model allows one to describe the waveguide bands explicitly
due to a possibility to summarize series for matrix inputs D,, (k, x1) and Dg (k, x2) . One

has
11y flaxa)—cos(ak) — b2,
AlkE)=| g . : (58)
iy Ly %—QCOS(M)

where d; = exp (—aa) /2, dy = exp (—fa) /2, and the dispersion law for the waveguide
bands is determined by the equation

In ch (axy) — cos (ak) I ch (axz) — cos (ak)
dl d2

—a [y =0 (59)

For d; < 2exp (— |y|a), waveguide bands are overlapped with the bands of the continuous
spectrum for the crystal. For d; < 2exp (— |y| a) they disappear. For v = 0 one has

EY = E,/2 — h*x10 (k) / 2m1)

. . (60)
By = 1xa0 (k) | (2p12) = B, /2
Parameters x;o (k) are determined by the equation
ch (axqo (k)) = d; + cos (ak) ,
(axio (K)) (ak) (61)

(i=1,2).

For small |y|* , one can simply find corrections to solutions (60) of equation (59) by the
Newton method

Xi (k) = xi0 (k) + a|y* /R; (k)

. (62)
R: (k) = [1+ 2cos (ak) /d; — sin® (ak) /d?] "/
Correspondingly, the impurity bands are described more precisely:
h2a?
E; (k) = E® (k ? Yo (k). 63
(k) = B (0)F 2 1 X (1) (63)

One can see, that for nonzero v overlapping of the impurity bands is possible. Generally
speaking, such overlapping can occur for v = 0 also. One can find band edges and effective
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masses analogously to the previous section. To determine the explicit expression for the
wave function (53) including the determination of the normalizing constants, one should
consider the matrix Green function (50):

G(r,r',E)=G(r—r',E)

-1
2 0
_% Zn,n/ Go(r —na, E) A" (k, E) & X Go (n'a—1r', E)exp[ika (n —n')].
0 pyt

(64)

Here A™! (k, F) is the inverse matrix for A (k, E), and

1 exp (—xuir) /7 0
Co (0. ) = paexp (—xar) / 65)
4mh?
0 pi2 xp (—xar) /7

Inversion of matrix A (k, E) can be performed by the following procedure (see [24]). For
any root E; (k) of equation (59), there exists a non-zero vector-function

tj (k) = i (8)
tjo (k)
such that
[A (K, E) t; (k)] p_p 1y = 0. (66)

Consequently, £ = E; (k) is also a root of function

2
= "t (k)i (k, E) t; (k)

where (W, W) =t (k) is the vector adjoint to t;. Definition of function Q; (E)
leads to SESQ > 0, SE # 0, hence, Q); (E) is R-function having only simple roots which
belong to real axis. Roots strictly interspersed as poles lying on positive half-axis. Matrix
function A™! (k, E)) has simple poles at E = E; (k). The following presentation is valid

Ayl (k, B) = [E = Bj ()] ty5" (k) ti; (k) /T; (k) + O (1) (67)

Here

0 = |10 (5)] PO

Comparison of (64) (with substitution (67)) and matrix analog of expansion (44) gives
one

Z exp [—xij [r — na| —ikna] t;; (k) (68)

47rh« /T S |r — nal

\IJij (I‘, ]{7)
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where x;; = x; (E = Ej;) and x;; is determined by (62) or, in general case, by (59). As
for wave functions (68), it is simple to repeat (with the corresponding modifications) the
proof of exponential decay far from the chain axis (see the previous section). Thus, if
one takes into account two bands of the crystal-matrix, the qualitative result is the same:
there is a possibility of appearance of waveguide bands localized in a neighborhood of the
chain. It should be noted that appearance of the waveguide band does not related with
the effective mass approximation. One can perform the analysis by taking a periodic
potential Hamiltonian for the crystal. The impurity influence can be modeled by zero-
range potentials as earlier. One chooses the parameters of these potentials in such a way
that the impurity level in a band coincides with the experimentally observed ones. As
a result, the wave functions for the states corresponding to the waveguide band can be
sought in the form

Z G (r,na, E) exp (—inka)

where é(r,r’,E) . The dispersion equation for the waveguide band is obtained from
the boundary condition. Taking into account that the behavior of the Green function
G (r,r’, E) r — r' is analogous to the behavior of [—47 |r — r/|]"". The dispersion equation
will be as follows:

—b+ Z ' (n) e =0,
['(n) =lim [% (r, G (r,na, E))]

3 Conclusion

Effective mathematical model for description and calculation of waveguide bands is sug-
gested. It is based on the theory of self-adjoint extensions of symmetric operators. It
is a version of zero-range potential model. Periodic chain of point-like potentials at the
surface of nanoparticle, crystal-matrix (in the model - a half-space filled with the crys-
tal). We take into account an influence of one and two bands of the main crystal. For
the second case, one use an effective mass approximation. An additional waveguide band
appears. The corresponding state is localized near the chain of impurities. It decays
exponentially when the distance from the chain axis increases. Correspondingly, the
electron density near the nanoparticle surface increases. It leads to the growth of the
catalytic activity of the nanocatalyst (in a model, the half-crystal is the nanocatalyst).
Thus, we describe a mechanism of increasing of catalytic activity of nanocatalyst. The
model allows one to make calculations directly and, correspondingly, to choose proper
impurities for nanocatalyst improvement.
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